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1 Lecture I

1.1 Big Bang Cosmology

1.1.1 The Cosmological Principle

Cosmology is the science of the universe treated as a whole. It is the science that tries
to understand the origin (if there was one!), the shape and the evolution of the universe,
including predictions for its future. As such, it also tries to determine what the place of
humans is in the universe. It is the only science where the object under study cannot be
separated from “the rest”, and this feature leads to fundamentally different challenges that
cosmology must face.

The universe cannot be reproduced in the laboratory, and moreover we are severely limited
in our ability to travel across the universe. In fact, all our knowledge about the universe
must be inferred from the information that arrives here on Earth now! This, however, is not
as limiting as it may sound, because of the finiteness of the speed of light. Light originating
from distant places, but which we are observing now, shows us these distant places not as
they are now, but as they were when the light was emitted. In this way, when looking further
and further into the universe, we see further and further into the past of the universe, and
this allows us to reconstruct (up to a point) the history of our universe. Of course, we do not
directly observe our past, but rather the past of increasingly distant regions. This strategy
then allows us to reconstruct our history to the extent that the universe is evolving in the
same way in different places, i.e. to the extent that the universe is spatially homogeneous.

Observations of the distribution of galaxies in the universe show that these are distributed
along filaments, with huge voids of over 100 million light-years across in between; see Fig. 1.
These observations also show that on even bigger scales, namely bigger than about 300
million light years, the universe becomes very similar in all directions. In other words, on
these scales the universe becomes isotropic.

Thus, in part motivated by observations, and in part by wishful thinking, we are led to
postulate the Cosmological Principle, namely that the universe is spatially homogeneous and
isotropic on the largest scales. Some comments:

• If the cosmological principle was not at least approximately true, we would know very
little about the distant universe. Only the observation that the universe appears to
obey the same laws, and have the same rough properties, over large distances has al-
lowed us to gain knowledge about the behavior of the universe on the largest observable
scales.

• The cosmological principle certainly breaks down on small scales (we are living proof!),
but it may very well also break down on scales much larger than the currently observ-
able part of the universe - later on, when discussing different models of the universe,
we will return to this topic.
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Figure 1: The distribution of galaxies in two wedges centered on Earth, according to the
Sloan Digital Sky Survey. Each dot on the figure represents the location of a galaxy,
and redshift 0.01 corresponds to a distance of about 140 million light years. One of
the goals of cosmology is to understand the statistical properties of the distribution
of galaxies in the universe. Credit: M. Blanton and the Sloan Digital Sky Survey

• The cosmological principle treats space and time on different footings! This is because
the universe is only homogeneous and isotropic in a frame which is co-moving with
typical galaxies. In other words, in the universe there is a preferred frame, and the
universe only appears isotropic to the extent that one is at rest with respect to that
frame. A further subtlety is that the existence of a preferred frame does not imply that
far-away galaxies must be approximately at rest with respect to each other - on the
contrary, there is overwhelming evidence that the universe is expanding. The preferred
frame can then be imagined to follow (and largely to be defined by) this expansion.

• Despite its name, the cosmological principle is simply an observed feature of our uni-
verse, and does not stem from fundamental physical principles. It is one of the main
aims of early universe cosmology to find an explanation for why the universe is so
homogeneous and isotropic.
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1.1.2 Robertson-Walker Universes

We can use general relativity to describe the evolution of the universe, as general relativity
is the (classical) dynamical theory of space, time and matter. We will see later how quantum
theory has likely played an important role too in shaping the universe, but quantum effects
only need to be taken into account at special times in the history of the universe.

At first, we will assume exact spatial homogeneity and isotropy. This is of course an
idealization, but the cosmological principle implies that this should be a good approximation
in describing the universe on large scales. This assumption is very restrictive, and in fact one
can prove that it allows for only three distinct spatial geometries, namely flat 3-dimensional
space, a 3-sphere (with constant positive curvature) or a hyperbolic 3-sphere (with constant
negative curvature). We denote the 3-dimensional line element by dl2. Then, using cartesian
coordinates x, y, z, the line element of flat space is simply given by

dl2flat = dx2 + dy2 + dz2. (1.1)

In polar coordinates defined via x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ, the line element
becomes

dl2flat = dr2 + r2(dθ2 + sin2 θdφ2). (1.2)

We can obtain the metric for the 3-sphere by using the fact that it can be embedded in
4-dimensional flat space. If we denote the fourth spatial coordinate by w, then the line
element for 4-dimensional euclidean space is dl24 = dx2 + dy2 + dz2 + dw2, and within this
space the unit 3-sphere is defined via the equation

x2 + y2 + z2 + w2 = 1. (1.3)

Differentiating, we learn that xdx+ ydy + zdz + wdw = 0, or

dw = ± xdx+ ydy + zdz√
1− x2 − y2 − z2

. (1.4)

We can now obtain the metric for the 3-sphere by plugging this expression for dw into the
4-dimensional line element, thus restricting the line element to the 3-sphere. The result is

dl23−sphere = dx2 + dy2 + dz2 +
(xdx+ ydy + zdz)2

1− x2 − y2 − z2
. (1.5)

In a similar way one can obtain the metric of the 3-dimensional hypersphere by embedding
the hyperboloid x2 + y2 + z2 − w2 = −1 into 4-dimensional Minkowski space dl24 = dx2 +
dy2 + dz2 − dw2. All three metrics can be conveniently summarized by

dl23 = dx2 + dy2 + dz2 +
k(xdx+ ydy + zdz)2

1− k(x2 + y2 + z2)
≡ g(3)ijdx

idxj, (1.6)

or, in polar coordinates,

dl23 =
1

1− kr2
dr2 + r2(dθ2 + sin2 θdφ2), (1.7)
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where k = 0,+1,−1 for the flat, spherical and hyperspherical spaces respectively. Above, we
derived the metric on the 3-sphere only for the case where it has unit radius. We can allow for
an arbitrary, and in general time-dependent, size by multiplying the line element by a factor
a2(t), and likewise for the hypersphere. In the case of flat space, the multiplicative factor
a2(t) has no absolute meaning, and only relative values at different times are meaningful.
The full 4-dimensional Robertson-Walker metric can then be obtained by adding a time
direction, yielding

ds2 = −dt2 + a2(t)[
1

1− kr2
dr2 + r2(dθ2 + sin2 θdφ2)]. (1.8)

The function a(t) is known as the scale factor of the universe. Its meaning can be clarified
by using the metric above to calculate the spatial distance between an observer at the origin
r = 0 and one at r = R (at fixed time t, and with the angular coordinates also being fixed),
which is given by

∫ r=R

r=0

ds =

∫ r=R

r=0

a(t)
1√

1− r2
dr = a(t)

{arcsinhR (k = −1)
R (k = 0)

arcsinR (k = +1)
(1.9)

thus observers at fixed r, θ, φ only change their relative distance via the global, space-
independent scale factor. In other words, the scale factor describes the overall expansion
or contraction of the universe. The coordinates r, θ, φ are so-called comoving coordinates,
and the result above implies that the proper distance between two comoving observers
evolves as a(t). Moreover, for a comoving observer, proper time is measured according to∫ √
−ds2 =

∫
dt = ∆t, which shows that the time coordinate t is simply the proper time

measured by comoving observers. Sometimes, it is convenient to define a conformal time τ
via dt = adτ, so that the metric has an overall factor of a2:

ds2 = a2(τ)[−dτ 2 +
1

1− kr2
dr2 + r2(dθ2 + sin2 θdφ2)]. (1.10)

The general form of the Robertson-Walker metric allows us to understand a crucial effect
in cosmology, namely the shifting of spectral lines observed in the light coming from distant
galaxies. When the scale factor is non-constant, the frequency of light is in general different
at the time of emission than at the time of observation. This can be seen as follows: we
assume that we are observing (at time t0) the light originating (at time tR) from a galaxy
located at r = R. Our own position can be chosen to be at r = 0. Since light rays propagate
according to ds2 = 0, we obtain from Eq. (1.8) that

dt = −a(t)
dr√

1− kr2
, (1.11)

where the minus sign was chosen because the light is coming towards us along decreasing val-
ues of r. Hence the times of emission and observation are related to the coordinate separation
R by ∫ tR

t0

dt

a(t)
=

∫ R

0

dr√
1− kr2

. (1.12)

5



Subsequent wave crests of the light wave are emitted at time intervals ∆tR, if the frequency of
the light is νR = 1/∆tR. Then, since the right-hand side of the equation above is independent
of time, the differential of the equation implies that

∆tR
a(tR)

=
∆t0
a(t0)

. (1.13)

In other words, the frequency at observation is related to the frequency at emission via

ν0 = νR
a(tR)

a(t0)
. (1.14)

Equivalently, the wavelength at observation λ0 is shifted from the wavelength at emission
λR via

λ0 = λR
a(t0)

a(tR)
≡ λR(1 + z). (1.15)

In an expanding universe, the wavelength at observation is longer than at absorption, z > 0,
and the light is redshifted. In a contracting universe, light decreases in wavelength, z < 0, and
in that case light is blueshifted. Astronomical observations, first carried out by Vesto Slipher
in the 1920s and to the required accuracy by Edwin Hubble in the 1930s, show that the light
from almost all galaxies is redshifted, thus providing evidence that our universe is expanding.
Only the light from a few nearby galaxies (such as the Andromeda galaxy) is blueshifted,
which can be understood by the strong gravitational interactions between these galaxies
and the Milky Way, causing them to have significant peculiar velocities superimposed on the
comoving Hubble flow. For nearby objects, it is straightforward to show that the redshift
increases linearly with proper distance d (for nearby objects, d ≈ tR − t0)

z ≈ H0d, (1.16)

where the constant of proportionality is the Hubble parameter

H ≡ ȧ

a
, (1.17)

and the subscript 0 customarily refers to a quantity evaluated at the present time.
We should stress that the Robertson-Walker metric is only intended as a zeroth approxi-

mation to the coarse-grained structure of the universe. In thinking about the expansion/con-
traction of space, it is important to keep in mind that near localized sources (such as stars)
the metric is locally not of Robertson-Walker form, but rather of Schwarzschild form. In
the Schwarzschild metric, space is not expanding, and, as a consequence, in our solar system
space is neither expanding nor contracting. As an improved approximation, one could think
of the entire universe as a kind of “Swiss cheese”, with the cheese being well described by the
Robertson-Walker metric, and the (small) holes by the Schwarzschild metric. This avoids
some standard misconceptions about the expansion of space.
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1.1.3 The Friedmann Equations and the Big Bang

The cosmological principle led to the Robertson-Walker form of the metric, Eq. (1.8). In
euclidean coordinates this metric can also be written as

ds2 = −dt2 + a2(t)g(3)ijdx
idxj, (1.18)

where the spatial 3-metric g(3) was defined in Eq. (1.6). It is a straightforward exercise to
derive the associated connections and curvature tensors:

Γ0
ij = ȧ

a
gij = aȧg(3)ij (1.19)

Γk0j = ȧ
a
δkj (1.20)

Γkij = Γk(3)ij = kg(3)ijx
k (1.21)

Γ0
00 = Γ0

0j = Γk00 = 0 (1.22)

R00 = −3 ä
a

(1.23)

Rij = ( ä
a

+ 2 ȧ
2

a2 + 2 k
a2 )gij = (aä+ 2ȧ2 + 2k)g(3)ij (1.24)

R0j = 0 (1.25)

R = 6( ä
a

+ ȧ2

a2 + k
a2 ). (1.26)

The assumptions of spatial isotropy and homogeneity also lead to strong restrictions on the
form of the energy-momentum tensor on large scales. Isotropy, i.e. invariance under spatial
rotations, implies that (at a co-moving point) the spatial part Tij of the energy-momentum
tensor should be proportional to the metric gij, and that the mixed, vectorial component
t0i should vanish. Homogeneity means that we must impose these conditions everywhere
in space, implying that the function of proportionality in Tij can depend on time alone.
Likewise, T00 can depend on time alone. The conventional definitions are

T00 ≡ ρ(t) T0i = 0 Tij ≡ p(t)gij, (1.27)

where ρ(t) is the proper energy density and p(t) the pressure. This particular form of the
energy-momentum tensor corresponds to that of an ideal fluid. The energy density and the
pressure are related to each other via the equation of state

p = wρ. (1.28)

In many cases of interest, w is constant, and we will assume this to be the case unless
otherwise noted. In general relativity, the Bianchi identity for the Einstein tensor (Gµν

;ν =
0) requires that the energy-momentum tensor be (covariantly) conserved, i.e. T µν ;ν = 0.
The µ = i component of this equation corresponds to momentum conservation, and it is
automatically satisfied in a Robertson-Walker background. The µ = 0 component leads to

ρ̇+ 3H(ρ+ p) = 0. (1.29)

This equation is known as the equation of continuity. Note that it shows that in general, in
a dynamical universe energy is not conserved. For a constant equation of state, the equation
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of continuity can be integrated to yield

ρ ∝ 1

a3(1+w)
. (1.30)

Thus, if we know the equation of state of a certain matter component, then we know how its
energy density (and thus its relative importance) scales as the universe contracts or expands.
The most commonly considered ideal fluids are

• Pressure free matter/dust, w = 0. Ordinary baryonic matter as well as dark matter
fall into this category. Their energy density simply scales inversely to the volume of a
given region of space, ρ ∝ a−3, as expected.

• Relativistic particles/radiation, w = 1
3
. The energy density of radiation or a gas of

relativistic particles scales as a−4. This means that in an expanding universe, the energy
density of radiation falls off faster than the volume of space increases. Heuristically
one can understand the exponent −4 as follows: the number of photons in a given co-
moving volume scales with the volume, as a−3. However, the wavelength of a photon
also scales with the scale factor, and thus its frequency/energy scale as a−1. This
additional factor of a−1 then leads to the overall scaling as a−4.

• Cosmological constant, w = −1. The energy density of a cosmological constant is, as
the name suggests, constant over time and unaffected by cosmic expansion/contraction.
For this reason it is also often described as vacuum energy. Note that p = −ρ implies
that the energy-momentum tensor is proportional to the metric, Tµν ∝ gµν , which
is consistent with the Lorentz invariance of the vacuum. Another name that is used
to describe a cosmological constant, or in fact any type of matter with an equation
of state that is close to −1 is dark energy. While observations suggest that dark
energy currently provides the dominant contribution to the overall energy density of
the universe, this type of matter remains by far the least understood.

There is one important omission in this list: scalar fields, which are often used in modelling
the dynamics of the universe. We will treat these in detail later.

We are finally ready to derive the Friedmann equations. These equations arise from the
Einstein field equations by assuming that the metric takes on a Robertson-Walker form.
The Einstein equations state that the Einstein tensor Gµν , which is directly related to the
curvature tensor (Ricci tensor) Rµν and which describes the curvature of spacetime, is equal
to the stress-energy tensor Tµν , which describes the energy, momentum and pressure of
matter,

Rµν −
1

2
gµνR ≡ Gµν = Tµν (in reduced Planck units, 8πG = 1) (1.31)

– in the words of J.A. Wheeler ”spacetime tells matter how to move; matter tells space-
time how to curve”. With an energy-momentum tensor of perfect fluid form, the Einstein
equations then reduce to

H2 +
k

a2
=

1

3
ρ, (1.32)

ä

a
= −1

6
(ρ+ 3p) = −1

6
ρ(1 + 3w). (1.33)
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The first of these equations is sometimes referred to as simply the Friedmann equation,
while the second one is often called the acceleration equation. These equations determine
the evolution of the observable universe on the largest scales. One should think of ρ and p
as denoting the total energy density and pressure – these then consist of a sum over all the
individual matter types that are present in the universe. First, though, it is useful to look at
a few solutions to these equations when only a single matter component is present. We will
first do this for the examples of matter types enumerated above, for the case of a spatially
flat universe (k = 0):

• Pressure free matter/dust, w = 0. The Friedmann equation then implies that the scale

factor evolves as a(t) ∝ t
2
3 , while the acceleration equation shows that the universe is

decelerating. (Including integration constants, the solution can be written as a(t) =
(t−t?)2/3

(t0−t?)2/3 , where t0 is the time today, and t? the time of the big bang, such that a0 = 1.)

• Relativistic particles/radiation, w = 1
3
. In this case the scale factor evolves as a(t) ∝ t

1
2 ,

and this also corresponds to decelerated expansion.

