Page index
 0 Start page
 0 Subject index
 0 Release notes
 I  (HTML) Title page
 II  (HTML) Errata Notice
 IIIa  (HTML) Preface to the Ninth Printing
 III  (HTML) Preface
 V  (HTML) Foreword
 VI
 VII  (HTML) Table of Contents
 VIII
 IX  (HTML) Introduction. 1. Introduction. 2. Accuracy of the Tables.
 X 3. Auxiliary Functions and Arguments. 4. Interpolation
 XI
 XII 5. Inverse Interpolation
 XIII 6. Bivariate Interpolation. 7. Generation of Functions from Recurrence Relations
 XIV  (HTML) 8. Acknowledgments
 5 2. Physical Constants and Conversion Factors
 6 Table 2.1. Common Units and Conversion Factors. Table 2.2. Names and Conversion Factors for Electric and Magnetic Units
 7 Table 2.3. Adjusted Values of Constants
 8 Table 2.4. Miscellaneous Conversion Factors. Table 2.5. Conversion Factors for Customary U.S. Units to Metric Units. Table 2.6. Geodetic Constants
 9 3. Elementary analytical methods
 10 3.1. Binomial Theorem and Binomial Coefficients; Arithmetic and Geometric Progressions; Arithmetic, Geometric, Harmonic and Generalized Means. 3.2. Inequalities
 11 3.3. Rules for Differentiation and Integration
 12
 13 3.4. Limits, Maxima and Minima
 14 3.5. Absolute and Relative Errors. 3.6. Infinite Series
 15
 16 3.7. Complex Numbers and Functions
 17 3.8. Algebraic Equations
 18 3.9. Successive Approximation Methods
 19 3.10. Theorems on Continued Fractions. Numerical Methods. 3.11. Use and Extension of the Tables. 3.12. Computing Techniques
 20
 23 References
 65 4. Elementary Transcendental Functions: Logarithmic, Exponential, Circular and Hyperbolic Functions
 67 Mathematical Properties. 4.1. Logarithmic Function
 68
 69 4.2. Exponential Function
 70
 71 4.3. Circular Functions
 72
 73
 74
 75
 76
 77
 78
 79 4.4. Inverse Circular Functions
 80
 81
 82
 83 4.5. Hyperbolic Functions
 84
 85
 86 4.6. Inverse Hyperbolic Functions
 87
 88
 89 Numerical Methods. 4.7. Use and Extension of the Tables
 93 References
 94
 227 5. Exponential Integral and Related Functions
 228 Mathematical Properties. 5.1. Exponential Integral
 229
 230
 231 5.2. Sine and Cosine Integrals
 232
 233 Numerical Methods. 5.3. Use and Extension of the Tables
 234
 235 References
 236
 237
 253 6. Gamma Function and Related Functions
 255 Mathematical Properties. 6.1. Gamma Function
 256
 257
 258 6.2. Beta Function. 6.3. Psi (Digamma) Function
 259
 260 6.4. Polygamma Functions. 6.5. Incomplete Gamma Function
 261
 262
 263 6.6. Incomplete Beta Function. Numerical Methods. 6.7. Use and Extension of the Tables
 264 6.8. Summation of Rational Series by Means of Polygamma Functions
 265 References
 266
 295 7. Error Function and Fresnel Integrals
 297 Mathematical Properties. 7.1. Error Function
 298
 299 7.2. Repeated Integrals of the Error Function
 300 7.3. Fresnel Integrals
 301
 302 7.4. Definite and Indefinite Integrals
 303
 304 Numerical Methods. 7.5. Use and Extension of the Tables
 308 References
 309
 329 Complex zeros, maxima, minima of the error function and Fresnel integrals: asymptotics
 331 8. Legendre function
 332 Mathematical Properties. Notation. 8.1. Differential Equation
 333 8.2. Relations Between Legendre Functions. 8.3. Values on the Cut. 8.4. Explicit Expressions
 334 8.6. Special Values
 335 8.7. Trigonometric Expansions. 8.8. Integral Representations. 8.9. Summation Formulas. 8.10. Asymptotic Expansions
 336 8.11. Toroidal Functions
 337 8.12. Conical Functions. 8.13. Relation to Elliptic Integrals. 8.14. Integrals
 338
 339 Numerical Methods. 8.15. Use and Extension of the Tables
 340 References
 341
 355 9. Bessel Functions of Integer Order
 358 Mathematical Properties. Notation. Bessel Functions J and Y. 9.1. Definitions and Elementary Properties
 359
 360
 361
 362
 363
 364 9.2. Asymptotic Expansions for Large Arguments
 365 9.3. Asymptotic Expansions for Large Orders
 366
 367
 368
 369 9.4. Polynomial Approximations
 370 9.5. Zeros
 371
 372
 373
 374 Modified Bessel Functions I and K. 9.6. Definitions and Properties
 375
