
Extremal Black Holes in String Theory
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Motivation:

Low energy limit of string theory gives rise to

gravity coupled to other fields.

These theories typically have black hole solu-

tions.

Thus string theory gives a framework for study-

ing classical and quantum properties of black

holes.
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Classically black holes are solutions of Einstein’s

equations with special properties.

They have a hypothetical surface – event hori-

zon – surrounding them such that no object

inside the event horizon can escape the black

hole.

In quantum theory however the black hole be-

haves as a black body with finite temperature,

entropy etc.
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One of the important properties characterizing

a black hole is the Bekenstein-Hawking entropy

SBH.

In the low energy limit

SBH = A/(4GN)

A: Area of the event horizon

GN : Newton’s constant

Question: Can we understand this entropy from

statistical viewpoint ı.e. as logarithm of the

number of quantum states associated with the

black hole?
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Much of the work on string theory black holes

have been carried out for extremal black holes.

Extremal black holes are black holes with zero

temperature.

As a result they do not radiate and are usually

stable.

Often, but not always, extremal black holes

are also invariant under certain number of su-

persymmetry transformations.

In that case they are called BPS black holes.
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In string theory one finds that for a wide class

of extremal black holes

SBH = Sstat, Sstat ≡ ln(Degeneracy)

Strominger, Vafa; . . .

This gives a good understanding of this en-

tropy from microscopic viewpoint.
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Given this success, it is natural to carry out

our study of black holes to finer details.

String theory leads to

Einstein gravity + higher derivative terms

Typical higher derivative terms: Square and

higher powers of Riemann tensor

What are the effects of higher derivative cor-

rections on the black hole entropy?

Does the agreement continue to hold even af-

ter taking into account the effects of higher

derivative corrections?
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In order to attack this problem we need to open

two fronts.

First of all we need to learn how to take into

account the effect of the higher derivative terms

on the computation of black hole entropy.

→ topic of first set of lectures.

A.S. hep-th/0506177, 0508042

B. Sahoo, A.S., hep-th/0601228, 0603149, 0608182

D. Astefanesei, K. Goldstein, R. Jena, A.S., S. Trivedi,
hep-th/0606244
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But we also need to know how to calculate the

statistical entropy to greater accuracy.

→ involves precise computation of the degen-

eracy of states with a given set of charges.

→ topic of last set of lectures

D. Jatkar, A.S., hep-th/0510147

J. David, D. Jatkar, A.S., hep-th/0602254, 0607155

J. David, A.S., hep-th/0605210

Earlier related work:

Dijkgraaf, Verlinde, Verlinde, hep-th/9607026

Shih, Strominger and Yin, hep-th/0505094
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A general frameork for computing higher deriva-

tive corrections to black hole entropy has been

developed by Wald. gr-qc/9307038

We shall try to use Wald’s result to calculate

higher derivative corrections to SBH for ex-

tremal black holes.
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How do we define extremal black holes in a

higher derivative theory?

Take the clue from usual (super-)gravity.

We shall restrict our analysis to spherically sym-

metric extremal black holes in D = 4 although

the results can be generalized to

1. Rotating black holes

2. Black holes in higher dimensions
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Spherically symmetric black holes in D = 4:

Take Einstein-Maxwell theory

L =
1

16πGN
R−

1

4
FµνFµν

This theory has charged black hole solutions,

known as Reissner-Nordstrom solution:

ds2 = −(1− ρ+/ρ)(1− ρ−/ρ)dt2

+
dρ2

(1− ρ+/ρ)(1− ρ−/ρ)

+ρ2(dθ2 + sin2 θdφ2)

Fµν = · · ·
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ds2 = −(1− ρ+/ρ)(1− ρ−/ρ)dt2

+
dρ2

(1− ρ+/ρ)(1− ρ−/ρ)

+ρ2(dθ2 + sin2 θdφ2)

Extremal limit: ρ+ = ρ−

Define τ = t/ρ2
+, r = ρ− ρ+,

ds2 = −
r2ρ4

+

(ρ+ + r)2
dτ2 +

(ρ+ + r)2

r2
dr2

+(ρ+ + r)2(dθ2 + sin2 θdφ2)
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ds2 = −
r2ρ4

+

(ρ+ + r)2
dτ2 +

(ρ+ + r)2

r2
dr2

+(ρ+ + r)2(dθ2 + sin2 θdφ2)

Take the ‘near horizon limit’ as follows:

1. Change coordinates r → λ r, τ → τ/λ

2. Take the limit λ → 0.

ds2 = ρ2
+(−r2dτ2 +

dr2

r2
) + ρ2

+(dθ2 + sin2 θdφ2)

→ near horizon geometry AdS2 × S2
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ds2 = ρ2
+(−r2dτ2 +

dr2

r2
) + ρ2

+(dθ2 + sin2 θdφ2)

1. Since for any λ we have an exact classical

solution, in the λ → 0 limit also we have an

exact classical solution.