• Cosmological constant, w = −1. The Friedmann Eq. (1.32) implies that ρ > 0 since
k = 0. In this case the scale factor evolves exponentially, a(t) ∝ eHt, and the Hubble
parameter is constant. This solution is known as the de Sitter universe. According
to Eq. (1.33), in the de Sitter solution the expansion is accelerating. Above, we
mentioned that matter with equation of state close to −1 is also sometimes called dark
energy. Here, we can refine that definition. The acceleration equation implies that,
for a positive energy density, the universe is accelerating whenever w < −1

3
. We have

presently entered such an era of accelerated expansion.

The solutions for k = 0 are those that are used most often in cosmology, as current ob-
servations indicate that our universe is very close to spatially flat. However, merely the
fact that the matter in the universe is distributed inhomogeneously on small scales indicates
that, at least when one looks at smaller regions of the universe, the average curvature must
necessarily be positive or negative. Hence it is certainly also important to look at solutions
with k = ±1. The corresponding solutions are more easily found using conformal time τ. In
terms of conformal time, the Friedmann equations read

a
′2 + ka2 =

1

3
ρa4 (1.34)

a′′ + ka =
1

6
(ρ− 3p)a3, (1.35)

where a prime denotes a derivative with respect to conformal time.
For k = +1, the spatial sections of the universe are spheres, and this is known as the closed

model of the universe. The Friedmann Eq. (1.34) shows that the expansion can come to a
halt, even when the energy density is positive. After such a halt, the universe re-collapses,
as can be seen in the solutions obtained in the presence of dark matter or radiation

a(τ) =

{
1− cos τ w = 0 0 < τ < 2π

sin τ w = 1
3

0 < τ < π.
(1.36)
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For k = −1, the universe is called open, and the corresponding solutions are

a(τ) =

{
cosh τ − 1 w = 0 0 < τ <∞

sinh τ w = 1
3

0 < τ <∞. (1.37)

For those solutions, the universe expands forever.
Note that for a negative cosmological constant (ρ constant and negative), the Friedmann

equation implies that we must have k = −1 to obtain a solution at all. Moreover, if the
universe expands, the curvature term k

a2 becomes increasingly subdominant compared to the
cosmological constant term, so that the expansion must necessarily come to a halt, after
which the universe collapses.

After this brief survey of solutions to the Friedmann equations, a few general remarks
about these equations are in order: the Friedmann equations describe the evolution of the
curvature of the universe over time. Even spatially flat universes (k = 0) are curved in a
4-dimensional sense – their curvature arises from the evolution of the scale factor. Whether
the universe has positive or negative spatial curvature can be deduced by comparing its
density to the critical density

ρcrit = 3H2, (1.38)

which at any given time represents the energy density of a spatially flat universe with the
identical Hubble rate at that instant. Currently, the critical density corresponds to approx-
imately

ρcrit,0 = 3H2
0 ≈

3

8πG
(70 km s−1 Mpc−1)2 ≈ 10−26 kg/m3. (1.39)

The Friedmann equations describe both expanding and contracting universes. As discussed
in section 1.1.2, measurements of the spectra of distant galaxies indicate that all but a few
close galaxies are receding from us (with increasing velocity as their distance to us increases),
and this is a clear indication that the universe is currently expanding. However, one should
keep an open mind regarding the possibility that at other cosmic epochs, the universe might
have been contracting. We will study cosmological models involving contracting phases later
on.

The velocity of an object flying through the universe is well-defined with respect to the
local Hubble flow, i.e. with respect to a local inertial frame. However, the relative velocity
between two distant objects is not very meaningful, because their individual velocities can
only be measured in the respective local frames. In an expanding universe, one is tempted
to say that increasingly distant regions recede at increasing speeds, and, given a sufficient
separation, that speed exceeds the speed of light, thus apparently violating a basic law
of nature. However, by the argument just given, such a description is misleading. Our
discussion of horizons in section 1.1.6 will treat this topic, and the associated issues of
causality, in more detail.

The Friedmann equations have two huge consequences for the picture that we have of the
universe. The first was already discussed, namely that the universe is not static, but it is an
evolving entity. Space and time are evolving quantities, even on the largest observable scales.
This marks a major shift in our thinking about the universe: up until 100 years ago, people
were mostly convinced (on philosophical grounds) that the universe had to be static. The
discovery of the expansion of the universe has brought with it a major conceptual paradigm
shift, as the universe is now seen as en evolving object in itself. This shows in a very clear
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way how space, time and matter in the universe are tightly bound to each other. The second
consequence becomes apparent when looking at the cosmological solutions described above:
in all of them except for the de Sitter solution the universe reaches a point where the scale
factor vanishes. That this point does not in general correspond to a coordinate singularity
is apparent from the expression for the Ricci scalar (1.26), which is a curvature invariant.
The Ricci scalar generically blows up as a→ 0, thus indicating that this moment represents
a singularity. This singularity is called the Big Bang, and in the standard Big Bang theory
it is interpreted as the beginning of the universe (and often in fact also as the beginning of
space and time). As we will discuss shortly, such an interpretation appears to be fallacious,
but nevertheless, the Big Bang represents a special moment in the history of the universe
which every self-respecting cosmological model should aim to explain! The singular nature
of the Big Bang is an indication that general relativity breaks down around that time, and
a quantum theory of gravity is likely needed in order to resolve this singularity.

1.1.4 The Thermal History of the Universe

It is instructive to study the Friedmann equations in the presence of several matter compo-
nents:

3H2 =
ρr,0

a4
+
ρm,0

a3
− 3k

a2
+ Λ. (1.40)

If we choose units in which the current scale factor is a0 = 1, then ρr,0 and ρm,0 denote
the current energy densities in radiation and pressure free matter, while Λ denotes the
contribution from a cosmological constant. As the universe expands, it is clear that matter
types that scale with a less negative power of the scale factor eventually dominate over
those which scale with more negative powers of a. Thus, if Λ is non-zero, it will eventually
dominate the energy density in the universe, and determine its evolution. A useful way to
re-write Eq. (1.40) can be obtained by dividing through by the current critical density 3H2

0 ,
to obtain (

H

H0

)2

=
Ωr

a4
+

Ωm

a3
+

Ωk

a2
+ ΩΛ, (1.41)

where the current fractional energy densities are conventionally defined as

Ωr =
ρr,0
3H2

0

, Ωm =
ρm,0
3H2

0

, Ωk =
−k
H2

0

, ΩΛ =
Λ

3H2
0

. (1.42)

In fact, observational evidence indicates that about 68.5% of the current energy density must
be due to a cosmological constant (or something similar). This realisation stems foremost
from the observation of distant supernovae, which allow one to infer the expansion history
of the universe. Such measurements indeed indicate that our universe has entered a phase
of accelerated expansion about 5 billion years ago (which, coincidentally, was around the
time that the solar system formed). Furthermore, observations of the cosmic microwave
background indicate that the total energy density is equal to the critical density with an
accuracy better than one part in 100, thus indicating that to a good approximation we can
take k = 0 to describe the recent expansion history of the universe. Dark matter currently
comprises about 26.6% of the total energy density, and baryonic matter 4.9%. Radiation
adds only about a fraction 6 × 10−5 to the total. The Planck satellite has measured the
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current Hubble rate to be about H0 ≈ 67.3kms−1Mpc−1 (with 1pc = 3.26 light-years).
We are now in a position to calculate the time that has elapsed since the Big Bang.

Defining u ≡ a
a0

and using the new notation, the Friedmann Eq. (1.32) can be recast as the
differential

dt =
du

H0

√
Ωru−2 + Ωmu−1 + Ωk + ΩΛu2

. (1.43)

Integrating from u = 0 to u = 1 gives us the time since the Big Bang, namely

tBB ≈ 0.95
1

H0

≈ 13.8× 109 years. (1.44)

Note that, for quick order-of-magnitude calculations, the time since the Big Bang and the
size of the observable universe (on the order of 10 billion years and 10 billion light years) are
approximately given by 1060 Planck times and 1060 Planck lengths respectively!

We can also easily estimate the redshift at the time of radiation-matter equality: equating
Ωr/a

4
eq = Ωm/a

3
eq we find

aeq =
1

1 + zeq

=
Ωr

Ωm

≈ 1

5000
. (1.45)

(To find teq one would simply integrate Eq. (1.43) from u = 0 to u = aeq = 1/5000.)
Photons have energy E = hν = hc/λ = kBT, where ν is the frequency, λ the wavelength,

kB Boltzmann’s constant (introduced by Planck) and T the absolute temperature. Thus the
wavelength can be re-expressed as λ = hc/(kBT ). As the universe expands or contracts, the
wavelength changes with the scale factor λ ∝ a(t), and thus the temperature evolves as

T (t) = T0
a0

a(t)
. (1.46)

We already saw this relation in disguise when calculating the scaling of the energy density
of radiation with the scale factor (ρr ∝ a−4), and we will see another derivation below.
This relation implies that the universe was hotter in the past, hence the occasionally used
name Hot Big Bang model. In the very early universe, photons and other matter particles
were tightly coupled, implying that in fact all matter constituents were hot. Here we will
briefly sketch the thermal history of the universe. In the early universe, the dynamics was
principally determined by the energy density of radiation. For this epoch, there exists a
useful relation between temperature and time; the Friedmann equation implies that

H2 =
1

4t2
=

1

3
ρ ≈ T 4, (1.47)

where we have neglected a factor of order unity relating the energy density in radiation to
the fourth power of temperature. The relation above, namely T ≈ 1/

√
t holds in Planck

units, and if we restore units, we get the formula

TMeV ≈
1√
tsec

, (1.48)

where the temperature is expressed in MeV and the time in seconds (counting from a putative
Big Bang). Major events in the history of the universe were:
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t < 10−14 s, T > TeV
We still know very little about this epoch, as the corresponding particle physics currently

cannot be reproduced in accelerator experiments. From our current laws of physics, we can
assume that the electroweak symmetry was unbroken during this early phase, and in fact the
gauge group describing all matter interactions could have been much bigger (such as SO(10),
allowing a grand unified description of particle physics.) Also, supersymmetry might have
been a good symmetry of nature at those early times, but it remains too early to tell.

10−14 < t < 10−10 s, 100GeV < T < 10TeV
During this time, the electroweak symmetry SU(2)×U(1) was broken, and the W,Z bosons

became massive. The particle physics that takes place at these energies is currently being
probed by the Large Hadron Collider at CERN, and is, to a large extent, well understood.

t ∼ 10−5 s, T ∼ 200MeV
As the universe cools, free quarks and gluons bind into baryons (particles with 3 quarks,

such as protons and neutrons) and mesons (particles with a quark and an anti-quark).

t ∼ 0.2 s, T ∼ 1− 2MeV
The cross-sections of the weak interactions become very small as the temperature drops

to these scales, and thus the neutrinos decouple from the rest of the matter in the universe.
This neutrino background evolves independently from that time on. In the long term future,
one may hope that it will be possible to build a neutrino telescope (perhaps on the Moon)
that can measure these primordial neutrinos directly. This would give us direct information
about the physical conditions at these times close to the Big Bang.

As a byproduct, the ratio of neutrons to protons also freezes out around this time. Up
until this time, protons could easily convert into neutrons, and vice versa, via the exchange
of neutrinos, electrons and positrons,

p+ e− ↔ n+ ν, p+ ν̄ ↔ n+ e+. (1.49)

The neutron is heavier than the proton by an amount Q = mn −mp ≈ 1.3MeV, where mn,p

denote the masses of a neutron and a proton, respectively. Standard thermodynamics then
implies that, as long as the two species are still in equilibrium, i.e. as long as the reactions
above are efficient, the number densities of neutrons (nn) and protons (np) are related by

nn
np
≈ e−Q/T . (1.50)

The reactions above require an energy mn −mp −me ≈ 1.3− 0.5 ≈ 0.8MeV to be efficient,
where me denotes the mass of an electron. Below this temperature, the ratio of neutrons to
protons gets frozen in, with nn/np ≈ e−1.3/0.8 ≈ 1/5. This has important implications for big
bang nucleosynthesis, as we will see shortly.
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t ∼ 1 s, T ∼ 0.5MeV
When the temperature drops to the value of the rest mass of electrons and positrons, these

start annihilating each other into photons, while the converse process, spontaneous creation
of electron-positron pairs out of photons, becomes rare. The photons that are produced in
this way are in thermal equilibrium, and their temperature is slightly higher than that of the
neutrinos, which already decoupled earlier. The end result of electron-positron annihilation
is that about one electron was left over for each billion photons. Thus there must have been a
very slight excess of matter over anti-matter in the early universe. This asymmetry remains
largely unexplained.

t < 5 min, T ∼ 0.05MeV
Above, we saw that the ratio of neutrons to protons freezes out at a value of about

1/5. However, neutrons are only stable when they are locked inside an atomic nucleus. Free
neutrons decay into a proton, an electron and a neutrino with a half life of about 15min. Over
the next few minutes, these decays reduce the neutron to proton number density fraction to

nn
np
≈ 1

7
. (1.51)

Meanwhile, neutrons can combine with protons to form deuterons

p+ n→ d+ γ, (1.52)

while, in turn, deuterons can combine via the following chain to end up as helium nuclei

d+ d→ 3He+ n, 3He+ d→ 4He+ p. (1.53)

Assuming that all neutrons end up in helium atoms (which is in fact a good approximation),
we would deduce that the total mass fraction in helium should be

Y =
nHemHe

nnmn + npmp

≈
(1

2
nn)(4mn)

(nn + np)mn

=
2nn/np

1 + nn/np
≈ 1

4
. (1.54)

Helium is also produced via nuclear fusion in stars. However, looking at stars that are further
and further away (and thus looking further into the past) observations show that helium
levels decrease and level off around a value of 1/4. Measurements of other light elements,
such as deuterium and lithium, are also in good agreement with theoretical estimates of their
production via primordial nucleosynthesis. This is striking evidence that the universe was
once hot and dense, and provides strong support of the hot big bang model!

T ∼ eV
After a time on the order of 10000 years, matter comes to dominate over the radiation

energy density, and the universe starts expanding according to a ∝ t2/3. By the time the
universe grows by a further order of magnitude in each direction, the helium nuclei and
protons combine with the electrons to form helium and hydrogen atoms. This event is
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known as recombination and will be discussed in more detail in the next section. The name
recombination is slightly inappropriate, as this is the first time after the big bang that atoms
form.

T ∼ meV
As we will discuss, small fluctuations in the distribution of matter and radiation are present

already at early times in the history of the universe. Under the influence of gravity, small
initial overdensities grow and eventually collapse into stars and galaxies.

About 9 billion years after the big bang, the dark energy comes to dominate the energy
density in the universe, and the expansion starts accelerating. The future dynamics of the
universe depends crucially on the nature of dark energy. We will speculate about possible
futures at various stages in this book.

1.1.5 A Relic from the Big Bang: The Cosmic Microwave Background

At the time of radiation-matter equality, the universe can still be described as a primordial
soup of mostly photons, electrons, protons and helium ions. Via Thomson scattering, the
photons constantly bounce off the free electrons, and hence the universe is not transparent
at that time. As the universe cools, at some point it will become energetically favorable for
the electrons to bind with the free helium ions and protons to form helium and hydrogen
atoms respectively. In fact, because helium has a larger ionization potential, helium atoms
form first. Afterwards, there are still many free electrons left over, and these can combine
with protons to form neutral hydrogen atoms. Since the binding energy of hydrogen is about
13.6eV, a first guess is that hydrogen recombination will occur when the universe has reached
that temperature. However, it actually occurs a little later, when the universe has cooled
off a little more. This is because there are so many more photons than electrons (about a
billion times as many), so that a small fraction of atypically energetic photons is enough to
keep hydrogen ionized. In the tail of the Planck distribution of the photons, there are about
e−B/T photons with energy larger than B when the temperature is T. Hence, for a binding
energy B ∼ 13.6eV, there are enough energetic photons as long as the temperature is above
T ≈ −B/(ln10−9) ≈ 3000 K. This corresponds to a redshift of z ≈ 1090.