 376
 377 9.7. Asymptotic Expansions
 378 9.8. Polynomial Approximations
 379 Kelvin Functions. 9.9. Definitions and Properties
 380
 381 9.10. Asymptotic Expansions
 382
 383
 384 9.11. Polynomial Approximations
 385 Numerical Methods. 9.12. Use and Extension of the Tables
 386
 387
 388 References
 389
 435 10. Bessel Functions of Fractional Order
 437 Mathematical Properties. 10.1. Spherical Bessel Functions
 438
 439
 440
 441
 443 10.2. Modified Spherical Bessel Functions
 444
 445 10.3. Riccati-Bessel Functions
 446 10.4. Airy Functions
 447
 448
 449
 450
 451
 452 Numerical Methods. 10.5. Use and Extension of the Tables
 455 References
 456
 479 11. Integrals of Bessel Functions
 480 Mathematical Properties. 11.1. Simple Integrals of Bessel Functions
 481
 482 11.2. Repeated Integrals of Jn(z) and K0(z)
 483 11.3. Reduction Formulas for Indefinite Integrals
 484
 485 11.4. Definite Integrals
 486
 487
 488 Numerical Methods. 11.5. Use and Extension of the Tables
 489
 490 References
 491
 495 12. Struve Functions and Related Functions
 496 Mathematical Properties. 12.1. Struve Function Hn(s)
 497
 498 12.2. Modified Struve Function Lnu(z). 12.3. Anger and Weber Functions
 499 Numerical Methods. 12.4. Use and Extension of the Tables
 500 References
 502 Explanations of numerical methods to compute Struve functions
 503 13. Confluent Hypergeometric Functions
 504 Mathematical Properties. 13.1. Definitions of Kummer and Whittaker Functions
 505 13.2. Integral Representations
 506 13.3. Connections With Bessel Functions
 507
 508 13.5. Asymptotic Expansions and Limiting Forms
 509 13.6. Special Cases
 510 13.7. Zeros and Turning Values
 511 Numerical Methods. 13.8. Use and Extension of the Tables
 514 References
 515
 537 14. Coulomb Wave Functions
 538 Mathematical Properties. 14.1. Differential Equation, Series Expansions
 539 14.2. Recurrence and Wronskian Relations. 14.3. Integral Representations. 14.4. Bessel Function Expansions
 540 14.5. Asymptotic Expansions
 541
 542 14.6. Special Values and Asymptotic Behavior
 543 Numerical Methods. 14.7. Use and Extension of the Tables
 544 References
 555 15. Hypergeometric Functions
 556 Mathematical Properties. 15.1. Gauss Series, Special Elementary Cases, Special Values of the Argument
 557 15.2. Differentiation Formulas and Gauss' Relations for Contiguous Functions
 558 Integral Representations and Transformation Formulas
 559
 560
 561 15.4. Special Cases of F(a, b; c; z), Polynomials and Legendre Functions
 562 15.5. The Hypergeometric Differential Equation
 563
 564 15.6. Riemann's Differential Equation
 565 15.7. Asymptotic Expansions. References
 566
 567 16. Jacobian Elliptic Functions and Theta Functions
 568
 569 Mathematical Properties. 16.1. Introduction
 570 16.2. Classification of the Twelve Jacobian Elliptic Functions. 16.3. Relation of the Jacobian Functions to the Copolar Trio
 571 16.4. Calculation of the Jacobian Functions by Use of the Arithmetic-Geometric Mean (A.G.M.). 16.5. Special Arguments. 16.6. Jacobian Functions when m=0 or 1
 572 16.7. Principal Terms. 16.8. Change of Argument
 573 16.9. Relations Between the Squares of the Functions. 16.10. Change of Parameter. 16.11. Reciprocal Parameter (Jacobi's Real Transformation). 16.12. Descending Landen Transformation (Gauss' Transformation). 16.13. Approximation in Terms of Circular Functions. 16.14. Ascending Landen Transformation
 574 16.15. Approximation in Terms of Hyperbolic Functions. 16.16. Derivatives. 16.17. Addition Theorems. 16.18. Double Arguments. 16.19. Half Arguments. 16.20. Jacobi's Imaginary Transformation
 575 16.21. Complex Arguments. 16.22. Leading Terms of the Series in Ascending Powers of u. 16.23. Series Expansion in Terms of the Nome q and the Argument v. 16.24. Integrals of the Twelve Jacobian Elliptic Functions
 576 16.25. Notation for the Integrals of the Squares of the Twelve Jacobian Elliptic Functions. 16.26. Integrals in Terms of the Elliptic Integral of the Second Kind. 16.27. Theta Functions; Expansions in Terms of the Nome q. 16.28. Relations Between the Squares of the Theta Functions. 16.29. Logarithmic Derivatives of the Theta Functions