2. Besides the usual SO(3) spherical symme-

try, this background has an SO(2,1) symmetry

that acts on the r, τ coordinate, generated by

L1 = ∂τ , L0 = τ∂τ − r∂r

L−1 =
1

2

(
1

r2 + τ2

)
∂τ − τ r ∂r
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The complete near horizon solution:

ds2 = ρ2
+(−r2dτ2 +

dr2

r2
) + ρ2

+(dθ2 + sin2 θdφ2)

Frt =
q

4π
, Fθφ =

p

4π
sin θ

ρ2
+ = GN

q2 + p2

4π

q, p: label electric and magnetic charges

The full background has SO(2,1)×SO(3) isom-

etry.
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All known extremal non-rotating black holes in

four dimensions with non-singular horizon have

near horizon geometry AdS2 × S2.

(These include some solutions in the presence

of certain higher derivative terms.)

As a consequence the near horizon field con-

figuration has isometry

SO(2,1)× SO(3)

We shall take this as the definition of extremal

black holes.
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In D = 4 we define an extremal non-rotating

black hole to be one whose near horizon ge-

ometry and other field configurations have

SO(2,1)× SO(3)

isometry.

Generalizations:

1. A rotating extremal black hole in D=4 has

near horizon geometry with SO(2,1) × U(1)

isometry

2. A non-rotating extremal black hole for gen-

eral D has near horizon geometry with SO(2,1)×
SO(D − 1) isometry.
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The entropy of an extremal black hole

≡ entropy of a non-extremal black hole in the

extremal limit.

We shall now use Wald’s formula for the en-

tropy for a non-extremal black hole with regu-

lar horizon.
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Consider an arbitrary general coordinate in-

variant theory of gravity coupled to a set of

Maxwell fields A
(i)
µ and neutral scalar fields {φs}.

The most general form of the near horizon ge-

ometry of an extremal black hole consistent

with SO(2,1)× SO(3) isometry:

ds2 ≡ gµνdxµdxν = v1

(
−r2dt2 +

dr2

r2

)
+v2

(
dθ2 + sin2 θdφ2

)
φs = us

F
(i)
rt = ei, F

(i)
θφ =

pi

4π
sin θ ,
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ds2 ≡ gµνdxµdxν = v1

(
−r2dt2 +

dr2

r2

)
+v2

(
dθ2 + sin2 θdφ2

)
φs = us F

(i)
rt = ei, F

(i)
θφ =

pi

4π
sin θ ,

v1, v2: sizes of AdS2 and S2

us: scalar field values at the horizon.

pi/4π: near horizon radial magnetic field

ei: near horizon radial electric field
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ds2 ≡ gµνdxµdxν = v1

(
−r2dt2 +

dr2

r2

)
+v2

(
dθ2 + sin2 θdφ2

)
φs = us F

(i)
rt = ei, F

(i)
θφ =

pi

4π
sin θ ,

Rαβγδ = −v1(gαγgβδ − gαδgβγ), α, β, γ, δ = r, t

Rmnpq = v2(gmpgnq − gmqgnp), m, n, p, q = θ, φ

For this background covariant derivatives of

the Riemann tensor, scalar fields and gauge

field strengths vanish.
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ds2 = v1

(
−r2dt2 +

dr2

r2

)
+ v2

(
dθ2 + sin2 θdφ2

)
φs = us

F
(i)
rt = ei, F

(i)
θφ =

pi

4π
sin θ ,

Let
√
−det gL be the Lagrangian density.

Define:

f(~u,~v, ~e, ~p) ≡
∫

dθ dφ
√
−det gL

E(~u,~v, ~e, ~q, ~p) ≡ 2π(ei qi − f(~u,~v, ~e, ~p))
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Results:

For an extremal black hole of electric charge ~q

and magnetic charge ~p,

1. the values of {us}, {ei}, v1 and v2 are ob-

tained by extremizing E(~u,~v, ~e, ~q, ~p) with re-

spect to these variables.

∂E
∂us

= 0,
∂E
∂v1

= 0 ,
∂E
∂v2

= 0,
∂E
∂ei

= 0

2. SBH = E at the extremum.
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1.
∂E
∂us

= 0,
∂E
∂v1

= 0 ,
∂E
∂v2

= 0,
∂E
∂ei

= 0

follow from applying equations of motion on

the near horizon background and the definition

of electric charge:

qi =
∫

dθdφ
√
−det g

(
δL/δF

(i)
rt

)

2.

SBH = E

follows from manipulation of Wald’s formula

for black hole entropy.
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To summarize, the single ‘entropy function’ E
determines

– the near horizon values {us} of the scalar

fields,

– the sizes v1, v2 of AdS2 and S2

– the gauge field strengths {ei}

– the entropy SBH

These results are useful for explicit calculations

as well as proving general results.
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Computation of the entropy of extremal

Reissner-Nordstrom black holes

Take Einstein-Maxwell theory in D = 4:

L =
1

16πGN
R−

1

4
FµνFµν

Consider an extremal black hole solution with

near horizon geometry:

ds2 = v1

(
−r2dt2 +

dr2

r2

)
+ v2

(
dθ2 + sin2 θdφ2

)
Frt = e, Fθφ = p sin θ/4π
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Then

f(v1, v2, e, p) =
∫

dθdφ
√
−det gL

= 4π v1v2

[
1

16πGN

(
−

2

v1
+

2

v2

)

+
1

2
v−2
1 e2 −

1

2
v−2
2

(
p

4π

)2
]

.