At that time, electrons and protons combine into neutral hydrogen atoms. Photons do
not interact much with hydrogen atoms, because as a bound system hydrogen is neutral (of
course, there is some scattering, called Rayleigh scattering, due to the fact that on some level
photons will see the constituent proton and electron). But this means that, at this particular
moment, photons can travel unhindered over large distances for the first time and the universe
becomes transparent! The newly freed photons pervade the universe, flying in all directions.
Since the photons, electrons and protons were in thermal equilibrium up to this time, the
newly released radiation obeys a black body distribution with temperature T ≈ 3000K. As
the universe expands, this radiation cools, but the black body spectrum is preserved, as
we will now show. We will assume here that recombination occurred instantaneously, and
that, consequently, the radiation was in equilibrium with matter up until recombination,
afar which time the radiation evolved independently and freely. In equilibrium, the energy
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density of the radiation is given by

ρ = 2

∫
d3p

(2π)3
fB−EE (1.55)

where p denotes the momentum of a photon, fB−E = 1/(eE/T − 1) denotes the Bose-Einstein
distribution appropriate for bosons, E is the energy of a photon and is simply E = p, and
the overall factor of 2 arises because the photon has two helicities. This gives

ρ = 2

∫
d3p

(2π)3

p

ep/T − 1
=
π3

15
T 4 (1.56)

But radiation scales as ρ ∝ a−4 (because it has an equation of state w = 1
3
), and hence we

find once more that the temperature of the cosmic microwave background (and of all matter
types that it is in equilibrium with during the early universe) scales as

T (t) ∝ 1

a(t)
. (1.57)

Inside the integral above, the momentum p and the temperature T scale in such a way with
the expansion of the universe that the functional form remains preserved, in particular p/T
remains constant. Thus, the spectrum remains that of a black body, with a temperature
decreasing inversely to the expansion of the universe.

When released, the cosmic background radiation was at a temperature of 3000K. Such
radiation would have been easily visible to the human eye (cf. the Sun’s surface temperature
of about 6000K). By today, however, the wavelength of the emitted background radiation
is bigger by a factor 1090. When emitted, the typical wavelength was on the order of a µm.
Now it is on the order of a mm, and thus the radiation is in the microwave frequency region.
This is the origin of the name Cosmic Microwave Background radiation (CMB). The CMB
can be measured via radio telescopes, with the most precise measurements to date being
carried out by specifically dedicated satellite missions, such as WMAP and PLANCK.

The radiation that we measure today has flown at the speed of light for 13.8 billion years.
It is of interest to calculate the current distance to the regions from where it was emitted:
using conformal time, and a flat model of the universe, k = 0, light propagates along

dτ = ±dr. (1.58)

Hence, using units where a0 = 1, the physical (co-moving) distance to the surface of last
scattering (LS) is (neglecting radiation, which is a good approximation)

dLS = a0(rLS − r0)

= rLS

=

∫
dτ

=

∫ tBB

tLS

dt

a(t)
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=

∫ a=1

a=1/1090

da

H0

√
Ωma+ ΩΛa4

≈ 3.13

H0

(1.59)

Since 1/H0 ≈ 14.5 billion (light) years, we get a present distance to those regions from which
the currently observed CMB was emitted of about 45 billion light years. This is the current
radius of the cosmic sphere, and it represents the current distance to the furthest places that
can be observed with light. This distance is larger than the naive estimate of 13.8 billion
light-years because of the expansion of the universe that has taken place between the time
of emission and detection of the CMB radiation. At the time that the CMB was emitted,
the corresponding radius was 1090 times smaller, i.e. only about 42 million light years,
which is smaller than the scale on which the universe is homogeneous today. As an aside, we
can relate this size to the scale at which the universe becomes approximately homogeneous,
namely 300 million light years. Thus, the observable universe is bigger than the scale of
homogeneity by a factor of about 100, or, in volume, the observable universe consists of
about 106 regions of the scale of homogeneity. This gives us an indication to what extent
the cosmological principle applies, i.e. to what extent spatial isotropy and homogeneity are
good approximations.

The CMB provides the best evidence that we have for the isotropy of the universe, but
only in a special frame. The microwave background radiation itself defines a preferred frame
in the universe, which can be considered to be the (co-moving) “rest frame.” To someone
traveling at a considerable fraction of the speed of light with respect to that frame, the
universe would not look isotropic at all. And in fact measurements of the CMB show a
dipole with maximal intensity of about ∆T

T
∼ 1/500, which can be interpreted as indicating

that we are moving with respect to the rest frame of the universe with a speed of about
600 km s−1, in the direction of the Hydra-Centaurus galaxy supercluster. When this dipole
is subtracted from the data, the universe appears isotropic to one part in 105 in all directions;
see Fig. 2.

Along with big bang nucleosynthesis, the cosmic background radiation is also the best
evidence that we have for the hot big bang model. However, just as for nucleosynthesis, it is
important to realise that it is not evidence for the big bang itself. Rather, it provides clear
evidence that the universe was once very dense and at least a thousand times hotter than
presently.

1.1.6 Puzzles of the Big Bang Model

Even though the hot big bang model explains the abundances of light elements in the early
universe, as well as the existence of the cosmic background radiation, it leaves many questions
unanswered. Here we will present some of the main puzzles:

Singularity Problem
When a = 0, the Robertson-Walker metric becomes singular, as curvature invariants like

the Ricci scalar R become infinite. Thus the model breaks down at the big bang. To explain
the origin of the universe, we need something that goes beyond the big bang model.

Flatness Puzzle
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Figure 2: All-sky map of the cosmic microwave background radiation, as observed by the
PLANCK satellite. In this picture, the dipole has been subtracted off, as have
galaxy foregrounds, leaving only the small temperature fluctuations of a size of
tens of µK. Red coloured regions are hotter than average, and blue ones colder.
Credit: ESA / PLANCK

If we consider the Friedmann equation again, e.g. in the form of Eq. (1.41), we can see
that the term representing the homogeneous curvature of the universe contributes a fractional
amount |Ωk| = |k|/(aH)2 to the total energy content of the universe. The dependence on the
scale factor and Hubble rate implies that, as the universe expands during the radiation and
matter-dominated epochs, this fractional contribution becomes larger and larger. Present-
day observations put an upper bound of

|Ωk,0| . 10−2. (1.60)

But this means then that at early times, the average curvature of the universe must have
been extremely tiny. Assuming pure radiation-domination as a first approximation, we find
that at the Planck time, we must have had

|Ωk,P l| . 10−2 (aH)2
0

(aH)2
Pl

= 10−62, (1.61)

an incredibly small quantity. If we do not go back in time quite as far, the argument becomes
slightly weaker but not really less troubling. How could the universe have been so incredibly
flat at very early times?

Horizon Puzzle
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The following argument can be made more precise, but in order to understand the essence
it is already sufficient to assume once again that the universe was dominated by radiation
throughout its history. The horizon problem stems from the fact that the universe, when
evolved back in time, does not reduce to a small volume compared to its age. For the sake of
argument, consider the presently known universe, with a (linear) size of 1060 Planck lengths
(of course, the universe might very well be much larger, which would only strengthen the
argument). If the universe is dominated by radiation, then the scale factor evolves as

a(t) = a(t0)

(
t

t0

)1/2

, (1.62)

where t0 is a reference time. Setting a(t0) = 1060 and evolving our part of the universe back
to the Planck time, we would obtain

a(tPl) = a(t0)10−30 = 1030, (1.63)

i.e. we get a universe that is one Planck time old, yet 1030 Planck lengths in extension. Yet
all these regions have undergone approximately the same expansion history, as evidenced by
observations of the cosmic background radiation. How could the “initial conditions” have
been set in all these regions in a causal manner? The particle horizon was evidently much
too small to envisage a causal explanation. Another way to phrase the question is to ask how
the big bang could have been synchronised over such a large region, assuming that the big
bang was the beginning of space and time? From this point of view, one would have needed
1090 simultaneous big bangs, yet there was no time to synchronise them (synchronisation
requires the causal transfer of information) if this was the beginning of time, and there was
no place to put them if this was the beginning of space. The “beginning of time” proposition
is clearly nonsensical! Note that the argument would be slightly weaker if we did not go
back on time to the Planck time, but unchanged in essence. Thus we may also reformulate
the question: what could have synchronised the big bang?

We can make the intuitive arguments above more precise by calculating the behaviour
of the particle horizon, which represents the distance over which events moving with the
Hubble flow could have been in causal contact with each other. For this, it is easier to use
conformal time τ, with metric (expressed in spherical coordinates)

ds2 = a(τ)2
[
−dτ 2 + dr2 + r2(dθ2 + sin2 θdφ2)

]
. (1.64)

We take the radial direction to be that of a light ray, with spacetime path specified by

ds2 = 0 → dτ = ±dr (1.65)

Starting from time τi at position ri the particle horizon at time τ is thus given by

dhorizon = a(r − ri) (1.66)

= a(τ − τi) (1.67)

= a(t)

∫ t dt′

a
= a(t)

∫
da

Ha2
= a(t)

∫
d ln(a)

aH
. (1.68)
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We saw above that during radiation and matter domination, the “comoving Hubble radius”
1/(aH) has been growing, so that the particle horizon used to be smaller and smaller in the
past. In other words, more and more regions in causal contact now could not have been
in causal contact at increasingly early times. Thus, mathematically speaking, the horizon
puzzle has the same origin as the flatness puzzle.

Inhomogeneity/Anisotropy Puzzle
The CMB is isotropic to a high degree, but there are temperature fluctuations of order

∆T/T ∼ O(10−4), which are in fact responsible for al the gravitationally bound and collapsed
structure we see in the universe today. How did these primordial temperature perturbations
arise?

Brief List of Additional Puzzles

• The early universe was in a very peculiar state: the matter was very hot (high entropy),
but the geometry very flat (low entropy). Overall the entropy of the universe was very
low, which, from the point of view of thermodynamics, is synonymous with the state
of the early universe having been very unlikely. Can we understand this special state?

• If particle physics is described by a grand unified theory at very high energies, then
one would expect topological defects to have formed when the symmetry broke as the
universe cooled. Why are none seen?

• Why is there so much more matter than antimatter in the universe?

• What is the role of dark energy? In the big bang model, it plays no role whatsoever.
Is there a deep reason why dark energy exists?

The fact that all of these puzzles cannot be explained by the hot big bang model means
that we must go beyond in order to understand the early universe. In other words, we need
at least one new ingredient! As we will see, a scalar field, such as the Higgs field that was
recently discovered, could be an important missing ingredient as it can change the dynamics
of the early universe rather drastically by inducing either an inflationary or an ekpyrotic
phase.

1.2 The Inflationary Universe

1.2.1 Basic Idea

The flatness and horizon problems would be solved if there was an earlier phase of evolution
(i.e. a phase taking place before the radiation-dominated expansion period) during which
1/(aH) was shrinking by a large amount (extrapolating the earlier arguments back to the
grand unified scale, we would need the shrinking in 1/(aH) to be by at least a factor 10−25).
Earlier, we saw that for constant w we have ρ ∝ a−3(1+w). Using the Friedmann equation,
this leads to

ȧ2 ∝ a−1−3w (1.69)

a ∝ t
2

3(1+w) assuming w > −1 (1.70)
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1

aH
∝ t

1+3w
3(1+w) ∝ a(1+3w)/2 (1.71)

Thus, in an expanding universe, the comoving Hubble radius 1/(aH) shrinks if w < −1/3.
Recall that the acceleration equation reads ä/a = −(1 + 3w)ρ/6, we can see that this
condition is equivalent to having a period of accelerated expansion. This is called inflation.

Above we restricted to the case w > −1, however the case w = −1 is in fact of special
interest. Then ρ+ p = 0 and consequently ρ̇ = 0, i.e. we have a constant energy density, in
other words a cosmological constant. In that case the solution to the equations of motion is
given by the de Sitter solution

a = a0e
Ht (1.72)

for some constant a0 and where the Hubble rate is now constant, H =
√
ρ/3. Evidently,

1/(aH) ∝ e−Ht also shrinks in that case.
How much accelerated expansion do we need in order to solve the flatness and horizon

problems? We require

(aH)beg
(aH)end

< 10−25 → aend
abeg

> 10−25 2
(1+3w) , (1.73)

where beg and end refer to the beginning and end of the inflationary phase respectively. For
w ≈ −1 this leads to the requirement

aend
abeg

> 1025 ≈ e60 (1.74)

Thus often it is said that we require at least 60 “e-folds” of inflation in order to solve the
flatness and horizon problems.

1.2.2 Scalar Field Implementation

The most popular way to model an inflationary phase is by considering the dynamics of a
scalar field φ coupled to gravity and moving in an appropriate potential V (φ). The action is
then given by

S =

∫
d4x
√
−g
[
R

2
− 1

2
(∂φ)2 − V (φ)

]
, (1.75)

where we are working in reduced Planck units 8πG = 1. Here the kinetic term is abbreviated
by (∂φ)2 ≡ gµν∂µφ∂νφ. The equations of motion are obtained by varying the action with
respect to the metric gµν and the scalar field φ, yielding respectively

Rµν −
1

2
gµνR = Tµν = φ,µφ,ν −

1

2
gµν(∂φ)2 − gµνV , (1.76)

�φ = V,φ . (1.77)

In a flat (k = 0) FLRW background spacetime, these equations reduce to

3H2 =
1

2
φ̇2 + V , (1.78)
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Ḣ = −1

2
φ̇2 , (1.79)

φ̈+ 3Hφ̇+ V,φ = 0 . (1.80)

In this background the stress-energy tensor Tµν has the form of a perfect fluid, with energy
density and pressure given by

ρ =
1

2
φ̇2 + V , (1.81)

p =
1

2
φ̇2 − V . (1.82)

Thus the equation of state is given by

w =
p

ρ
=

1
2
φ̇2 − V

1
2
φ̇2 + V

. (1.83)

The acceleration equation can now be rewritten as ä/a = −(ρ+ 3p)/6 = −(φ̇2− V )/3, so in
order to obtain inflation we see that we need the potential energy to dominate over (twice)
the kinetic energy, φ̇2 < V.

We can also define the often-used parameter ε via

ε ≡ 3

2
(1 + w) =

1

2

φ̇2

H2
(1.84)

and we can immediately see that inflation is obtained for

ε < 1, condition for inflation. (1.85)

A useful example is provided by the exponential potential

V = V0e
−cφ, (1.86)

where V0, c are positive constants, since the equations of motion can be solved exactly in
this case. The solution is given by

a = a0t
1/ε, H =

1

εt
, φ =

1√
2ε

ln

(
V0ε

2

3− ε
t2
)
, V =

3− ε
ε2t2

(1.87)

where a0 is a constant and

ε =
c2

2

(
=

1

2

φ̇2

H2
=

1

2

V 2
,φ

V 2

)
. (1.88)

We can see that we need c2 < 2 in order to obtain inflation. Note that ε above is constant and
agrees with the earlier definition. The solution for the scale factor a clearly shows again that
accelerated expansion corresponds to ε < 1. Note also that the solution above is a scaling
solution: in the equations of motion, each term has the same time-dependence (∝ 1/t2), so
that the relative contributions of the various terms remains unchanged over time (this being
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related to the fact that a shift in φ can be absorbed by a re-definition of V0). In this model,
enough inflation is obtained if

aend
abeg

=

(
tend
tbeg

)1/ε

= e
φend−φbeg√

2ε > e60 → φend − φbeg > 60
√

2ε. (1.89)

An important simplification arises in general when we are in the “slow-roll” regime, where
the kinetic energy is vastly subdominant to the potential energy, φ̇2 � V. Further assuming
that |φ̈| � H|φ̇|, so that the scalar field kinetic energy remains small over an extended
period, implies that the equations of motion can be approximated by

3H2 ≈ V (1.90)

3Hφ̇ ≈ −V,φ (1.91)

These slow-roll equations are used all the time in inflationary cosmology. Using these rela-
tions, ε can be rewritten

ε ≈ 1

2

V 2
,φ

V 2
↔ ε� 1, (1.92)

and under these circumstances ε is usually called the (first) slow-roll parameter. In line with
the above approximation, a second slow-roll parameter is often also defined via

η ≡ − φ̈

Hφ̇
, (1.93)

and the second slow-roll condition is that

|η| � 1. (1.94)

Note that using the slow-roll equations, η can be rewritten as

η ≈ V,φφ
V
− ε . (1.95)

Thus the smallness of the slow-roll parameters is guaranteed when the potential is very flat
(compared to its magnitude) over an extended field range.

A useful estimate for the number of e-folds N is given by

N = ln

(
aend
abeg

)
=

∫
Hdt =

∫
1√
2ε
dφ ≈

∫
V,φ
V
dφ ≈ V

V,φφ
(1.96)

Thus 1/|η| provides a useful estimate for the number of e-folds, and one typically needs
|η| ∼ O(10−2) in successful models.