 577 16.30. Logarithms of Theta Functions of Sum and Difference. 16.31. Jacobi's Notation for Theta Functions. 16.32. Calculation of Jacobi's Theta Function Theta(u|m) by Use of the Arithmetic-Geometric Mean. 16.33. Addition of Quarter-Periods to Jacobins Eta and Theta Functions
 578 16.34. Relation of Jacobi's Zeta Function to the Theta Functions. 16.35. Calculation of Jacobi's Zeta Function Z(u|m) by Use of the Arithmetic-Geometric Mean. 16.36. Neville's Notation for Theta Functions
 579 16.37. Expression as Infinite Products. 16.38. Expression as Infinite Series. Numerical Methods. 16.39. Use and Extension of the Tables
 581 References
 587 17. Elliptic Integrals
 589 Mathematical Properties. 17.1. Definition of Elliptic Integrals. 17.2. Canonical Forms
 590 17.3. Complete Elliptic Integrals of the First and Second Kinds
 591
 592 17.4. Incomplete Elliptic Integrals of the First and Second Kinds
 593
 594
 595
 596
 597 17.5. Landen's Transformation
 598 17.6. The Process of the Arithmetic-Geometric Mean
 599 17.7. Elliptic Integrals of the Third Kind
 600 Numerical Methods. 17.8. Use and Extension of the Tables
 601
 606 References
 607
 627 18. Weierstrass Elliptic and Related Functions
 629 Mathematical Properties. 18.1. Definitions, Symbolism, Restrictions and Conventions
 630
 631 18.2. Homogeneity Relations, Reduction Formulas and Processes
 632
 633 18.3. Special Values and Relations
 634
 635 18.4. Addition and Multiplication Formulas. 18.5. Series Expansions
 636
 637
 638
 639
 640 18.6. Derivatives and Differential Equations
 641 18.7. Integrals
 642 18.8. Conformal Mapping
 643
 644
 645
 646
 647
 648
 649 18.9. Relations with Complete Elliptic Integrals K and K' and Their Parameter m and with Jacobins Elliptic Functions
 650 18.10. Relations with Theta Functions
 651 18.11. Expressing any Elliptic Function in Terms of P and P'
 652 18.13. Equianharmonic Case (g2=0, g3=1)
 653
 654
 655
 656
 657
 658 18.14. Lemniscatic Case (g2=1, g3=0)
 659
 660
 661
 662 18.15. Pseudo-Lemniscatic Case (g2=-1, g3=0)
 663 Numerical Methods. 18.16. Use and Extension of the Tables
 664
 668
 669
 670 References
 671
 685 19. Parabolic Cylinder Functions
 686 Mathematical Properties. 19.1. The Parabolic Cylinder Functions, Introductory. The Equation d2y/dx2-(x2/4+a)y=0. 19.2 to 19.6. Power Series, Standard Solutions, Wronskian and Other Relations, Integral Representations, Recurrence Relations
 687
 688
 689 19.7 to 19.11. Asymptotic Expansions
 690
 691 19.12 to 19.15. Connections With Other Functions
 692 The Equation d2y/dx2+(x2/4-a)y=0. 19.16 to 19.19. Power Series, Standard Solutions, Wronskian and Other Relations, Integral Representations
 693 19.20 to 19.24. Asymptotic Expansions
 694
 695 19.25. Connections With Other Functions
 696 19.26. Zeros
 697 19.27. Bessel Functions of Order ±1/4, ±3/4 as Parabolic Cylinder Functions. Numerical Methods. 19.28. Use and Extension of the Tables
 698
 699
 700 References
 721 20. Mathieu Functions
 722 Mathematical Properties. 20.1. Mathieu's Equation. 20.2. Determination of Characteristic Values
 723
 724
 725
 726
 727 20.3. Floquet's Theorem and Its Consequences
 728
 729
 730 20.4. Other Solutions of Mathieu's Equation
 731
 732 20.5. Properties of Orthogonality and Normalization. 20.6. Solutions of Mathieu's Modified Equation for Integral nu
 733
 734
 735 20.7. Representations by Integrals and Some Integral Equations
 736
 737
 738 20.8. Other Properties
 739
 740 20.9. Asymptotic Representations
 741
 742
 743
 744 20.10. Comparative Notations
 745 References
 746
 751 21. Spheroidal Wave Functions
 752 Mathematical Properties. 21.1. Definition of Elliptical Coordinates. 21.2. Definition of Prolate Spheroidal Coordinates. 21.3. Definition of Oblate Spheroidal Coordinates. 21.4. Laplacian in Spheroidal Coordinates. 21.5. Wave Equation in Prolate and Oblate Spheroidal Coordinates