E(v1, v2, e, q, p) = 2π(q e− f)

= 2π

[
q e−

1

4GN
(2v1 − 2v2)

−2π v2 v−1
1 e2 + 2π v1 v−1

2

(
p

4π

)2
]

.
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E(v1, v2, e, q, p) = 2π

[
q e−

1

4GN
(2v1 − 2v2)

−2π v2 v−1
1 e2 + 2π v1 v−1

2

(
p

4π

)2
]

.

∂E/∂e = 0, ∂E/∂v1 = 0, ∂E/∂v2 = 0 gives

q = 4π v2v−1
1 e, v1 = v2 = GN

q2 + p2

4π
.

SBH = E =
1

4
(q2 + p2)

→ correct answer for the entropy of extremal

charged black holes.
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The entropy function formalism has been suc-

cessfully used for calculating higher derivative

corrections to the entropy of many extremal

black holes.

Exercise: Add a term to L of the form

λ RµνρσRµνρσ

Find the change in the entropy and the solution

to first order in λ.
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The entropy function leads to a general proof

of the ‘attractor mechanism’ for extremal black

holes.

If we have a theory with scalar fields which

have no potential then asymptotically the scalar

fields can have arbitrary values.

Attractor mechanism ↔ the entropy of a black

hole with a given set of charges is independent

of this asymptotic data.

This was initially observed in cases of certain

supersymmetric black holes.
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Proof of attractor mechanism:

If E has no flat directions then the extremiza-

tion of E determines the near horizon parame-

ters ~u, ~v, ~e completely in terms of ~q, ~p.

In this case the complete near horizon field

configuration as well as SBH = E is indepen-

dent of all other asymptotic data e.g. values

of the moduli scalar fields.

→ attractor behaviour
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If E has flat directions, then extremization of E
does not determine ~u, ~v, ~e uniquely and there

is a continuous family of extrema.

Thus these could depend on additional asymp-

totic data e.g. values of the moduli scalar

fields.

But since E does not depend on the flat di-

rections, SBH = E is still determined in terms

of ~q, ~p and is independent of the asymptotic

values of the scalar fields.
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An open issue

The entropy function calculates the entropy

assuming that there is an extremal black hole

solution.

However it does not address the issue of whether

there is really an interpolating solution between

the asymptotically flat geometry and the near

horizon AdS2 × SD−2 geometry.
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Physically, the moduli fields reach the attractor

values due to spatial evolution along the infi-

nite throat of AdS2 according to the equations

of motion.

Is the AdS2 × SD−2 geometry a stable attrac-

tor?
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For two derivative actions this issue has been

answered by Goldstein, Iizuka, Jena, Trivedi

Answer:

∂2E
∂us∂us′

must be a positive definite matrix at the critical

point.

Is there a generalization of this result to higher

derivative action?
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Derivation of the results:

1. f =
∫

dθdφ
√
−det gL

→ requiring the action to be stationary along

the directions of v1, v2 and us deformations

gives

∂f

∂us
= 0,

∂f

∂v1
= 0 ,

∂f

∂v2
= 0 .

The SO(2,1) × SO(3) invariance of the back-

ground

→ these are the only independent components

of the metric and the scalar field equations.
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2. Non-trivial part of the gauge field equations

and Bianchi identities:

∂r

 δS

δF
(i)
rt

 = 0, ∂rF
(i)
θφ = 0 .

Evaluate the integration constants at r →∞

→ they are proportional to the electric charges

qi and the magnetic charges pi.

When evaluated on the near horizon geometry,

this gives

∂f

∂ei
= qi,

∫
dθ dφF

(i)
θφ = pi
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Thus for given ~q and ~p the equations determin-

ing the background are:

∂f

∂us
= 0,

∂f

∂v1
= 0 ,

∂f

∂v2
= 0,

∂f

∂ei
= qi

f is a function of ~u, ~v, ~e and ~p.

Now recall the definition of E:

E(~u,~v, ~e, ~q, ~p) = 2π (~q · ~e− f(~u,~v, ~e, ~p))

The equations of motion are equivalent to:

∂E
∂us

= 0,
∂E
∂v1

= 0 ,
∂E
∂v2

= 0,
∂E
∂ei

= 0
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Computation of entropy:

Higher derivative terms → the entropy is no

longer given by the area law.

Wald; Iyer and Wald; Jacobson, Kang, Myers

For spherically symmetric black holes:

SBH = −8π
∫
H

dθ dφ
δS

δRrtrt

√
−grr gtt ,

40



In computing δS/δRµνρσ

1. express the action S in terms of symmetrized

covariant derivatives of fields

2. treat Rµνρσ as independent variables.
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SBH = −8π
∫
H

dθ dφ
δS

δRrtrt

√
−grr gtt ,

For our background Dµφs, DρF
(i)
µν and DτRµνρσ

all vanish.

→ can ignore all terms in L which involve co-

variant derivatives of φs, F
(i)
µν and Rµνρσ.

Thus:

SBH = −8π
∫
H

dθ dφ
√
−det g

∂L
∂Rrtrt

√
−grr gtt ,
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Define:

1. Lλ = L with each factor of Rαβγδ in L
multiplied by λ. (α, β, γ, δ = r, t)

2.

fλ(~u,~v, ~e, ~p) ≡
∫

dθ dφ
√
−det gLλ

Then fλ=1 = f .