A second important example is provided by a quadratic potential, i.e. by a simple mass
term

V (φ) =
1

2
m2φ2 . (1.97)

In this potential ε ≈ V 2
,φ/(2V

2) = 2/φ2 and hence inflation occurs as long as |φ| >
√

2
(in reduced Planck units). One may not think of a φ2 potential as being very flat, but
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as we can see here, this potential’s flatness relative to its magnitude becomes small as the
field value is increased. Note that η is automatically very small in the slow-roll regime, as
η ≈ V,φφ/V − ε ≈ 0. The number of slow-roll e-foldings is given by the integral

N =

∫
1√
2ε
dφ =

∫
1

2
φφ =

1

4
(φ2

beg − φ2
end) . (1.98)

As we just saw, inflation ends when φ reaches the value
√

2 and thus we require |φbeg| ≥ 15.
In this potential, and more generally in potentials given by a simple monomial, the field
range must thus be substantially larger than one Planck mass. In order for classical general
relativity to still be a meaningful approximation, we must make sure that the energy scale
remains below the Planck scale, i.e. we need Vbeg = 1

2
m2φ2

beg � 1, implying m � 1/10.
Thus, the inflaton field must be very light (compared to the Planck scale).

Inflation ends when ε becomes larger than 1. At that time, the inflaton fields undergoes
damped oscillations around the potential minimum. The theory of reheating assumes that
at that point the field quanta start to decay into the particles of the standard model. This
of course requires that the inflaton field couples to the standard model particles - an as-
sumption that a realistic inflationary model must fulfil. As the inflaton quanta decay into
relativistic particles, the universe heats up and the radiation dominated expansion period
can begin. Note that the term re-heating is a little misleading, as there is currently no reason
to assume the universe was hot at any previous time. Also, it should be pointed out that
reheating remains only insufficiently understood, and that a detailed understanding depends
on the precise way in which the hypothetical inflaton field fits together with the standard
model of particle physics. There is one important constraint on reheating, which is that
the temperature that is reached should remain below the grand unified scale - otherwise at
symmetry breaking many topological defects would be formed via the Kibble mechanism,
and none have been observed in our universe.

2 Lecture II

2.1 Perturbations

Inflation has the potential to explain the small temperature fluctuations observed in the
CMB. For a heuristic picture, consider fluctuations in the scalar field

φ(t, ~x) = φ̄(t) + δφ(t, ~x) (2.1)

Since the scalar field drives inflation, small fluctuations lead to slightly different expansion
histories in different regions (i.e. reheating will happen at different times in different regions),
thus some regions expand a little more and are a little colder, while other regions expand
a little less and are still hotter. Hence such fluctuations in the scalar field can lead to the
primordial temperature fluctuations. But why are there fluctuations in the scalar field in the
first place? As we will see, the origin for these fluctuations comes from quantum fluctuations
(cf. uncertainty principle) that get amplified during inflation. The calculation is rather
technical, especially because in GR we have the freedom to change coordinates, so that it is
a priori not clear what constitutes a physical fluctuation and what represents just a different
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choice of coordinates. We will now present the calculation in some detail.
We start by looking at perturbations of the metric gµν = ḡµν + δgµν . The perturbed metric

can be written as

ds2 = −(1 + 2A)dt2 + 2a(t)(B,i +Gi)dx
idt+ a2(t)[δij + hij]dx

idxj (2.2)

with

hij = 2ψδij + 2∂i∂jE + 2(∂iEj) + γij, (2.3)

with the additional conditions

∂iGi = 0, ∂iEi = 0, γii = 0, ∂iγij = 0. (2.4)

The perturbations can be separated into three categories, according to their transforma-
tion properties with respect to three-dimensional rotations (or, expressed more prosaically,
according to their spatial i, j, ... index structure):

• scalar – no index : A,ψ,B,E

• vector – one i index, divergence free: Gi, Ei

• tensor – symmetric ij indices, transverse and traceless: γij

Vector perturbations decay in all the models we will consider in these lectures, hence we will
ignore them and focus only on scalar and tensor modes.

2.1.1 Gauge Transformations

We consider a small local coordinate change

x→ x′µ = xµ + ξµ, (2.5)

where ξµ = (ξ0, ξi) with ξi = ξiT + ∂iξ. Here ξ is a scalar and ∂iξ
i
T = 0 is a divergence

free 3-vector. Thus ξ0 and ξ are the two scalar transformation parameters. In general,
under such a coordinate transformation the fields and their perturbations change. It turns
out to be convenient to look at gauge transformations, where the background fields remain
unperturbed and the entire change is accounted for by the field perturbations. Thus, for
scalar and tensor quantities we write

s(xµ) → s′(xµ) = s(xµ) + ∆s(xµ) (2.6)

tρσ(xµ) → t′ρσ(xµ) = tρσ(xµ) + ∆tρσ(xµ) (2.7)

Then, using the definition of a tensor quantity t′ρσ(x′µ) = tλκ(x
µ) ∂x

λ

∂x′ρ
∂xκ

∂x′σ
we find that scalars

and tensors transform as

∆s(x) = s′(x)− s(x) = s′(x′)− ξµ∂µs(x)− s(x) = −ξµ∂µs(x) (2.8)

∆tρσ(x) = t′ρσ(x′)− tρσ(x) = −ξµ(x)∂µtρσ(x)− tλσ(x)∂ρ
(
ξλ(x)

)
− tλρ(x)∂σ

(
ξλ(x)

)
(2.9)
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under gauge transformations. Thus we can calculate how the metric (2.2) transforms. The
scalars transform as

A → A+ ξ̇0 (2.10)

B → B +
1

a
(−ξ0 − ξ̇ + 2Hξ) (2.11)

ψ → ψ +Hξ0 (2.12)

E → E − 1

a2
ξ, (2.13)

while the tensors γij are left unchanged. Even though the scalar metric perturbations trans-
form under gauge transformations, one can find gauge-invariant quantities that do not. The
best known of these are the Bardeen potentials

Φ = A+
d

dt
[a(B − aĖ)] (2.14)

Ψ = ψ − aH(B − aĖ), (2.15)

which do not transform. So if we want to make sure that we are talking about physical
quantities only, there are in general two options:

1. Work with gauge-invariant quantities 1

2. Fix a gauge, i.e. fix the a priori arbitrary ξ0, ξ functions such that the perturbations
become unambiguous

A useful example is comoving gauge, where one sets the off-diagonal part of the stress-
energy tensor to zero, δT0i = 0. In this gauge the perturbed spacetime is still comoving
with the background matter, e.g. for a scalar field the constant φ surfaces remain constant
time slices even in the perturbed spacetime. Note that Eq. (2.8) implies that a scalar field
perturbation transforms under a change of time slicing (t→ t+ ξ0 = t+ δt) as

δφ→ δφ− φ̇δt. (2.16)

Given that

T0i ∼ ∂iδφ(t, xi)φ̇(t), (2.17)

we can see that we need

δφcom = 0 (2.18)

to stay in comoving gauge, i.e. we need

δt =
δφ

φ̇
. (2.19)

1There is one caveat here: the definitions of the gauge-invariant quantities must remain well-defined
throughout, i.e. the gauge transformations themselves cannot become degenerate or singular.
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Keeping in mind that

ψ → ψ +Hδt (2.20)

we can see that

R = ψ −Hδφ

φ̇
(2.21)

has an invariant meaning. It is the comoving curvature perturbation. In general it is defined
via

R = ψ +
H

ρ+ p
δq (2.22)

where δT 0
i = ∂iδq. In comoving gauge we simply have Rcom = ψ and thus in that gauge the

comoving curvature perturbation specifies the fluctuations in the scale factor (on constant-φ
surfaces). Hence its name. The comoving curvature perturbation is important because under
certain conditions it is conserved on very large scales, and moreover it is directly related to
what we observe in the CMB.

2.1.2 Perturbed Action

The cosmological background solutions that we are interested in effectively split spacetime
into space and time, as the background fields (the metric and the scalar field) depend on
time alone. Thus surfaces of constant scalar field correspond to equal-time slices through
the spacetime. In calculating the perturbations around these cosmological spacetimes, it is
useful to split the metric in a similar fashion, as first described by Arnowitt-Deser-Misner.
This ADM formalism thus starts by considering a metric of the form

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt), (2.23)

where N is the lapse function (changing N corresponds to changing the time coordinate)
and N i is the shift. We will plug this metric into the action:

S =

∫
dx4
√
−g[

1

2
R− 1

2
gµν∂µφ∂νφ− V (φ)]. (2.24)

Note that
√
−g = N

√
h. We relate the 4-dimensional Ricci scalar R to the 3-dimensional

Ricci scalar R(3) via the contracted Gauss-Codazzi equation:

R = R(3) +KijKij −K2, (2.25)

where Kij is the extrinsic curvature. It is useful to define

Eij = NKij, (2.26)

with

Eij =
1

2
(ḣij)−∇iNj −∇jNi =

1

2
(ḣij)− 2∇(iNj), (2.27)
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E = Ei
i = hijEij. (2.28)

The action then becomes

S =
1

2

∫
d4x
√
hN

(
R(3) − hij∂iφ∂jφ− 2V

)
(2.29)

+
1

2

∫
d4x
√
hN−1

(
EijE

ij − E2 + (φ̇−N i∂iφ)2
)

(2.30)

We will choose comoving gauge, in which the inflaton fluctuation vanishes

δφ = 0 (2.31)

and the scalar degree of freedom is represented by the comoving curvature perturbation R.
The metric for the spatial hypersurfaces is given by:

hij = a2[(1 + 2R)δij + γij] (2.32)

Note that this gauge is fully fixed: ξ0 is chosen to remove δφ and ξ to remove E, while A is
absorbed into the lapse function and B into the shift. First, we drop the tensor fluctuations
γij – at linear order, they evolve independently, and thus we can deal with them separately
later on.

In the ADM formalism, the lapse and shift functions appear in the action without deriva-
tives, i.e. they are Lagrange multipliers and their equations of motion are constraint equa-
tions:

δL
δN

= R(3) −N−2(EijE
ij − E2)−N−2φ̇2 − 2V = 0 (2.33)

δL
δNi

= ∇i[N
−1(Ei

j − δijE)] = 0 (2.34)

We chose the following ansatz to solve the equations (2.33) and (2.34),

Ni = ∂iψ + Ñi (2.35)

∂iÑi = 0 (2.36)

N = 1 + α, (2.37)

where one then expands α = α(1) +α(2) + ..., ψ = ψ(1) +ψ(2) + ..., Ñi = Ñ
(1)
i + Ñ

(2)
i + ... with

the subscripts (1), (2), ... denoting the order of R. One then finds the following solutions to
first order:

N = 1 +
Ṙ
H

(2.38)

Ni = ∂iψ, ψ = −R
H

+ a2 φ̇2

2H2
∂−2Ṙ (2.39)

We can now write out explicitly the second order action. After using the background equa-
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tions of motion and integrating by parts, one obtains

S2 =

∫
d3xdt ε

[
a3Ṙ2 − a(∂iR)2

]
(2.40)

Note that in the quadratic action, the potential of the theory does not appear explicitly.
However, the evolution of the scale factor a is of course determined via the potential. Note
also that the comoving curvature perturbation is massless. This is important, as it implies
that on large scales, where spatial gradients may be neglected, R is conserved. Incidentally,
the conservation of R shows that inflation is an attractor (if it were a repeller, perturbations
would blow up over time).

In general, given that the field R is small we can expand the Lagrangian in a power series
of the scalar field.

S =

∫
d4xL[R(x)] =

∫
d4xL(2)[R(x)] + L(3)[R(x)] + ... (2.41)

We just derived L(2), which describes the free propagation of the field. At next order, L(3)

describes the self-interaction of the field. Since the perturbations are small, in many models
L(3) can be neglected. The path integral then becomes a Gaussian integral (after Wick
rotation), and for this reason one says that the perturbations are highly Gaussian. The term
L(3) then typically represents the leading non-Gaussian corrections - the PLANCK satellite
has put rather stringent upper bounds on their size. However, as the observations are
continually improving, corrections arising from L(3) and perhaps even L(4) may be detected
in the near future.

2.1.3 Quantisation

We would like to teat the small curvature perturbations quantum-mechanically, assuming a
classical curved background (justifying this assumption is one of the central aims of “quantum
cosmology”). For the quantisation of the perturbations, it is useful to define the canonically
normalised Mukhanov-Sasaki variable

v = zR , z2 = a2 φ̇
2

H2
= 2a2ε (2.42)

Switching to conformal time, the action now becomes

S2 =

∫
d3xdτ [(v′)2 − (∂iv)2 +

z′′

z
v2] (2.43)

The action is quadratic, and will thus lead to linear equations of motion. This implies that
it will be useful to expand the perturbations in their Fourier modes

v(τ,x) =

∫
d3k

(2π)3
vk(τ)eikx (2.44)
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Spatial isotropy implies that the Fourier modes vk only depend on the modulus k = |k|.
Then the equation of motion for each Fourier mode is

v′′k + (k2 − z′′

z
)vk = 0 (2.45)

The linearity of the equation implies that each mode evolves independently, and there is no
mode mixing.

We can quantise the system by promoting the fields to operators, and writing these new
operators as a linear combination of annihilation and creation operators

v̂k = fâk + f ?â†−k. (2.46)

We then require the annihilation/creation operators to satisfy the canonical quantisation
condition

[âk, â
†
−k′ ] = (2π)2δ(k− k′) (2.47)

Here f, f ? are time-dependent (complex) solutions of the equations of motion (2.45). The
following quantity (called the Wronskian) is a constant of motion,

ff ?′ − f ?f ′ = i, (2.48)

where we have fixed the right hand side in such a way as to ensure the canonical normalisation
of the mode functions.

De Sitter Limit

An important limit, in which the calculation simplifies considerably, is the de Sitter limit
where the Hubble rate is constant

ε→ 0 , H = const. (2.49)

In this case we have that z = a
√

2ε and

a = − 1

Hτ
, −∞ < τ < 0 (2.50)

Note the range of the conformal time coordinate! It then follows that

z′′

z
=
a′′

a
=

2

τ 2
(2.51)

so that in the de Sitter limit the mode equation becomes

v′′k + (k2 − 2

τ 2
)vk = 0. (2.52)

It is important to understand this equation qualitatively at first: at early times and/or on
small scales (|kτ | � 1) the 2/τ 2 term may be dropped, so that we simply find the mode
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equation in Minkowski space

v′′k + k2vk = 0 (2.53)

That is the equation of motion for a harmonic oscillator and it has the positive-frequency
solution

fk =
1√
2k
e−ikτ (2.54)

In the present context, this early-time solution is often referred to as the Bunch-Davies
initial condition. At late times and/or on large scales (|kτ | � 1), the equation changes to a
harmonic oscillator with time-dependent tachyonic mass

v′′k −
2

τ 2
vk = 0 (2.55)

in such a way that the solution now grows, f ∝ 1/τ. Thus we learn that the fluctuations
get amplified as soon as they exit the horizon, i.e. from the moment when |kτ | ∼ 1. These
general features remain true in all cases of interest.

One can in fact solve the de Sitter mode equation exactly, and the solution is given by

fk =
α√
2k
e−ikτ (1− i

kτ
) +

β√
2k
eikτ (1 +

i

kτ
) (2.56)

where α, β are constants. If we want the modes to be in the Bunch-Davies vacuum at early
times, then we must choose α = 1, β = 0.

Statistics

We can now calculate the 2-point correlation function of the comoving curvature perturbation

〈Rk(τ)Rk′(τ)〉 = (2π)3δ(k + k′)
H2

ε

1

k3
(1 + k2τ 2), (2.57)

which at late times tends to a constant (note that here we have assumed that we are close
to de Sitter, but not exactly in the de Sitter limit where ε = 0). In the formula above, if
there is a slight time dependence in the Hubble rate and the slow-roll parameter ε, then
these quantities are to be evaluated at horizon crossing, i.e. when a(t?)H(t?) = k.