 753 21.6. Differential Equations for Radial and Angular Spheroidal Wave Functions. 21.7. Prolate Angular Functions
 754
 755
 756 21.8. Oblate Angular Functions. 21.9. Radial Spheroidal Wave Functions
 757 21.10. Joining Factors for Prolate Spheroidal Wave Functions
 758 21.11. Notation
 759 References
 771 22. Orthogonal Polynomials
 773 Mathematical Properties. 22.1. Definition of Orthogonal Polynomials
 774 22.2. Orthogonality Relations
 775 22.3. Explicit Expressions
 776
 777 22.4. Special Values. 22.5. Interrelations
 778
 779
 780
 781 22.6. Differential Equations
 782 22.7. Recurrence Relations
 783 22.8. Differential Relations. 22.9. Generating Functions
 784 22.10. Integral Representations
 785 22.11. Rodrigues' Formula. 22.12. Sum Formulas. 22.13. Integrals Involving Orthogonal Polynomials
 786 22.14. Inequalities
 787 22.15. Limit Relations. 22.16. Zeros
 788 22.17. Orthogonal Polynomials of a Discrete Variable. Numerical Methods. 22.18. Use and Extension of the Tables
 789
 790 22.19. Least Square Approximations
 792 References
 803 23. Bernoulli and Euler Polynomials, Riemann Zeta Function
 804 Mathematical Properties. 23.1. Bernoulli and Euler Polynomials and the Euler-Maclaurin Formula
 805
 806
 807 23.2. Riemann Zeta Function and Other Sums of Reciprocal Powers
 808 References
 821 24. Combinatorial Analysis
 822 Mathematical Properties. 24.1. Basic Numbers. 24.1.1. Binomial Coefficients
 823 24.1.2. Multinomial Coefficients
 824 24.1.3. Stirling Numbers of the First Kind. 24.1.4. Stirling Numbers of the Second Kind
 825 24.2. Partitions. 24.2.1. Unrestricted Partitions. 24.2.2. Partitions Into Distinct Parts
 826 24.3. Number Theoretic Functions. 24.3.1. The Mobius Function. 24.3.2. The Euler Function
 827 24.3.3. Divisor Functions. 24.3.4. Primitive Roots. References
 875 25. Numerical Interpolation, Differentiation, and Integration
 877 25.1. Differences
 878 25.2. Interpolation
 879
 880
 881
 882 25.3. Differentiation
 883
 884
 885 25.4. Integration
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896 25.5. Ordinary Differential Equations
 897
 898 References
 899
 925 26. Probability Functions
 927 Mathematical Properties. 26.1. Probability Functions: Definitions and Properties
 928
 929
 930
 931 26.2. Normal or Gaussian Probability Function
 932
 933
 934
 935
 936 26.3. Bivariate Normal Probability Function
 937
 940 26.4. Chi-Square Probability Function
 941
 942
 943
 944 26.5. Incomplete Beta Function
 945
 946 26.6. F-(Variance-Ratio) Distribution Function
 947
 948 26.7. Student's t-Distribution
 949 Numerical Methods. 26.8. Methods of Generating Random Numbers and Their Applications
 950
 951
 952
 953 26.9. Use and Extension of the Tables
 954
 955
 961 References
 962
 963
 964
 997 27. Miscellaneous Functions
 998 27.1. Debye functions
 999 27.2. Planck's Radiation Function. 27.3. Einstein Functions
 1000 27.4. Sievert Integral
 1001 27.5. $f_m(x)=\int_0^\infinity t^m e^{-t^2-x/t} dt$ and Related Integrals
 1002
 1003 27.6. $f(x)=\int_0^\infinity e^{-t^2}/(t+x) dt$
 1004 27.7 Dilogarithm (Spence's Integral)
 1005 27.8. Clausen's Integral and Related Summations
 1006 27.9. Vector-Addition Coefficients
 1007
 1008
 1009
 1010
 1019 29. Laplace Transforms
 1020 29.1. Definition of the Laplace Transform. 29.2. Operations for the Laplace Transform
 1021 29.3. Table of Laplace Transforms
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029 29.4. Table of Laplace-Stieltjes Transforms
 1030 References
 1031 Subject index A-B-
 1032 Subject index -B-C-
 1033 Subject index -C-D-
 1034 Subject index -D-E-
 1035 Subject index -E-F-G-H-
 1036 Subject index -H-I-
 1037 Subject index -I-J-K-L-
 1038 Subject index -L-M-
 1039 Subject index -M-N-O-
 1040 Subject index -O-P-
 1041 Subject index -P-Q-R-S-
 1042 Subject index -S-T-U-V-W-
 1043 Subject index -W-Z
 1044 Index of Notations
 1045
 1046 Notation -- Greek Letters. Miscellaneous Notations