λ
∂fλ(~u,~v, ~e, ~p)

∂λ
= 4

∫
dθ dφ

√
−det g

∂Lλ

∂Rrtrt
Rrtrt
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λ
∂fλ(~u,~v, ~e, ~p)

∂λ
= 4

∫
dθ dφ

√
−det g

∂Lλ

∂Rrtrt
Rrtrt

For our background Rrtrt =
√
−grr gtt

This gives

SBH = −2π
∂fλ(~u,~v, ~e, ~p)

∂λ

∣∣∣∣∣
λ=1

.

We shall now try to write ∂fλ/∂λ in terms of

derivatives of fλ with respect to v1 and ei.
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Collect all possible dependence of f on v1

1. Every factor of λ in L must appear in the

combination

λ grrgttRrtrt = λv−1
1

2. Every F
(i)
rt in L must appear in the combi-

nation: √
−grrgtt F

(i)
rt = eiv

−1
1

3. Rθφθφ, F
(i)
θφ and us do not have any accom-

panying factor of v1 (size of AdS2).

45



4. There are no covariant derivatives contract-

ing with the metric.

5. the only other v1 dependence of fλ comes

from
√
−det g multiplying L.

Result:

fλ(~u,~v, ~e, ~p) = v1g(~u, v2, ~p, λ v−1
1 , eiv

−1
1 )

for some function g.
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fλ(~u,~v, ~e, ~p) = v1g(~u, v2, ~p, λv−1
1 , eiv

−1
1 )

↓

λ
∂fλ(~u,~v, ~e, ~p)

∂λ
+ v1

∂fλ(~u,~v, ~e, ~p)

∂v1

+ei
∂fλ(~u,~v, ~e, ~p)

∂ei
− fλ(~u,~v, ~e, ~p) = 0 .

For λ = 1, fλ → f .

Equation of motion → ∂f/∂v1 = 0.

λ∂fλ/∂λ|λ=1 = f − ei∂f/∂ei
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Thus

SBH = −2π
∂fλ(~u,~v, ~e, ~p)

∂λ

∣∣∣∣∣
λ=1

= 2π

(
ei

∂f

∂ei
− f

)
= 2π(eiqi − f)

= E(~u,~v, ~e, ~q, ~p) .

→ the desired result.
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Application: Heterotic string theory on T6.

{yn} ≡ coordinates along T6 (4 ≤ n ≤ 9)

{xµ} ≡ coordinates along non-compact direc-

tions (0 ≤ µ ≤ 3)

Massless fields at a generic point in the moduli

space:

1. The string metric Gµν 0 ≤ µ, ν ≤ 3

2. 28 U(1) gauge fields A
(i)
µ , 1 ≤ i ≤ 28
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3. 28 × 28 matrix valued scalar field M satis-

fying

MTLM = L, MT = M,

L =

 I6
I6

−I16


Ik: k × k identity matrix

4. Dilaton-axion field (S, a)

〈S〉 = inverse string coupling constant2

Canonical metric gµν = S Gµν
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Physical origin of various fields:

Denote by AI
M the 16 U(1) gauge fields in the

ten dimensional theory

M comes from Gmn, Bmn and AI
n

(4 ≤ m, n ≤ 9, 1 ≤ I ≤ 16)

a comes from dualization of Bµν

S ≡ e−2Φ, where Φ is the dilaton

A
(i)
µ come from components Gnµ, Bnµ, AI

µ
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Action =
∫

d4x
√
−detGL

L =
1

32π
S

[
RG +

1

S2
Gµν(∂µS∂νS −

1

2
∂µa∂νa)

+
1

8
GµνTr(∂µML∂νML)

−Gµµ′Gνν′ F
(i)
µν (LML)ijF

(j)
µ′ν′

−
a

S
Gµµ′Gνν′ F

(i)
µν LijF̃

(j)
µ′ν′

]
+ · · ·

F
(i)
µν ≡ ∂µA

(i)
ν − ∂νA

(i)
µ
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Near horizon field configuration:

ds2 = v1

(
−r2dt2 +

dr2

r2

)
+ v2(dθ2 + sin2 θ dφ2) ,

S = uS, a = ua, Mij = uMij

F
(i)
rt = ei, F

(i)
θφ =

pi sin θ

4π

This gives

f(uS, ua, uM , ~v, ~e, ~p) ≡
∫

dθdφ
√
−detGL

=
1

8
v1 v2 uS

[
−

2

v1
+

2

v2
+

2

v2
1

ei(LuML)ijej

−
1

8π2v2
2

pi(LuML)ijpj +
ua

πuSv1v2
eiLijpj

]
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qi ≡
∂f

∂ei
=

v2uS

2v1
(LuML)ijej +

ua

8π
Lijpj ,

and

E(uS, ua, uM , ~v, ~q, ~p)

≡ 2π (eiqi − f(uS, ua, uM , ~v, ~e, ~p))

= 2π
[uS

4
(v2 − v1) +

v1

v2uS
qTuMq

+
v1

64π2v2uS
(u2

S + u2
a)p

TLuMLp

−
v1

4πv2uS
ua qTuMLp

]
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Define:

Qi = 2qi, Pi =
1

4π
Lijpj,

Then

E =
π

2

[
uS(v2 − v1) +

v1

v2uS

(
QTuMQ

+(u2
S + u2

a)PTuMP − 2ua QTuMP
) ]

We shall now try to find a solution by extrem-

izing E with respect to uM , uS, ua, v1 and v2.
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E =
π

2

[
uS(v2 − v1) +

v1

v2uS

(
QTuMQ

+(u2
S + u2

a)PTuMP − 2ua QTuMP
) ]

Note: E is invariant under

Q → ΩQ, P → ΩP, uM → (ΩT )−1uMΩ−1

for Ω satisfying

ΩLΩT = L

→ continuous T-duality transformation.
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Q → ΩQ, P → ΩP, uM → (ΩT )−1uMΩ−1

Thus after extremization with respect to uM ,

the entropy function will depend on P and Q

only through the T-duality invariant combina-

tions:

Q2 ≡ QTLQ, P2 ≡ PTLP, Q·P ≡ QTLP

We can carry out the analysis for various ranges

of P2, Q2 and Q · P by choosing suitable rep-

resentative Q and P .
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Result of elimination of uM for (Q·P )2 < Q2P2:

E =
π

2

[
uS(v2 − v1) +

v1

v2

(
Q2

uS

+
P2

uS
(u2

S + u2
a)− 2

ua

uS
Q · P

)]

Now eliminate v1, v2, uS, ua.
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Result:

v1 = v2 = 2P2 , uS =

√
Q2P2 − (Q · P )2

P2
,

ua =
Q · P
P2

SBH = E = π
√

Q2P2 − (Q · P )2

Note: Large P2 → v1, v2 >> 1

→ α′ expansion is valid.

Q2P2 − (Q · P )2 >> (P2)2 → uS >> 1

→ string loop expansion is valid.
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The extremal black holes for P2Q2 > (Q · P )2

are known to be supersymmetric.

Using the entropy function one can also study

black holes for which P2Q2 < (Q · P )2.

Result for the entropy:

SBH = E = π
√

(Q · P )2 −Q2P2
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Generalization to CHL string theory:

These theories are obtained by modding out

heterotic on T6 by an appropriate orbifold group

which preserves N = 4 supersymmetry.

Result: The massless field content gets modi-

fied.
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CHL models based on ZZN orbifolds

1. Begin with heterotic string theory on

T4 × S1 × Ŝ1

T4: A four torus

S1, Ŝ1: two circles with period 2π

2. Take the orbifold by a ZZN group generated

by

2π/N shift along S1 together with an or-

der N internal symmetry of heterotic string

theory on T4.
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Dual description

1. Begin with type IIA string theory on

K3× S1 × Ŝ1

2. Take the orbifold by a ZZN group generated

by

2π/N shift along S1 together with an or-

der N internal symmetry of type IIA string

theory on K3.
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A special class of values of N :

N = 1,2,3,5,7

N = 1: heterotic string theory on T6.

For these theories the rank of the gauge group

is

r = 2k + 8, k =
24

N + 1
− 2
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At a generic point in the modul space we have

1. The string metric Gµν.

2. r U(1) gauge fields A
(i)
µ

3. r× r matrix valued scalar field M satisfying

MTLM = L, MT = M,

L: A matrix with six eigenvalues +1 and r− 6

eigenvalues −1.

4. Dilaton-axion field (S, a)
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The supergravity effective action has the same

form as for toroidal compactification.

Thus we get the same entropy function and

same values of the near horizon field configu-

ration and same entropy.

uS =

√
Q2P2 − (Q · P )2

P2
, ua =

Q · P
P2

,

v1 = v2 = 2P2 ,

SBH = E = π
√

Q2P2 − (Q · P )2
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Now consider the effect of a special type of

higher derivative correction to the action:
√
−detG∆L

=
S

16π

√
−det g

{
RgµνρσRµνρσ

g − 4RgµνRµν
g + R2

g

}

→ the Gauss-Bonnet term.

This term appears at the heterotic string tree

level and is the same for toroidal compactifi-

cation and CHL models.
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Quantum corrected effective action contains

additional terms.

A special class of corrections modify the tree

level Gauss-Bonnet term to
√
−detG∆L

= φk(a, S)
√
−det g

{
RgµνρσRµνρσ

g − 4RgµνRµν
g + R2

g

}

φk(a, S): an S-duality invariant function which

for large S behaves as S/16π.
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φk(a, S) = −
1

64π2

(
(k + 2) lnS

+ln f(k)(a + iS) + ln f(k)(−a + iS)
)

f(k)(τ) = η(τ)k+2 η(Nτ)k+2

k =
24

N + 1
− 2
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The addition of Gauss-Bonnet term in the ac-

tion induces the following changes in f and E:

∆f = −32π φk(ua, uS) , ∆E = 64π2 φk(ua, uS)

Thus

E + ∆E =
π

2

[
uS(v2 − v1) +

v1

v2uS

(
QTuMQ

+(u2
S + u2

a)PTuMP − 2ua QTuMP
)

+128π φk(ua, uS)
]

Elimination of uM , v1, v2 can be done as be-

fore.
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Elimination of uM , v1, v2 gives, for P2Q2 >

(P ·Q)2

Etotal =
π

2

[ (Q2

uS
+

P2

uS
(u2

S + u2
a)− 2

ua

uS
Q · P

)

+128π φk(ua, uS)
]

Final result for entropy is obtained by eliminat-

ing ua and uS by extremizing Etotal.
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e.g. for φk(a, S) = S/16π as in tree level het-

erotic string theory, we get

SBH = π
√

Q2P2 − (Q · P )2
√

1 +
8

P2

Recall: Tree level approximation is valid when

uS >> 1, ı.e. Q2P2 − (Q · P )2 >> (P2)2.