Often one defines the power spectrum PR and the variance ∆2
s of the scalar perturbations

via

〈Rk(τ)Rk′(τ)〉 = (2π)3δ(k + k′)PR, ∆2
s =

k3

2π2
PR (2.58)

With these definitions the real space variance of the comoving curvature perturbation is then
given by

〈RR〉 ∼
∫ ∞

0

dlnk∆2
s . (2.59)
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Also, one conventionally writes the variance in power-law form

∆2
s = A(k0)

(
k

k0

)ns−1

(2.60)

where k0 denotes a reference scale and A the amplitude at that scale. Here ns is called the
spectral index.

Thus, for approximately de Sitter space, the variance is given by

∆2
s =

H2
?

8π2ε?
(2.61)

The fact that this is independent of k means that we have a scale-invariant spectrum ns = 1.
A more precise treatment leads to small but important corrections, as we will now see.

General Slow-Roll Case

We can also solve for the mode functions more generally, making the slow-roll approximation
ε� 1, η � 1. We can then expand the z′′/z term in the mode equation to first order in slow
roll parameters,

z′′

z
= a2H2[2 + 2ε− 3η +O(ε2)] (2.62)

Defining

ν =
3

2
+ 2ε− η +O(ε2) (2.63)

we can rewrite the mode equation as

v′′k + (k2 −
ν2 − 1

4

τ 2
)vk = 0 (2.64)

This is a Bessel equation with the general solution

fk(τ) =
√
−τ [αkH

(1)
ν (−kτ) + βkH

(2)
ν (−kτ)] (2.65)

where H(1,2) are Hankel functions of the first and second kind, and αk, βk are constants. We
can fix these constants by imposing once again Bunch-Davies boundary conditions at early
times and on small scales. For this we need the limit

lim
x→∞

H(1)
ν (x) =

√
2

πx
e[i(x− νπ

2
−π

4
)] , lim

x→∞
H(2)
ν (x) =

√
2

πx
e[−i(x− νπ

2
−π

4
)] (2.66)

Thus we must choose

αk =

√
π

4
, βk = 0 . (2.67)

Having found the appropriate mode functions, we can study their late time limit as well.
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For this we need the relation

lim
x→0

H(1)
ν (x) =

i

π
Γ(ν)(

x

2
)−ν (2.68)

leading to the late-time expression

fk(τ) =
2νi√
4π

Γ(ν)
1

kν(−τ)ν−1/2
(|kτ | � 1) (2.69)

≈ i√
2

1

k3/2+2ε−η(−τ)1+2ε−η . (2.70)

Here Γ is the factorial function, and we have used Γ(ν) ≈ Γ(3/2) =
√
π/2. Using

τ = − 1

aH(1− ε)
(2.71)

we can see that the power spectrum is (approximately) as above in the de Sitter limit,

∆2
s =

H2
?

8π2ε?
, (2.72)

while the k-dependence of the mode function translates into a spectral index

ns = 1− 4ε+ 2η. (2.73)

Thus, we may typically expect slow-roll models of inflation to yield a slight red tilt, i.e. a
power spectrum slightly smaller than 1. This tilt is referred to as red since it corresponds to
having more power on larger scales compared to a pure scale-invariant spectrum. A spectral
index above 1 is referred to as a blue tilt.

Current observations by the PLANCK satellite indicate that the variance has a value of
∆2
s = (2.20±0.12)×10−9, while the spectral index has been measured to be ns = 0.9600.015

at 95% confidence level. Note that inflation does not predict the variance - it has to be fitted
after the measurement. Thus inflation, in its current form, does not explain the amplitude of
the perturbations. The red tilt of the spectral index however fits well with general slow-roll
expectations.

2.1.4 Tensor modes

We can now repeat this calculation for tensor fluctuations. In fact the calculation proceeds
in an entirely analogous fashion, hence we will only sketch it here. As stated earlier, at linear
order the tensor modes are evolving independently of scalar and vector modes, and so in the
present section it is sufficient to consider the perturbed metric

ds2 = −dt2 + a2(t)[δij + γij(t, x)]dxidxj (2.74)

with
γii = ∂iγij = 0 . (2.75)
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We can transform to Fourier space and decompose the tensor perturbation into two polari-
sation states

γij =

∫
d3k

(2π)3

∑
s=+,×

εsij
2

a
vske

ik·x (2.76)

with
εii = kiεij = 0 (2.77)

where vsk is the canonically normalised variable. This variable satisfies the equation of motion

v′′k +

(
k2 − a′′

a

)
vk = 0 , (2.78)

where a prime denotes a derivative with respect to conformal time τ, with dt ≡ adτ as usual.
During inflation

τ = − 1

aH
(−∞ < τ < 0),

a′′

a
=

2

τ 2
(2.79)

so that we obtain

v′′k +

(
k2 − 2

τ 2

)
vk = 0 . (2.80)

Quantising as before, and imposing the same boundary conditions, we find that at early
times |kτ | � 1 the solution is oscillatory

vk =

√
~√
2k
e−ikτ (2.81)

at late times |kτ | ≤ 1 the solution is growing

vk ≈
√
~√

2k3/2τ
e−ikτ (2.82)

and thus gravitational waves get amplified during inflation. The variance is given by

∆2
t =

4

a2π2
k3|vk|2 =

2

π2

H2
?

M2
Pl

(2.83)

where H? denotes the value of H at horizon exit, i.e. when |kτ | = 1. Note the important
result that the amplitude of the gravitational waves thus produced depends only on the
Hubble rate during inflation. Here one also defines a spectral index nt via an assumed power
law form

∆2
t (k) = At(k0)

(
k

k0

)nt
. (2.84)

where At is the amplitude at a reference scale k0. Note that according to this conventional
definition nt = 0 corresponds to scale invariance. More precise calculations involving Hankel
functions, as performed above for the scalar case, lead to the slow-roll result

nt = −2ε. (2.85)
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The tensor-to-scalar ratio r is defined by

r ≡ ∆2
t

∆2
s

= 16ε (2.86)

We can infer ∆2
s from observations of the CMB

∆2
s =

1

8π2

H2
?

M2
Pl

1

ε?
= 2× 10−9 (2.87)

Since H2 ≈ V we immediately obtain the energy scale during inflation

V 1/4 =
( r

0.01

)1/4

× 1016GeV. (2.88)

Thus, assuming an inflationary origin, a measurement of r allows one to immediately obtain
the energy scale during inflation, and thus, in conjunction with a measurement of the scalar
amplitude ∆2

s, a value for the slow-roll parameter ε.
We can also rewrite

r = 16ε = 8

(
dφ

dN

)2

(2.89)

Integrating and assuming r constant we get the Lyth bound

∆φ

MPl

≈ 2×
√

r

0.01
(2.90)

for N = 60 e-folds of inflation. This equation shows that in order to obtain a gravitational
signal large enough to be observable, the scalar field must typically travel a distance of at
least one Planck unit in field space. Models in which this is the case are often referred to as
large-field models.

2.1.5 Example: m2φ2 Inflation

For this potential we calculated the slow-roll parameters earlier, finding

ε = 2/φ2 η ∼ O(ε2) (2.91)

Also, we found that the number of e-folds of inflation remaining is roughly given by N = 1
4
φ2.

Given that the modes that we observe on the CMB now would have been produced about
60 e-folds before the end of inflation, we have NCMB = 60. The amplitude of the scalar
perturbations is given by

H2

8π2ε
≈ V

8π2ε
≈ V =

1

2
m2φ2

CMB = 2NCMBm
2 (2.92)

Thus, to obtain the observed variance of 10−9 we have to assume an inflaton mass of about
m ≈ 10−6 in natural units. Having fixed these relations by hand, we then obtain an expected
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value for the spectral index of
ns ≈ 0.96 (2.93)

and a tensor-to-scalar ratio
r ≈ 0.13 . (2.94)

The observational bounds are so good that we will soon know whether this model (which is
surely the most widely used model of inflation, and arguably the simplest) remains viable
or is ruled out.

2.1.6 Quantum To Classical

The fact that the quantised curvature perturbations start behaving increasingly classically
can best be seen in the Schrödinger picture. We start again from the Lagrangian for each
Fourier mode,

L =
1

2
v′2 − 1

2

(
k2 − z′′

z2

)
v2 (2.95)

The canonical momentum is then given by

π =
∂L

∂v′
= v′ (2.96)

Note that, making use of the Wronskian condition, the annihilation operator can now be
rewritten in terms of the field and its momentum

iâ = f ?′v̂ − f ?π̂ (2.97)

The vacuum state is defined by

â|0 >= 0 (2.98)

Then using the expression above and the canonical replacement π → −i ∂
∂v
, we find that the

ground state Schrödinger wave function is given by

Ψ(v) = N exp

(
−1

2
Cv2

)
(2.99)

where N is a normalisation factor. Here C is the correlator and it is given by

C = −if
?′

f ?
(2.100)

At early times, we know that the mode functions are approximately in the Bunch-Davies
state, such that f ? ≈ 1√

2k
e−ikτ . Then we have

C ≈ k (|kτ | � 1) (2.101)
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On the other hand, at late times, we have the solution (2.69). Using the asymptotic forms
of the Hankel functions, one finds that

C ≈ − 2π

Γ(ν)2τ
(
−kτ

2
)ν − i

(
1

2
− ν
)

1

τ
(|kτ | � 1) (2.102)

≈ k3τ 2 +
i

τ
(2.103)

where we have kept the leading real and imaginary contributions. It is now useful to recall
the WKB criterion for classicality: a wavefunction behaves approximately classically when
its amplitude varies slowly compared to the variation of its phase. Clearly, at early times the
wavefunction is very quantum, while at late times the variation of its amplitude goes to zero
while its phase is continually speeding up. Thus, as time goes on, the perturbations behave
increasingly classically. Note also that the real part of C becomes small at late times. This
means that the dispersion of the fluctuations modes becomes large – in other words, these
modes get copiously produced.

2.1.7 Relation To Observations - Angular Power Spectrum and Polarisation

The small anisotropies in the CMB, which manifest themselves as orientation-dependent
fluctuations in its temperature, are usefully characterised by expanding them in spherical
harmonics Y m

l ,

δT (n̂) =
∑
lm

almY
m
l (n̂), (2.104)

where n̂ denotes the direction in the sky. One can form the rotationally invariant quantities

CTT
l =

1

2l + 1

∑
m

〈a∗lmalm〉. (2.105)

It is these CTT
l coefficients that are often plotted in graphical representations of the statistical

properties of the cosmic background radiation; see Fig. 3. The characteristic pattern of peaks
and troughs is well understood in terms of the physics of the radiation-matter plasma that
dominated the universe prior to recombination, if one assumes the pre-existence of a nearly
scale-invariant fluctuation spectrum at even earlier times.

We will give a heuristic explanation of the pattern seen in Fig. 3. Detailed calculations are
usually performed numerically, and involve solving the full Boltzmann equations describing
the various matter components in the early universe. For our purposes, it is sufficient to
have a qualitative understanding of the results of these calculations. Our strategy will be
to assume the existence of temperature fluctuations with a scale-invariant spectrum at early
times, and then explain how this reproduces the pattern seen in the figure above. On large
scales (small l), the perturbation modes do not evolve much, and hence we may expect a flat
plateau for l < 20. On these scales we get a direct glimpse of the primordial power spectrum,
giving us an estimate of the amplitude of the fluctuations. However, observations on these
scales are severely limited by cosmic variance, i.e. by the fact that for such long-wavelength
modes only a few fit on the sky and thus random unknowable fluctuations play an important
role. On intermediate scales, there are acoustic oscillations leading to the characteristic peaks
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Figure 3: This graph shows the angular power spectrum of the CMB radiation, i.e. it shows
the amplitude of the temperature fluctuations (to be precise: what is depicted on
the vertical axis is the combination l(l+ 1)CTT

l /2π) as a function of the multipole
moment l. Credit: ESA / PLANCK

and troughs in the spectrum. Indeed, in the early radiation-matter plasma, the fluctuations
oscillate as acoustic waves, and this can lead to constructive/destructive interference. Here
it is important to realise that, since the super-Hubble curvature perturbations are frozen in,
they all start their evolution with the same phase: when they enter the horizon, they have
a vanishing time derivative and then they start oscillating. If this were not the case, but
rather if all temporal phases were random, we would not see any such peaks and troughs
in the angular power spectrum. Moreover, using known plasma physics, one can calculate
the size of the oscillations that are at a peak, i.e. this gives us a standard ruler, and by
measuring the angular size on the sky, we can find out (since we know the redshift) what
the geometry of the universe is in between last scattering and us. Such measurements allow
us to conclude that the spatial geometry of the universe is flat.

At later stages, these density fluctuations collapse to stars and galaxies under the influence
of gravity. Thus we arrive at the astonishing picture that all the structure in the universe
may have originated from primordial quantum fluctuations!

We should also discuss another aspect of the CMB radiation, namely its polarisation. The
light from the CMB, like every light source, has a polarisation that can be described via an
intensity matrix Iij in the plane perpendicular to propagation, with

Iij =

(
T +Q U
U T −Q

)
(2.106)
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T denotes the temperature anisotropy, while Q and U are the Stokes parameters, and they
can be decomposed into spin-2 spherical harmonics

(Q± iU)(n̂) =
∑
l,m

a±2,lm ±2Ylm(n̂) (2.107)

Particular linear combinations of these coefficients are then called E-mode (symmetric under
parity transformations) and B-mode polarisations (anti-symmetric under parity transforma-
tions),

aE,lm = −1

2
(a2,lm + a−2,lm) aB,lm = − 1

2i
(a2,lm − a−2,lm) (2.108)

This then implies that on top of the temperature-temperature cross-correlation described
earlier in this section, we have more possibilities, as we can consider all of the following
angular 2-point functions

CXY
l =

1

2l + 1

∑
m

〈a∗X,lmaY,lm〉 (2.109)

where now X,Y = T,E,B. These spectra are useful, because scalar perturbation modes
produce only E-modes, while tensor perturbations produce both E-modes and B-modes.
These B-modes arise because tensor fluctuations lead to a quadrupole in the radiation field,
and then via Thomson scattering in such a quadrupole, B-mode polarisation is generated.
Because of this, a detection of primordial B-modes in the CMB would be indirect evidence for
the presence of gravitational waves in the early universe. In fact, in March 2014 the BICEP2
team has announced the detection of a primordial gravitational wave signal of r ≈ 0.2
precisely due to the indirect effect of such gravitational waves on the B-mode polarisation of
the CMB. Currently, it is however not clear if the B-mode signal really is primordial or if it
may rather be caused by dust foregrounds in our galaxy (which also induce B-modes), and
therefore it is prudent to wait for better foreground maps, which will hopefully be provided
by the PLANCK satellite later this year.

3 Lecture III

3.1 Puzzles of Inflation

Particle physics problems:

• What is the nature of the inflaton?

• How does the inflaton couple to all other particles, in particular to the standard model
particles? Once this is known - does reheating really work?

• How does the inflationary potential arise? How can it be so flat over such an extended
field range? What determines its magnitude?

Cosmological problems:

• How were the initial conditions for inflation set?
For inflation to start, you need a super-Hubble sized patch that is uniform to a high
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degree (initial anisotropies must already be subdominant in the Friedmann equation
in order for inflation to be able to begin) and with the scalar field being up on the
potential with very small velocity
Such initial conditions are far from typical - so how do you get them?

• Past-incompleteness
Inflation is necessarily preceded by a singularity - how is this resolved, and what are
the implications for inflation? This is another facet of the initial conditions problem.

• The unlikeliness problem
Inflation occurring at a higher Hubble rate would produce a larger universe with more
galaxies (because the perturbation amplitude would be larger)
Then why does our universe emerge from a lower part of the potential?

• The entropy problem
In de-Sitter space with expansion rate H the entropy is given by S = e1/H2

- hence the
entropy of the inflationary phase was smaller by an amount e10100

than the maximal
possible entropy (calculated from assuming a cosmological constant at the currently
measured value of dark energy)
Also, the entropy of the present universe is about S0 ∼ 1090 - again, from a thermo-
dynamic point of view, inflation is highly unlikely. So why did the universe start in
such a highly unlikely state? (Note that the unlikeliness and entropy problems lead to
tension in roughly opposite directions)

• The multiverse problem - is inflation actually predictive?
Consider one Hubble patch (size 1/H3) over one Hubble time ∆t = 1/H and assume

slow-roll inflation. Then the classical motion of the field is ∆φcl = φ̇∆t = φ̇H
H2 ∼ V,φ

V
.

Meanwhile the quantum evolution is of order |∆φqu| ∼ H
2π
∼ V 1/2. Taking as an

example m2φ2 inflation, we can see that the quantum evolution is typically larger than
the classical evolution when |φ| > m−1/2. Over one Hubble time, the universe grows
by a factor e3 ≈ 20. Thus, for large field values, after one Hubble time there will be
10 Hubble patches where the field is kicked up the potential, implying that regions
where inflation occurs grow exponentially over time and thus inflation never comes
to an end, globally speaking (of course, at any given place inflation eventually does
come to an end, but the point is that continually new inflating regions are created).
As the field rolls down the potential, quantum jumps also occur, and these change the
predictions that we calculated earlier, as they change the slow-roll background that
we assumed in our calculations. Because all possible quantum jumps will eventually
occur, and because the number of created inflationary regions is infinite, this implies
that all possible values for the amplitude, the spectral index, non-Gaussianities,..., will
be created. Without a measure, inflation is thus not predictive, and thus, strictly
speaking, not a scientific theory (as it is unfalsifiable). Is this simple picture of eternal
inflation correct? If it is, then what is the correct measure? No good answer to this
question has been found to date.

Interestingly, there exists an entirely different approach to early universe cosmology, based
on the assumption that instead of an inflationary phase there was a phase of ultra-slow
contraction before the hot big bang.
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3.2 The Cyclic Universe

3.2.1 The Ekpyrotic Phase

Let us go back to the Friedmann equation in the presence of different matter types, repre-
sented here by their energy densities ρ,

3H2 =

(
−3κ

a2
+
ρm
a3

+
ρr
a4

+
σ2

a6
+ . . .+

ρφ
a3(1+wφ)

)
(3.1)

The subscript m refers to non-relativistic matter and includes dark matter, r refers to radi-
ation and σ denotes the energy density of anisotropies in the curvature of the universe.The
associated scaling with a can be calculated as follows: consider a metric of the form

ds2 = −dt2 + a(t)2
∑
i

e2βidxi2 (3.2)

with
∑

i βi = 0 so that a denotes the average scale factor, while the βi parameterise
anisotropies/gradients in the x, y, z spatial directions. Then the Friedmann equation picks
up a new term

3H2 = · · ·+ 1

2

∑
i

β̇2
i (3.3)

while the ij Einstein equations give

β̈ + 3Hβ̇ = 0 → β̇ ∝ 1

a3
(3.4)

so that the new term in the Friedmann equation scales as
∑

i β̇
2
i ∝ 1/a6.

In an expanding universe, as the scale factor a grows, matter components with a slower
fall-off of their energy density come to dominate. If there is an inflationary scalar field,
the eventually the inflaton, whose energy density is roughly constant, dominates the cosmic
evolution and determines the (roughly constant) Hubble parameter while causing the scale
factor to grow exponentially, a ∝ eHt. We can define the relative energy density in the
curvature as Ωκ ≡ −κ/(a2H2) and in the anisotropies as Ωσ ≡ σ2/(3a6H2). During inflation,
these relative densities fall off quickly, and the universe is rendered exponentially flat; as we
calculated earlier, the flatness puzzle is then resolved as long as the scale factor grows by at
least 60 e-folds.

Now we will show how the same problem can be solved by having a contracting phase
before the standard expanding phase of the universe. The Friedmann equation relates the
Hubble parameter to the total energy density in the universe, which is the sum of kinetic
and potential energy. Now suppose that, instead of a flat potential, the scalar φ has a very
steep, negative potential, as shown in Fig. 4. As a concrete example, one can model the
potential with a negative exponential

V (φ) = −V0e
−cφ, (3.5)

where V) and c are constants. In a contracting universe, the argument presented in the previ-
ous paragraph is reversed, and one would initially expect the anisotropy term (proportional
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Figure 4: The potential during ekpyrosis is negative and steeply falling; it can be modelled by the

exponential form V (φ) = −V0e
−cφ.

to a−6) to come to dominate the cosmic evolution. However, if there is a matter component
with w > 1, then this component will scale with an even larger negative power of a, and
hence will come to dominate the cosmic evolution in a contracting universe in the same way
as the inflaton comes to dominate in an expanding universe. In fact, for a steep negative
exponential potential, neglecting all other matter fields for the moment, the equations of
motion are solved by the scaling solution

a ∝ (−t)1/ε, φ =

√
2

ε
ln

[
−
(

V0ε
2

(ε− 3)

) 1
2

t

]
, ε =

c2

2
, (3.6)

This is called a scaling solution because in the equations of motion each term has the same
time dependence, as you should verify. Note that ε here has the same definition as in inflation,
and it is related to the equation of state w = p/ρ via the standard relation

ε =
3

2
(1 + w). (3.7)

For w > 1 this implies ε > 3 or equivalently c2 > 6. Thus here we are in the presence
of fast-roll, and although the scalar field is quickly rolling down its potential, the universe
contracts very slowly. Note also the useful relation

V (φ) = − 1

εt2
. (3.8)

We are using a coordinate system in which the big crunch occurs at t = 0; in other words,
the time coordinate is negative during the ekpyrotic phase. The steeply falling scalar fields
act as a very stiff fluid, and, in fact, one can take the condition w > 1 to be the defining
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feature of ekpyrosis. The matter content does not necessarily have to be composed of scalar
fields, but it is easy to model the ekpyrotic phase that way, and scalar fields commonly
appear in effective theories arising from higher dimensions. The main consequence is that
the extra term in the Friedmann equation (3.1) with w > 1 comes to dominate the cosmic
evolution, and once more, the fractional energy densities Ωκ ∝ a−2H−2 and Ωσ ∝ a−6H−2

quickly decay. Thus, neglecting quantum effects, the universe is left exponentially flat and
isotropic as it approaches the big crunch. The flatness problem is thus solved if the ekpyrotic
phase lasts long enough.

It is interesting to calculate the length of the ekpyrotic phase, assuming the ekpyrotic
potential, at its minimum, reaches the GUT scale (2 orders of magnitude below the Planck
energy scale) and that the coefficient in the potential is, for example, c = 15. As shown
earlier, aH needs to grow by at least a factor e60 in order to solve both the flatness and
the horizon problems. Since a is roughly constant, and H ∝ 1/t during ekpyrosis, we have
tek−beg/tek−end = e60 at least. The scaling solution implies that V = − 2

c2t2
, and hence if we

assume |Vmin| ∼ (10−2MPlanck)
4, we get tek−end ∼ 103tPlanck. This implies

tek−beg & 1030tPlanck ≈ 10−13s, (3.9)

a short time in cosmology, although long by microphysical standards. In the cyclic picture
of the universe, the potential V interpolates between the GUT scale and the dark energy
scale. From the scaling solution (3.6), we have that V ∝ t−2, and this leads to

|tek−beg| =

√
Vek−end
Vek−beg

|tek−end| ≈
√

10112103tPlanck

= 1016s. (3.10)

In this case, the ekpyrotic phase lasts on the order of a billion years.
In the same way, anisotropies are suppressed, and chaotic mixmaster behavior does not

arise. As we will see later, the inclusion of quantum effects superposes small fluctuations on
this classical background, and these will address the inhomogeneity problem.

The relic problem is solved if in the transition from the contracting phase to the expanding
phase the temperature never went above the GUT temperature.

3.2.2 Cyclic Scenario

The cyclic model is an ambitious attempt at providing a complete history of the universe,
incorporating both the ekpyrotic mechanism and dark energy in an essential way. Here we
will just present a brief overview. The cyclic model relies on having a scalar field potential of
the general shape depicted in figure 5. The idea is that the ekpyrotic phase, which precedes
the big crunch/big bang transition, is itself preceded by a phase where the potential is positive
and flat. During this phase, the scalar field rolls down the potential very slowly, and this in
fact provides a period of dark energy domination. But this could be our current universe!
At some point in the future, the potential energy becomes negative, and the universe reverts
from expansion to contraction. We then enter an ekpyrotic phase, which locally flattens and
homogenises the universe. After a brief phase of kinetic energy domination, we reach the
big crunch/big bang, and matter and radiation are produced. This “bounce” is discussed
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Figure 5: The potential for the cyclic universe.

further in Lecture IV. After the bang, the scalar field acquires a small boost and quickly
rolls back across the potential well and onto the positive energy plateau, where the scalar
gets quasi-stabilised. Now the universe undergoes the usual periods of radiation and matter
domination, while the scalar field starts rolling slowly back. Eventually, the resulting dark
energy comes to dominate the energy density of the universe, and the whole cycle starts
again. In this way, physical processes in the universe today provide the initial conditions for
the next cycle. What should be noted is the economy of ingredients. Also, there exists a
nice interpretation of this evolution in terms of branes and higher dimensions.

An important aspect should be noted: even though the sequence of cosmological phases
is cyclic, the scale factor for example does not evolve cyclically: the universe expands by
large amounts during radiation, matter and dark energy domination, while it only contracts
a little during the ekpyrotic phase. Thus, over the course of each cycle, the universe grows
by a huge factor. This is a beneficial feature, as it prevents the build-up of entropy and a
possible conflict with the 2nd law of thermodynamics.

A second aspect to note is that in this scenario, dark energy plays a crucial role in stabil-
ising the cycles, and in contributing to the flattening of the universe. Thus, contrary to hot
big bang and inflationary cosmology, dark energy actually has a “raison d’être”.
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3.2.3 Perturbations

Single Field

In order to calculate the fluctuations in this model, we can take over the formalism developed
earlier in the context of inflation, as here also we have gravity coupled to a scalar field with
a potential. There, we saw that the mode functions of the comoving curvature perturbation
R obey the equation of motion

v′′ +

(
k2 − z′′

z

)
v = 0 (3.11)

where v = zR with z = a
√

2ε. For an exponential potential, ε is constant, and thus z′′/z =
a′′/a. Using a ∝ (−τ)1/(ε−1), we find

a′′

a
= − ε− 2

(ε− 1)2τ 2
→ ν =

ε− 3

2(ε− 1)
(3.12)

Given that ε > 3, we have 0 < ν < 1/2. If we now inspect the late time behaviour of the
mode functions,

f ∼ (−τ)
1
2
−ν

kν
, (|kτ | � 1) (3.13)

we can see that these modes are not amplified. Thus, as the model stands, it renders the
universe completely flat, both classically and quantum-mechanically. This is great news
regarding the flatness problem, but it means that so far we have not explained the origin of
the small temperature fluctuations in the CMB. It turns out that this can be done by adding
one more scalar field, as we will now show.

Two Fields - Entropic Mechanism

Motivated by the previous discussion, we will add a second scalar field χ to the ekpyrotic
model, by considering the Lagrangian (in natural units 8πG = M−2

Pl = 1)

L =
√
−g
[
R

2
− 1

2
∂µφ∂

µφ− 1

2
e−bφ∂µχ∂

µχ+ V0e
−cφ
]
, (3.14)

where we assume b, c to be constants. The reason for considering a coupling term e−bφ in the
kinetic term for χ will become clear below. Note that we have left the potential unchanged,
and in particular it does not depend on the second scalar. In a flat Friedmann–Lemaitre-
Robertson-Walker (FLRW) universe, the equations of motion are given by

φ̈+ 3Hφ̇+ cV0e
−cφ = −1

2
be−bφχ̇2, (3.15)

χ̈+
(

3H − bφ̇
)
χ̇+ ebφV,χ = 0, (3.16)

H2 =
1

6

(
φ̇2 + e−bφχ̇2 − 2V0e

−cφ
)
. (3.17)
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Since the potential V (φ) does not depend on χ, it is clear that χ = constant is a solution.
The remaining equations then reduce to those for a single scalar in an ekpyrotic potential,
and they admit the scaling solution(3.6).

Having discussed the background, we now turn our attention to the fluctuations. The
main interest of course lies in the fluctuations of χ. Given that the background trajectory
is along a χ = constant line in field space, it is clear that fluctuations in χ are transverse
to the background evolution. Thus, in contrast to fluctuations of φ, which change the
expansion history locally and correspond to curvature fluctuations, the δχ fluctuations are
isocurvature (or entropy) perturbations. We will come back to this point later on. Note that
δχ is immediately gauge-invarient, as ∆δχ = −χ̇ξ0 = 0 (cf. Eq. (2.8)). A useful definition

for the entropy perturbation is given by the gauge-invariant quantity δs = e−
b
2
φδχ, whose

linearized equation of motion in Fourier space is given by

δ̈s+ 3Hδ̇s+

[
k2

a2
− b2

4
φ̇2 − b

2
V,φ

]
δs = 0, (3.18)

where k denotes the wavenumber of the fluctuation mode. Switching to conformal time and
defining the canonically normalized entropy perturbation vs ≡ aδs, we obtain

v′′s +

[
k2 − a′′

a
− b2

4
φ′2 − b

2
a2V,φ

]
vs = 0. (3.19)

Imposing the usual boundary condition that in the far past/on small scales the mode function
is that of a fluctuation in Minkowski space, lim

kτ→−∞
vs = 1√

2k
e−ikτ , up to an irrelevant phase

the solution is

vs =

√
π

4

√
−τH(1)

ν (−kτ), (3.20)

where H
(1)
ν denotes a Hankel function of the first kind. At late times/on large scales, the

entropy perturbations then scale as

vs ∝ k−ν(−τ)1/2−ν (|kτ | � 1). (3.21)

Defining a parameter ∆ ≡ b
c
− 1, the spectral index comes out as

ns = 4− 2ν = 1− 2∆
ε

(ε− 1)
, (3.22)

where we did not have to make any approximations. When the two exponents b and c in the
original Lagrangian (3.14) are equal, we obtain an exactly scale-invariant spectrum, ns = 1.
However, when b and c differ sightly, we obtain deviations from scale-invariance. Since we
have ε > 3, the deviation from scale-invariance is always between −3∆ and −2∆. Thus, if
b is larger than c by about two percent, we obtain the central value ns = 0.96 reported by
the PLANCK team. Note that these modes also satisfy the WKB classicality conditions
increasingly well, in direct analogy with the inflationary calculation performed earlier.

Using the large-scale expression for the mode functions (3.21), with ν given in (3.22), we
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can also find the time dependence of the original scalar field fluctuation δχ :

δχ = e
b
2
φvs
a
∝ (−aτ)

b
c (−τ)

1
2
−ν 1

a
= constant. (3.23)

Thus δχ tends to a constant on large scales, irrespective of the values of b and c, implying
that this solution is stable for any values of the spectrum.

What we observe in the cosmic background radiation are not entropy perturbations, but
rather the observed temperature fluctuations stem directly from curvature perturbations.
Thus, for the model to be viable, we must ensure that the entropy perturbations can get
converted into curvature fluctuations. One possibility is that after the ekpyrotic phase, there
could be a turn in the background field space trajectory. Indeed, when two fields are present,
the evolution equation of the curvature perturbation on large scales becomes more involved,

Ṙ =
2H

φ̇
θ̇δs =

√
2

εc
θ̇δs, (3.24)

where εc denotes the value of ε during the conversion process and θ̇ = V,s/φ̇.. This equa-
tion illustrates that whenever the background trajectory bends, curvature perturbations are
generated. Since there is no k-dependence in Eq. (3.24), their spectrum will be identical to
that of the entropy perturbations that source them, and thus will be given by Eq. (3.22).
A bending could either occur at the end of the ekpyrotic phase, or during the subsequent
kinetic phase where the ekpyrotic potential has become unimportant. For these two possi-
bilities, we can estimate the amplitude of the curvature perturbation by approximating εc
and δs as constants over the time of the conversion, and assuming a total bending angle of
about 1 radian, ∆θ ≈ 1, giving Rfinal ≈ 1√

εc
δsek−end and leading to a variance

∆2
s =

k3

(2π)2
〈R2

final〉 ≈
(ε− 1)2

εc(ε− 3)

Vek−end
(2π)2

, (3.25)

where Vek−end corresponds to the energy scale of the deepest point in the potential. Unless
the fast-roll parameter ε during the ekpyrotic phase is very close to 3, this implies that the
potential has to reach approximately the grand unified scale Vek−end ≈ (10−2MPl)

4 in order
for the curvature perturbations to have an amplitude in agreement with the observed value
of about 2× 10−9.

Without having the time to go into detail, we also note that in this model non-Gaussian
corrections are small and in agreement with observations. (This is essentially due to the
fact that in th original Lagrangian there are no terms in χ of higher order than quadratic.)
Thus, this example of the “non-minimal entropic mechanism” provides an alternative model
in agreement with observations. In saying this, we have assumed that the perturbations can
get through the bounce phase unchanged. Bounce models in which this is the case can be
constructed, and we will discuss this issue in a bit more detail in lecture IV.