72



Question: What is the effect of other four

derivative terms on the entropy?

First focus on tree level terms.

Even in this case Gauss-Bonnet term is only a

subset of all tree level four derivative terms.

What is the effect of other tree level four deriva-

tive terms?
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This problem can be solved by including the set

of all tree level four derivative correction terms

in the Lagrangian. Sahoo,Sen;Exirifard

Result: Same as the one obtained by just using

the Gauss-Bonnet term.

One can also give a general argument based on

supersymmetry that tree level higher derivative

terms do not modify the result. Kraus, Larsen
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When Q and P are of same order, then keeping

only tree level terms is not a useful approxima-

tion scheme.

Thus we need to include the full φk(a, S) as

coefficient of the Gauss-Bonnet term.

However there are other four derivative correc-

tions to the effective action.

What is their effect on the entropy?

Is there a non-renormalization theorem similar

to that for the tree level result?
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As of now there is no known entropy non-

renormalization theorem for loop corrections

in the heterotic theory.

We shall proceed with the assumption that at

least at the level of four derivative terms, the

result for entropy obtained by including the

Gauss-Bonnet term is exact.

Question: Can we find an exact formula for the

degeneracy d(Q, P ) of these dyonic back holes

using a microscopic description and compare

the black hole entropy with ln d(Q, P )?

76



Computation of statistical entropy

1. Quarter BPS states in CHL models

2. Half BPS states in CHL models
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CHL models based on ZZN orbifolds

1. Begin with heterotic string theory on

T4 × S1 × Ŝ1

T4: A four torus

S1, Ŝ1: two circles with period 2π

This theory has N = 4 supersymmetry.

2. Take the orbifold by a ZZN group generated

by 2π/N shift along S1 together with an order

N internal symmetry of heterotic string theory

on T4 which commutes with N = 4 susy.
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Dual description

(based on heterotic on T4 ↔type IIA on K3)

1. Begin with type IIA string theory on

K3× S1 × Ŝ1

2. Take the orbifold by a ZZN group generated

by 2π/N shift along S1 together with an

appropriate order N internal symmetry of

type IIA string theory on K3.

The resulting theory is N = 4 supersymmetric.
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A third description

(based on type IIA on Ŝ1 ↔ type IIB on S̃1)

1. Begin with type IIB string theory on

K3× S1 × S̃1

2. Take the orbifold by a ZZN group generated

by 2π/N shift along S1 together with an

appropriate order N internal symmetry of

type IIB string theory on K3.

The resulting theory is N = 4 supersymmetric.
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A special class of values of N :

N = 1,2,3,5,7

N = 1: heterotic string theory on T6.

These theories have r different U(1) gauge

fields where

r = 2k + 8, k =
24

N + 1
− 2

Thus a generic state will be characterized by

an r dimensional electric charge vector Q and

r dimensional magnetic charge vector P .
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Typically the notion of electric and magnetic

charges get exchanged when we consider dif-

ferent descriptions of the theory.

In our convention we shall classify charges as

electric or magnetic according to the heterotic

description.

Similarly non-perturbative S-duality symmetry

relating strong and weak coupling regions in

one description may be realised as a perturba-

tive T-duality symmetry in another description.

We shall classify symmeries as S- or T-dualities

depending on their action in the heterotic de-

scription.
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S-duality symmetry of CHL models

This is a non-perturbative symmetry from the

heterotic view point since it maps the weak

coupling region to finite or strong coupling.

→ difficult to guess.

But this has a simple form in the third descrip-

tion based on type IIB on K3× S1 × S̃1
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Consider the torus S1 × S̃1 labelled by σ1 and

σ2, each with period 1.

This torus has a global diffeomorphism sym-

metry: (
σ1

σ2

)
→
(

a b

c d

)(
σ1

σ2

)

ad− bc = 1, a, b, c, d ∈ ZZ

Only a subgroup of this symmetry that com-

mutes with the ZZN transformation survives in

the orbifold theory.

a, d = 1 mod N, c = 0 mod N
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(
σ1

σ2

)
→
(

a b

c d

)(
σ1

σ2

)

ad− bc = 1, a, b, c, d ∈ ZZ

a, d = 1 mod N, c = 0 mod N

− defines the group Γ1(N).

This appears as S-duality symmetry in the het-

erotic description.
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Knowing the action of this transformation on

the fields in type IIB theory we can find their

action on the fields in the heterotic theory and

hence their action on the electric and magnetic

charges Q and P .

S-duality symmetry acts on (Q, P ) as(
Q

P

)
→
(

a b

c d

) (
Q

P

)

ad− bc = 1

a, b, c, d ∈ ZZ, a, d = 1 mod N, c = 0 mod N
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T-duality symmetry:

This is associated with R → 1/R and various

other symmetries of the conformal field theory

describing heterotic on T6/ZZN .