Gravitational Waves

In order to calculate the tensor fluctuations in this model, we can again take over the
formalism developed earlier in the context of inflation. The tensor mode functions obey the

47



equation of motion

v′′ +

(
k2 − a′′

a

)
v = 0 (3.26)

where v corresponds to a polarisation mode of the off-diagonal spatial metric perturbations.
In analogy with the single scalar field calculation above, we have that

a′′

a
= − ε− 2

(ε− 1)2τ 2
→ ν =

ε− 3

2(ε− 1)
(3.27)

Given that ε > 3, we have 0 < ν < 1/2. Hence, inspecting once more the late time behaviour
of the mode functions,

f ∼ (−τ)
1
2
−ν

kν
, (|kτ | � 1) (3.28)

we can see that these modes are not amplified. Thus, during an ekpyrotic phase, tensor
modes are not produced and gravitational waves are not generated. This is in marked
contrast with inflation, and serves as a possible observational characteristic to distinguish
between the two kinds of models. However, two things complicate this simple diagnostic:

• Not all inflationary models produce gravity waves at a level that is detectable in the
foreseeable future. This depends entirely on the energy scale during inflation.

• In ekpyrotic and cyclic models, gravitational waves might get produced at a different
stage, in particular during the bounce phase. This possibility has not been explored
much yet, and remains incompletely understood.

3.2.4 Puzzles

Ekpyrotic and cyclic models present similar open problems/challenges than inflationary ones,
with a few interesting differences.

• What is the nature of the ekpyrotic scalar field?

• How does it couple to all other particles, in particular to the standard model particles?
How does reheating work in cyclic models?

• How does the cyclic potential arise? How can it be so steep over such an extended
field range?

• Can cycles last indefinitely, or is there a limit to how many cycles are viable?

• How did the bounce occur? And can we follow cosmological perturbations unambigu-
ously from the contracting into the expanding phase? Are classically singular bounces
resolved by quantum gravity? In the meantime, can we construct sensible non-singular
bounces? Some of these aspects will be discussed a little further in lecture IV.

• Evidently, there is less of an initial conditions problem, as each cycle sets up the initial
conditions for the next one in a dynamical fashion. However, one may ask how the
cycling started? How come a classical spacetime came into existence in the first place?
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One point should be noted, which is in contrast with inflation: during the ekpyrotic phase,
there is no runaway as in eternal inflation. Large quantum fluctuations during ekpyrosis
simply lead to a local time-delay in the cycle, but they do not get amplified. Thus they do
not disrupt the cyclic evolution in any dangerous way, and in particular they do not lead to
an infinity of different universes.

4 Lecture IV

The material here is very brief. It is only intended to give a flavour of outstanding questions
at the interface between cosmology and fundamental physics. At that interface, there are
currently many more questions than answers, which means that there are many good research
topics to be found there!

4.1 Modelling Bounces

In classical GR, the big bang corresponds to a singularity, where certain curvature invariants
become infinite. A description beyond such a singularity is then impossible. Likewise, there
exist models in string theory, e.g. models where two branes collide, in which the big bang
corresponds to a classically singular moment. These models are interesting, amongst others
because they provide support for a number of assumptions that we have made earlier: in
these models, shortly before the brane collision, a turn in the scalar field trajectory automat-
ically happens (so that entropy perturbations get converted into curvature perturbations).
Moreover, at the brane collision, some of the brane kinetic energy can be converted into
particles and radiation, thus heating the universe. In these models, the two branes are of
opposite tension. If more matter/radiation gets produced on the negative-tension brane than
on the positive-tension one, the effective 4d scalar field also gets a little extra kinetic energy,
as is necessary for a cyclic implementation. For a comprehensive overview, see section 6 of my
review arXiv:0806.1245.The draw-back of such models is that the brane collision is classically
singular. One may expect that quantum gravitational effects resolve such singularities, i.e.
that in quantum gravity the quantum effects near such singularities play an important role
and avoid the development of infinities. However, currently no (fully convincing) quantum
gravitational resolutions of cosmological singularities are known.

Because of this, it is of interest to try to find descriptions of classically non-singular
bounces, where the universe contracts to a minimum scale factor and then smoothly re-
expands. Such non-singular descriptions may serve two purposes: the first is that it would
be interesting to know whether non-singular bouncing universes are allowed in fundamental
theory (the answer to this question is currently unknown), and even if not, classically non-
singular descriptions may provide some approximate description of the physics of quantum-
resolved bounces. It is not easy to find classically non-singular bounce solutions, because of
the following fact: in a flat FLRW universe, the acceleration equation can be written as

Ḣ = −1

2
(ρ+ p). (4.1)

Thus, if we want to go from contraction to expansion, i.e. if we want Ḣ > 0, we require that
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the sum of energy density and pressure be negative,

ρ+ p < 0 at a bounce (4.2)

This condition corresponds to a violation of the null energy condition. Typically, such a
violation is associated with ghost instabilities, which are excitations with negative kinetic
energy, and other pathologies. Note that negative energy fluctuations are catastrophic as
ever wilder fluctuations decrease the energy more and more, and are thus favourable. Thus,
the system immediately becomes catastrophically unstable. From a quantum-mechanical
point of view, the situation is even worse, as a theory with ghosts does not even have a
vacuum state. However, in recent years models have been found that can evade many such
potential pathologies, and better models are developed all the time.

Here we will describe one simple model of a classically non-singular bounce, namely a ghost
condensate bounce. The model is not perfect, but it is easy to describe and it highlights the
main advantages and issues arising in the description of non-singular bounces. To this end,
consider the Lagrangian

L =
√
−g
[
R

2
+K(φ)X + T (φ)X2 − V (φ)

]
(4.3)

where we have defined X ≡ −1
2
gµν∂µφ∂νφ as shorthand for the ordinary kinetic term. The

term proportional to T (φ) is the leading higher-derivative correction to the kinetic term,
and it will play an important role here. During an ekpyrotic contracting phase, we have
K(φ) = 1, T (φ) = 0, V (φ) = −V0e

−cφ. If this were all there was, then the universe would
eventually reach a big crunch singularity. However, here we imagine that near φ = 0, the
sign of K switches to negative. This would ordinarily lead to a ghost, but here we imagine
that simultaneously the higher-derivative term TX2 turns on and reaches a value Tb at the
bounce. An example is provided by the following choice

K = 1− 2

(1 + φ2)
, T =

Tb
(1 + φ2)

. (4.4)

In this theory the energy density and pressure are given by

ρ =
1

2
Kφ̇2 +

3

4
T φ̇4 + V, (4.5)

p =
1

2
Kφ̇2 +

1

4
T φ̇4 − V, (4.6)

so that the sum of energy density and pressure is ρ + p = Kφ̇2 + T φ̇4. This sum can be
negative at the bounce, where K = −1, T = Tb, as long as

ρb + pb < 0 → φ̇2
b <

1

Tb
condition for bounce (4.7)

Thus, if the kinetic energy is not too large, a bounce can occur. We can take a look at the
Friedmann equation at the moment of the bounce to see whether it is possible to achieve
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this (note that by definition the bounce occurs at H = 0),

3H2 = 0 = −1

2
φ̇2
b +

3

4
Tbφ̇

4
b + V (4.8)

The solution to this equation is given by

φ̇2
b =

1

3Tb
(1±

√
1− 12TbV ) (4.9)

Here the plus sign corresponds to the ghost condensate branch that we are interested in. We
see that solutions with φ̇2

b < 1/Tb are easily possible, as long as −1/(4Tb) < V < 1/(12Tb).
Given the general arguments mentioned above, it is important to check the stability of
the model. We are principally interested in the stability of the scalar field, since it has a
wrong-sign kinetic term at the bounce. For this calculation, we may momentarily neglect
the coupling to gravity and the associated issues of gauge-dependence, and just look at the
(derivative) fluctuations of the scalar, which we write as

φ = φ̄(t) + δφ(t, xi) (4.10)

Here φ̄ denotes the background value of the scalar field. Collecting quadratic time and space
derivative fluctuation terms, we obtain at the moment of the bounce (which is the most
dangerous time)

δL ⊃ a3( ˙δφ)2

[
−1

2
+

3

2
Tb

˙̄φ2
b

]
(4.11)

−a3δφ,iδφ,i

[
−1

2
+

1

2
Tb

˙̄φ2
b

]
(4.12)

Absence of ghosts and of gradient instabilities means that the two respective terms in square
brackets should be positive. (If these terms are positive, solutions to the associated equation
of motion for δφ are oscillatory in nature - however, if either of these terms is negative, the
solutions become exponentials, and thus will contain an unstable growing mode.) Absence
of ghosts requires

˙̄φ2
b >

1

3Tb
no ghosts, (4.13)

while absence pif gradient instabilities requires

˙̄φ2
b >

1

Tb
no gradient instabilities, (4.14)

These conditions are not quite compatible with the bounce condition. The best we can do

is to have a potential that is close to, but slightly above, −1/4Tb at the bounce. Then ˙̄φ2
b

is slightly less than 1/Tb. In that case, a bounce is obtained and ghosts are avoided. We
can then also avoid gradient instabilities if we include additional higher-derivative terms in
the theory. Normally, such terms would not play a role, but here, because the coefficient
of δφ,iδφ,i is so small, additional terms can contribute – e.g. a term −(�φ)2 would then
stabilise the bounce for high momentum fluctuations. Note that there is one problem with
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this bounce model: at the moment of the bounce, the higher-derivative X2 term is just as
large as the X term - thus one must assume that all higher-derivative terms of the form Xn

with n > 2 appear with small coefficients, which may not be easy to achieve. There exist
models (e.g. models based on Galileon terms) that are better-behaved in this regard, though
they are also more complicated to analyse.

An important question in bouncing models is what happens to the cosmological perturba-
tions as they pass through the bounce. Naively, there are two opposing viewpoints: on the
one hand, the bounce occurs on small scales so that one may guess that the long-wavelength
modes of cosmological interest are unaffected by the bounce. On the other hand, at the
bounce the Hubble rate passes through zero, so that the horizon becomes infinite. Thus
all modes re-enter the Hubble radius and conservation is no longer guaranteed. We can
analyse this situation by looking in more detail at the action and evolution equation for the
co-moving curvature perturbation.

For an action of the form

S =

∫
d4x
√
−g
[
R

2
+ P (X,φ)

]
(4.15)

where P is an arbitrary function of the scalar field and its kinetic term X, the co-moving
curvature perturbation R has the quadratic action (in conformal time)

S(2) =

∫
dτd3xz2

[
R′2 − c2

sk
2R2

]
, (4.16)

with

z2 =
a2φ′2

2(H)2
(P,X + 2XP,XX), c2

s =
P,X

P,X + 2XP,XX
. (4.17)

This leads to the equation of motion

R′′ + 2
z′

z
R+ c2

sk
2R = 0 . (4.18)

In our case we have P = KX + TX2 − V, and it is straightforward to see that near the
bounce one obtains

c2
s |bounce≈ constant z2 |bounce≈

constant

H2
. (4.19)

Near the bounce, the Hubble rate goes from negative to positive, and a good approximation
close to the bounce is simply to take H = τ, so that τ = 0 marks the time of the bounce.
Note that then

z′

z
≈ −1

τ
(4.20)

and thus the equation for R is singular at the bounce. Nevertheless, we can go ahead and
try to solve it, by using an Ansatz R = τα + cτβ + · · · . This leads to the solution

R = c1

(
1 +

1

2
c2
sk

2τ 2 + · · ·
)

+ c2

(
τ 3 − 1

10
c2
sk

2τ 5 + · · ·
)
. (4.21)
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Thus, even though the equation is singular, the solution is not! As we can see, all pertur-
bation modes become near-constant near the bounce, and longer wavelength modes (small
k) evolve less than short modes. In fact, long-wavelength modes are conserved through the
bounce with high precision, as a full numerical analysis shows. (The reason why the pertur-
bation is singular is that co-moving gauge becomes ill-defines at the bounce. However, there
exist other gauges, for instance harmonic gauge, that remain entirely non-singular through-
out, and it is safest to perform the calculation in that gauge. Such calculations confirm the
results of the present simplified analysis.)

Thus, for these bounce models, one can obtain a reliable history for the cosmological
perturbations of interest, from their generation during a contacting phase until the present.

4.2 Inflation in Supergravity

An important open problem is to describe cosmological models in fundamental theory. We
know that general relativity is not the ultimate theory of nature, as it is not a quantum the-
ory. String theory provides an interesting candidate for a theory of quantum gravity where,
moreover, matter is also included. One may expect the string scale to lie close to the Planck
scale, as this is the natural scale for quantum gravity. Then, at energies significantly lower
than the Planck scale, many quantum string theoretic aspects can presumably be ignored,
and it should be possible to formulate cosmological models in the low energy approximation
to string theory, which is supergravity (of course, there may very well also be regimes of
interest where this approximation is not useful - currently not very much is known about
such situations). For this reason, we will briefly sketch here the framework of 4-dimensional
minimal N = 1 supergravity2, in particular in the context of inflation. This section is just
intended to give a very brief introduction, given the time limitations of these lectures.

In minimal supergravity, scalar fields can be part of chiral superfields Φi - more specifically,
the chiral fields contain a complex scalar field Ai (a real component of which could be the
inflaton, or the ekpyrotic scalar), auxiliary fields F i and fermions which we will ignore here.
There are two functions that must be specified, a Kähler potential K(Ai, A?j̄), which is a real
function, and the superpotential W (Ai), which is a holomorphic function (i.e. a function that
depends only on Ai but not on the complex conjugate fields A?̄i). In the absence of higher-
derivative interactions, these two functions fully specify the scalar Lagrangian. Moreover,
the auxiliary fields have equations of motion that are algebraic (i.e. they do not contain
derivatives), and hence one can solve for them immediately. This leads to a potential V for
the complex scalars Ai. In the end, the scalar part of the theory boils down to

Lscalar = −K,ij̄g
µν∂µA

i∂νA
?j̄ − eK

[
Kij̄DiWDj̄W

? − 3WW ?
]

(4.22)

where the Kähler metric is K,ij̄ = K,AiA?j̄ and the Kähler derivative is defined by DiW =
W,Ai + K,AiW. The canonical Kähler potential is given by K = AA?. Note that this leads
to an exponentially rising term eAA

?
in the potential. This is an immediate manifestation

of the so-called eta problem, which is that the slow-roll parameter η tends to be too large
in supergravity models. More specifically, when the exponential term is expanded, it is easy

2Extended supergravity is also of interest at high energies, but only in minimal supergravity can chiral
particles exist, so that for phenomenological purposes minimal supergravity is of greatest interest.
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to see that it leads to a contribution ∆η = 1 to the second slow-roll parameter. Thus,
obtaining a slow-roll inflationary potential over an extended field range (as is required to
have a successful resolution of the flatness and horizon puzzles) requires a high degree of
fine-tuning in the potential, as additional terms must be added that carefully cancel this
term in order to lead to a flat potential.

We can give an example of such a carefully tuned model: assume that we have two chiral
fields, the second one containing the complex scalar B. Then we will assume a canonical
kinetic term for both, K = AA? +BB? + · · · together with the superpotential

W = e−
1
2
A2

f(A)B, (4.23)

where f(A) is an arbitrary function for now. As we will see shortly, we will have to add
further terms to the Kähler potential. With these choices, the theory becomes

Lscalar = −(∂A)2 − (∂B)2 (4.24)

−eAA?−
1
2
A2− 1

2
A?2+BB?

[
ff ?(1 +BB?)2 +BB?|f,A + (A? − A)f |2 − 3BB?ff ?

]
(4.25)

Now note that if the scalars B were stabilised at B = 0, the potential would simply reduce
to V = eAA

?− 1
2
A2− 1

2
A?2+BB?ff ?. Moreover, if the inflaton field is the real part of A (let’s

denote it by Re(A) = 1√
2
φ,) and assuming in addition that the imaginary part of A is also

stabilised, then the theory finally becomes

Lscalar = −1

2
(∂φ)2 − |f(

1√
2
φ)|2. (4.26)

In other words, with these choices and assumptions, we obtain the theory for s single real
scalar field with an arbitrary positive potential, e.g. an inflationary potential. However,
note that the superpotential was very carefully chosen, and moreover, we have assumed that
three out of the four real scalar fields are stabilised. For this to be the case, one has to
add additional terms of the form AA?BB?, B2B?2 to the Kähler potential. This example
illustrates well the kind of fine-tuning that must be achieved in supergravity models of infla-
tion. Similar fine-tuning is required in order to construct ekpyrotic models in supergravity.
The lesson to be learned from this is that fundamental theory and early universe cosmology
are somewhat in tension - often, this is a sign that something important is missing in our
understanding!

4.3 Quantum Cosmology

In cosmology we ultimately always run into the question of initial conditions. This is true
for inflation, and even eternal inflation, as one can prove that these theories are geodesically
incomplete to the past. It is also true of the cyclic universe, as one would like to understand
how the cycling could begin. In all cases, an additional question is how space and time
came to behave so classically, given that the laws of nature are quantum laws. Note that
cosmological models usually assume a classical background, without providing a justification
for this assumption. Here, we will review how quantum cosmology may help in addressing
these questions, in the context of the no-boundary proposal for the wavefunction of the
universe.
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It should be said from the outset that it is not clear that semi-classical gravity is the
correct approach. It can only be valid when curvatures are not becoming too large, and
should ultimately be superseded by a better-behaved (i.e. UV-finite) theory, like string
theory. However, as we will see, semi-classical quantum gravity can be useful in getting
an idea of how certain questions may ultimately get an answer. We will not discuss the
mathematical subtleties associated with the definition of semi-classical quantum gravity, in
the hope that these will ultimately be resolved when this setting can be extended to string
theory or another well-behaved theory of quantum gravity.

The no-boundary proposal is formulated in the Euclidean approach to quantum gravity.
We will consider gravity minimally to coupled to a single scalar field, so that the Euclidean
action reads

SE = −i S = −i
∫
d4x
√
−g
(
R

2κ2
− 1

2
gµν∂µφ ∂νφ− V (φ)

)
(4.27)

= −
∫
d4x
√
g

(
R

2κ2
− 1

2
gµν∂µφ ∂νφ− V (φ)

)
, (4.28)

where the Wick rotation is defined by
√
−|g| = −i

√
|g|. We will simplify our setting further

by restricting ourselves to the metric Ansatz

ds2 = N2(λ)dλ2 + a2(λ)dΩ2
3 , (4.29)

where N(λ) represents the lapse function, a the scale factor of the universe and dΩ2
3 is the

metric on a unit 3-sphere. With the scalar field φ depending only on the “time” coordinate
λ, the “mini–superspace” Euclidean action then becomes

SE =
6π2

κ2

∫
dλN

(
−a ȧ

2

N2
− a+

κ2a3

3

(
1

2

φ̇2

N2
+ V

))
, (4.30)

where ˙≡ d/dλ. As we will see shortly, we have to allow for complex functions of λ, so that
the integral can be interpreted as a contour integral in the complex plane, with dτ ≡ Ndλ
(τ ∈ C),

SE =
6π2

κ2

∫
dτ

(
−aa′2 − a+

κ2a3

3

(
1

2
φ′2 + V

))
, (4.31)

where ′ ≡ d/dτ . The invariance of the action functional with respect to changes of the
complex contour generalises Euclidean time–reparameterisation invariance and imposes the
constraint equation (Friedmann equation)

a′2 = 1 +
κ2a2

3

(
1

2
φ′2 − V

)
. (4.32)

The field equations read

φ′′ + 3
a′

a
φ′ − V,φ = 0 , (4.33)

a′′ +
κ2a

3

(
φ′2 + V

)
= 0 . (4.34)
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Using the Friedmann equation, the on–shell action can be simplified to

SinstE =
4π2

κ2

∫
dτ
(
−3a+ κ2a3V

)
. (4.35)

The no-boundary wavefunction is defined via

Ψ(b, χ) =

∫
C
δaδφ e−SE(a,φ) , (4.36)

where one only sums over paths (4-geometries) C that are regular and rounded-off in the
past. The idea is that the universe is then entirely self-contained, and contains no past
boundary in space or time. In practice, the above integral can be evaluated by the saddle
point approximation,

Ψ(b, χ) ∼
∑

e−SE(b,χ) , (4.37)

where SE(b, χ) is the Euclidean action of a complex instanton solution (a(τ), φ(τ)) of the
action (4.31), satisfying the following:

• a(0) = 0 and the solution is regular there (no boundary) - regularity then implies that
we must also require a′(0) = 1 and φ′(0) = 0. Thus, instantons can be labelled by the
(generally complex) value of the scalar field φSP at the “South Pole” τ = 0.

• There exists a point τf in the complex τ plane where (a, φ) = (b, χ), with b, χ ∈ R
being the arguments of the wavefunction. The Euclidean action SE(b, χ) is evaluated
along any path joining τ = 0 to τ = τf , where the choice of path is irrelevant as long
as the instanton presents no singularities/branch cuts in the complex plane.

As is evident from the metric Ansatz (4.29), a classical, Lorentzian universe corresponds
to a and φ taking real values, with dτ = idt evolving in the purely imaginary direction (and
t being the real, physical time coordinate). In that case, as is clear from Eq. (4.31) or
(4.35), only the imaginary part of the action keeps changing, while the real part has reached
a constant value. Given that

Ψ?Ψ ∼ e−2Re(SE), (4.38)

this suggests that we can regard e−2Re(SE) as the relative (un-normalised) probability for the
particular classical history implied by this instanton. Note that this notion of the emergence
of a classical history from a complex instanton fits well with the standard notion of WKB
classicality, as the wavefunction Ψ ∼ e−SE approaches a constant/slowly-varying amplitude
while its phase keeps varying rapidly. By contrast, when no classical Lorentzian history is
reached and the real part of the action keeps changing, no meaningful notion of probability
can be defined.

As always, it helps to consider a simple example. The best-known instanton corresponds
to the situation where the potential is a positive constant V = 3H2, and the real, Lorentzian
solution corresponds to de Sitter space with the scalar field being constant. The Euclidean
version of de Sitter space is a 4-sphere, and the famous Hawking instanton corresponds
to running the contour from τ = 0 to τ = π/(2H) first (in Planck units κ = 1), with a =
1
H

sin(Hτ). This part of the instanton corresponds to half of the Euclidean de Sitter 4-sphere.
One then continues the contour in the imaginary direction by defining τ ≡ π/(2H) + it, so
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that along that part of the contour a = 1
H

sin(π/2 + iHt) = 1
H

cosh(Ht). Thus one has glued
de Sitter space in its closed slicing at the waist of the hyperboloid onto half of the Euclidean
4-sphere. The real part of the Euclidean action only varies along the first, horizontal part of
the contour, with

SE, half S4 = −12π2

κ4V
, (4.39)

where we have reinstated κ. This leads to the well-known formula

Ψ ≈ exp

(
12π2

κ4V

)
. (4.40)

Even though this is a highly simplified context, one important feature of the no-boundary
proposal is immediately highlighted: small values of the potential are preferred over large
values. This remains true when the scalar field is dynamical too.

Now let us extend this treatment to the case where we have a mass term, V = 1
2
m2φ2.

Here one can show that when |φSP | � 1 and t = Im(τ) not too large, so that the slow-roll
conditions apply, one has the following complex solutions

φ ≈ φSP + i

√
2

3
mτ, a =

√
6i

mφSP
e
− i√

6
mφSP τ+m2

6
τ2

. (4.41)

What is interesting is that we can now find a vertical line τ = X + it, where t plays the role
of ordinary time and where X is fixed, along which the solution is approximately real. This
is given by choosing

X = −
√

3

2

φISP
m

, φISP = − π

φRSP
, (4.42)

where R,I subscripts are shorthand for the real and imaginary parts. Thus, for a fixed φRSP
we can find φISP and X such that a classical history is obtained during the inflationary phase.
Given the approximations made above, we can see that typically the imaginary part of the
scalar field is small, but it is essential that it is non-zero (the only exception to this is the
pure de Sitter instanton described above). Complex values can in fact be viewed as arising
due to quantum effects, which allow spacetime to be rounded off and regular, which a real
Lorentzian universe cannot be. Using the above solution, one can then also approximate the
action,

SR ∝ −1

m2χ2
, SI ∝ mχb3 . (4.43)

These approximations allow us to evaluate the WKB classicality conditions, i.e. we can now
see whether the wavefunction is really becoming increasingly classical. It is straightforward
to evaluate

∂bS
R

∂bSI
≈ 0,

∂χS
R

∂χSI
∝ 1

m3χ3b3
, (4.44)

so that it is clear that the WKB conditions are increasingly well satisfied as the universe grows
quasi-exponentially (b ≈ eHt). In summary, we can see that inflation can cause spacetime
and a scalar field to become classical. The relative probability associated with inflationary
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histories scales as
P ∼ e−2SR ∼ e

1
V , (4.45)

so that the no-boundary proposal strongly favours low values of the potential (thus one
would for instance not expect to be able to observe primordial gravitational waves in the
near future).

The no-boundary proposal can also be applied in an ekpyrotic context. Recently, ekpyrotic
instantons were discovered that describe the emergence of a classical contracting universe
out of the no-boundary quantum state. We will briefly review these instantons now. The
potential is now given by

V (φ) = −V0e
−cκφ . (4.46)

The exponential potential allows for a shift symmetry which considerably simplifies the
treatment of ekpyrotic instantons. Starting from the action

SE = −
∫
d4x
√
g

(
R

2κ2
− 1

2
gµν∂µφ ∂νφ+ V0e

−cκφ
)
, (4.47)

one can perform the combined field shifts/re-scalings

φ ≡ κ−1φ̄+ ∆φ , gµν ≡
ecκ∆φ

κ2V0

ḡµν , (4.48)

such that the action becomes

SE = −e
cκ∆φ

κ4V0

∫
d4x
√
ḡ

(
R̄

2
− 1

2
ḡµν∂µφ̄∂νφ̄+ e−cφ̄

)
. (4.49)

Thus, if we have an instanton solution for which the scalar field at the South Pole takes the
value φ̄SP , we can find an entire family of instantons with South Pole values φSP = φ̄SP +∆φ
using Eqs. (4.48). Hence these instanton families depend only on c, the steepness of the
ekpyrotic potential. From now on we will drop the overbars and work with the re-scaled
theory.

Ekpyrotic instantons have a shape that is rather different from inflationary ones. They
satisfy the no-boundary conditions by having a portion of Euclidean flat space at the bottom.
Then the fields become fully complex and finally, as the scalar field role down th ekpyrotic
potential, the classical ekpyrotic scaling solution is progressively reached. Thus one can think
of these instantons as having the shape of a wine carafe: a flat bottom, and then a part that
shrinks. Note that with the pure, unbounded, exponential potential these instantons will
necessarily end up in a big crunch singularity at χ → −∞. Thus, there is a point τc in
the complex “time” plane where the crunch occurs, and beyond which we cannot at present
go. An interesting open question is to adda bounce model to the theory, and investigate
the behaviour of the instanton across the bounce. For now, it is instructive to study the
behaviour of the instanton during the ekpyrotic phase. Denoting λ ≡ i(τc − τ), so that
the crunch occurs as λ → 0−, one finds that in the approach to the crunch the instanton
asymptotes to the scaling solution plus correction terms,

a(τ) = a0(−λ)1/ε
(
1 + α1,a (−λ)1−3/ε + . . .

)
, (4.50)
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φ(λ) =

√
2

κ2ε
ln

(
−
√
ε2κ2V0

ε− 3
λ

)
+ α1,φ (−λ)1−3/ε + . . . , (4.51)

where as before we have the fast-roll parameter

ε ≡ c2

2
. (4.52)

The field equations relate

α1,a =

√
2ε

3
κα1,φ . (4.53)

The important point is that the correction terms die off as long as the fast-roll parameter ε
is large enough - more precisely, we must require

ε > 3 ↔ c2 > 6 . (4.54)

This condition is precisely the definition of an ekpyrotic phase, and it corresponds to the
requirement that the pressure be larger than the energy density. The fact that the instanton
reaches a classical history can then be viewed as a consequence of the ekpyrotic attractor
mechanism. It also implies that the del part of the action reaches a constant value.

One can also investigate the WKB conditions, similarly to the inflationary case above.
For this, we must find the dependence of the action on b and χ. This can be done by noting
that in the scaling solution a0 is a constant of motion labelling different classical solutions,

a0 = a

(
− ε

ε− 3
V

)1/2ε

. (4.55)

The imaginary part of the Euclidean action along a classical trajectory scales as

SIE ∼ i

∫
dλ a3 V ∼ −i a3

0 (−λ)−1+3/ε ∼ −i a3
0 |V |

1
2
− 3

2ε . (4.56)

Re–expressing the label a0 as in (4.55) then leads to

SIE ∼ −i b3 |V (χ)|1/2 . (4.57)

The scaling of the real part of the Euclidean action implies that

S̄RE = ec∆φSR =

(
ā0

a0

)2ε/(ε−1)

SRE , (4.58)

and hence

SRE ∼ a
2ε
ε−1

0 ∼ b
2ε
ε−1 |V (χ)|1/(ε−1) . (4.59)

The sign is unspecified by these arguments, but turns out to be negative as a numerical
analysis shows. We are now in a position to understand the asymptotic scaling of the WKB
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classicality conditions

|∂bSRE | � |∂bSIE| , (4.60)

|∂χSRE | � |∂χSIE| . (4.61)

The second condition (4.61) is clearly satisfied, since the derivatives w.r.t. χ only add a
constant prefactor and the ratio |SRE/SIE| decreases along each classical history as

SRE
SIE
∼ b

2ε
ε−1 |V (χ)|1/(ε−1)

b3 |V (χ)|1/2
∼ bε−3 ∼ e−(ε−3)N/(ε−1), (4.62)

where in the second to last step we have used Eq. (4.55) once more. As for the first condition,
we can evaluate

∂bS
I
E ∼ b2|V (χ)|1/2 ∼ (−λ)−

ε−2
ε , (4.63)

∂bS
R
E ∼ b

ε+1
ε−1 |V (χ)|1/(ε−1) ∼ (−λ)−1/ε , (4.64)

so that ∣∣∣∣∂bSRE∂bSIE

∣∣∣∣ ∼ (−λ)
ε−3
ε ∼ bε−3 ∼ e−(ε−3)N/(ε−1) . (4.65)

Thus we can see that both WKB conditions are satisfied exponentially fast with the number
of e-folds N, where N is given by

dN ≡ dln|aH| → N = −(ε− 1)lnb+N0, (4.66)

A numerical analysis shows that this asymptotic scaling with N is reached very precisely
after a few e-folds already. Note also the ε dependence of the WKB conditions: they will be
satisfied as long as ε > 3. Thus we see once more that the ekpyrotic attractor, which only
exists when ε > 3, allows the universe to become classical.

The presence of a classical history implies that the real part of the Euclidean action reaches
a constant. One can now transform the present instanton using Eqs. (4.48) to any desired
value of φRSP . As can be seen from the re-scaled action (4.49) this has the effect of scaling

the real part of the action by a factor V (0)

V (φRSP )
= 1
|V (φRSP )| . Thus, given that Re(SE) < 0 when

φRSP = 0, values of the potential (at the origin V (φRSP )) that are smaller in magnitude will lead
to higher probabilities. Note that the scaling with the potential is different in sign from the
inflationary case, but similar in the sense that in both cases small values of the potential are
preferred. In inflation this corresponds to a preference for a short inflationary phase, while
in the ekpyrotic case a long phase of ekpyrotic contraction comes out as preferred. Further
note that the semi-classical approximation should be reliable precisely for these preferred
instantons, as their spacetime curvature is small. If a theory admits both ekpyrotic regions
and inflationary ones, there will be a competition between the usual de Sitter-like inflationary
instantons and the ekpyrotic ones. However, for a successful period of inflation one must
consider potentials that have a large magnitude V, typically of order the grand unified scale.
By contrast, the potential is very small at the start of the ekpyrotic phase, and thus the
ekpyrotic instantons are vastly preferred over inflationary ones in a mixed potential energy
landscape. In fact, provided a bounce can be incorporated, these results indicate that,
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according to the no-boundary proposal, ekpyrotic instantons describe the most likely origin
of our universe.

(Details and figures for inflationary and ekpyrotic instantons can be found in the papers
arXiv:0803.1663 by Hartle et al. and arXiv:1407.4814 by Battarra et al. respectively.)
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