Under this symmetry transformation

Q → ΩQ, P → ΩP

where Ω is an r × r matrix satisfying

ΩTLΩ = L

L is a fixed r × r matrix with 6 eigenvalues 1

and (r − 6) eigenvalues −1.
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Q → ΩQ, P → ΩP

ΩTLΩ = L

This describes a continuous group.

One gets further constraints on Ω by requiring

that acting on a vector in the charge lattice it

produces another vector in the charge lattice.

→ makes this into a discrete group.

88



Q → ΩQ, P → ΩP

ΩTLΩ = L

As a result

P2 ≡ PTLP, Q2 ≡ QTLQ, P ·Q ≡ PTLQ

are invariant under T-duality transformation.
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Dyon Spectrum of CHL string theory

Consider a generic 1/4 BPS dyonic state in

CHL string theory carrying r dimensional elec-

tric charge vector Q and magnetic charge vec-

tor P .

What is the degeneracy d(Q, P ) of these states?

I shall outline the general steps and give the

result, but not describe the details of the cal-

culation.
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Significance of BPS states

1/4 BPS: States which are invariant under 4 of

the 16 supersymmetry generators of the the-

ory.

We use BPS states because the degeneracy of

BPS states is robust, insensitive to the cou-

pling constant and other parameters of the

theory.

Classical field configuration produced by a BPS

state typically describes an extremal black hole

solution.
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We shall derive the formula for d(Q, P ) for a

specific class of charge vectors (Q, P ).

Then we shall express the formula in terms of

T-duality invariant combinations P2, Q2 and

Q · P .

ı.e. we assume, but not prove the T-duality

invariance of the formula.
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We would like to verify that

for large charges ln d(Q, P ) matches black

hole entropy.

We shall also verify S-duality invariance of our

formula.

→ a consistency check.
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The result for d(Q, P )

d(Q, P ) =
1

N

∫
C

dρdσdv
1

Φk(ρ, σ, v)

exp
[
−iπ(ρP2 + σQ2 + 2vQ · P )

]
,

ρ, σ, v: complex parameters

The integration ‘contour’ C is defined to be

the three real dimensional subspace:

Im ρ = M1, Im σ = M2, Im v = M3,

0 ≤ Re ρ ≤ 1, 0 ≤ Re σ ≤ N, 0 ≤ Re v ≤ 1 .

M1, M2, M3: Large real constants
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Expression for Φk:

Φk(ρ, σ, v) = exp

(
2πi

(
1

N
σ + ρ + v

))
N−1∏
r=0

∏
l,b∈Z,k′∈Z+ r

N
k′,l,b>0

{
1− exp(2πi(k′σ + lρ + bv))

}∑N−1

s=0
e−2πils/N c(r,s)(4lk′−b2)

k′, l, b > 0: (k′ > 0, l ≥ 0, b ∈ ZZ) or

( k′ = 0, l > 0, b ∈ ZZ) or (k′ = 0, l = 0, b < 0)

cr,s(n): known coefficients, given in terms of

jacobi ϑ-functions and Dedekind η-functions.
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Equivalently we can express d(Q, P ) in terms

of Fourier coefficients of 1/Φk.

Define g(m, n, p) through

1

Φk(ρ, σ, v)
=

∑
m,n,p

m≥−1,n≥−1/N

e2πi(mρ+nσ+pv)g(m, n, p) .

Then

d(Q, P ) = g

(
1

2
P2,

1

2
Q2, Q · P

)
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Derivation of the formula

We consider a configuration in type IIB string

theory on K3× S1 × S̃1/ZZN with

1) Q5 D5-branes wrapped on K3× S1,

2) Q1 D1-branes wrapped on S1, and

3) one Kaluza-Klein monopole associated with

S̃1 compactification

carrying −n units of momentum along S1 and

J units of momentum along S̃1
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In the heterotic description this corresponds to

a state with

G5µ electric charge = n/N

B5µ electric charge = 1

G4µ magnetic charge = Q5

B4µ magnetic charge = (Q1 −Q5)

B5µ magnetic charge = J

y4: coordinate along Ŝ1

y5: coordinate along S1
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T-duality invariants:

P2 = 2Q5(Q1−Q5), Q2 = 2n/N, Q · P = J

We take Q5 = 1 and denote by h(Q1, n, J) the

degeneracy of states carrying charges (Q1, n, J).

The ‘partition function’ is defined as

f(ρ, σ, v) =
∑

Q1,n,J

h(Q1, n, J)e2πi(ρ (Q1−1)+σ n/N+v J)

Then

d(Q, P ) ≡ h(Q1, n, J) =
1

N

∫
C

dρdσdvf(ρ, σ, v)

exp
[
−iπ(ρP2 + σQ2 + 2vQ · P )

]
,
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In the weakly coupled type IIB description the

low energy dynamics of the system is described

by several pieces:

1) The dynamics of the Kaluza-Klein monopole

2) The dynamics of the D1-D5 center of mass

coordinate in the Kaluza-Klein monopole back-

ground

3) The relative motion between the D1 and

the D5-brane

Each of these systems carry certain amount of

momenta along S1 and S̃1.
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The ‘partition function’ f(ρ, σ, v) of the spec-

trum of BPS states is given by the product

of the contribution to the ‘partition function’

from each of these three different systems.
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Low energy dynamics of KK monopole:

e−2πiσ/N
∞∏

n=1

{
(1− e2πinσ/N)−

24

N+1(1− e2πinσ)−
24

N+1

}

D1-D5 center of mass motion in KK monopole
background:
∞∏

n=1

{
(1− e2πinσ)4 (1− e2πinσ+2πiv)−2 (1− e2πinσ−2πiv)−2

}
× e−2πiv (1− e−2πiv)−2

Relative motion between the D1 and D5 branes:

e−2πiρ
N−1∏
r=0

∏
l,b∈Z,k′∈Z+ r

N
k′≥0,l>0

{
1−exp(2πi(k′σ+lρ+bv))

}−∑N−1

s=0
e−2πils/N c(r,s)(4lk′−b2)

Product = 1/Φk(ρ, σ, v)

102



d(Q, P ) =
1

N

∫
C

dρdσdv
1

Φk(ρ, σ, v)

exp
[
−iπ(ρP2 + σQ2 + 2vQ · P )

]
,

C: 0 ≤ Re ρ, Re v ≤ 1, 0 ≤ Re σ ≤ N

S-duality invariance of this formula can be proved

by using the invariance of Φk under

ρ′ = a2ρ + b2σ − 2abv + n1 ,

σ′ = c2ρ + d2σ − 2cdv + n2 N ,

v′ = −acρ− bdσ + (ad + bc)v + n3 .

for

(
a b

c d

)
∈ Γ1(N), n1, n2, n3 ∈ ZZ.
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Statistical entropy ln d(Q, P )

For comparing ln d(Q, P ) to black hole entropy

we need to estimate d(Q, P ) for large Q, P .

Strategy:

a) Do the v integral by picking up residues from

the poles of 1/Φk

Result:

d(Q, P ) =
∫

dρdσe−F (ρ,σ)

for some function F (ρ, σ).
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b) Then do the ρ and σ integral using saddle

point approximation.

Define W ( ~J) through

eW ( ~J) =
∫

dρdσe−F (ρ,σ)+J1ρ+J2σ

Then

eW (~0) = d(Q, P )
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eW ( ~J) =
∫

dρdσe−F (ρ,σ)+J1ρ+J2σ

Define

ρ̂ = ∂W ( ~J)/∂J1, σ̂ = ∂W ( ~J)/∂J2

Γ(ρ̂, σ̂) = J1ρ̂ + J2σ̂ −W ( ~J)

Then

J1 = ∂Γ/∂ρ̂, J2 = ∂Γ/∂σ̂

If ∂Γ/∂ρ̂ = ∂Γ/∂σ̂ = 0 at (ρ̂, σ̂) = (ρ̂0, σ̂0) then

Γ(ρ̂0, σ̂0) = −W (~0) = − ln d(Q, P )
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If ∂Γ/∂ρ̂ = ∂Γ/∂σ̂ = 0 at (ρ̂, σ̂) = (ρ̂0, σ̂0) then

Γ(ρ̂0, σ̂0) = −W (~0) = − ln d(Q, P )

Thus ln d(Q, P ) is the value of −Γ(ρ̂, σ̂) at its

extremum.

−Γ(ρ̂, σ̂) can be called the statistical entropy

function.

On the other hand Γ can be calculated by

summing over 1PI Feynman diagrams in the 0-

dimensional quantum field theory with action

F (ρ, σ).
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Result for Γ after a suitable change of variables

from (ρ̂, σ̂) to (a, S):

−Γ(a, S) =
π

2

[ (Q2

S
+

P2

S
(S2 + a2)− 2

a

S
Q · P

)

+128π φk(a, S)
]
+O(Q−2, P−2)

φk(a, S) = −
1

64π2

(
(k + 2) lnS

+ln f(k)(a + iS) + ln f(k)(−a + iS)
)

f(k)(τ) = η(τ)k+2 η(Nτ)k+2
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Now recall that the entropy function for the

black hole, after extremization with respect to

all the near horizon parameters except the val-

ues of the axion-dilaton field, is given by:

E =
π

2

[ (Q2

S
+

P2

S
(S2 + a2)− 2

a

S
Q · P

)

+128π φk(a, S)
]

a + iS: near horizon value of the axion-dilaton

field.

109



E and −Γ are identical functions to this order.

Thus extremization of E and −Γ give the same

answer.

→ equality between black hole entropy and sta-

tistical entropy to first non-leading power of

inverse charges.
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Thus we see that the formula for the statistical

entropy matches the black hole entropy to this

order.

This result can be generalized for

1. CHL models with non-prime values of N .

2. N = 4 supersymmetric ZZN orbifiolds of

type IIA string theory on T6.
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Half BPS states in CHL models

For simplicity we shall focus on heterotic on

T6 = T5×S1 (the N = 1 model) but the anal-

ysis can be easily generalized to other heterotic

string compactification.

Consider an elementary string wound w-times

along S1 and carrying n units of momentum

along S1.

There are left- and right-moving oscillator ex-

citations on the string.

World-sheet as well as space-time supersym-

metry acts on the right-moving sector.
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If we put all the right-moving oscillators in the

lowest state consistent with GSO projection,

then we have a state that is invariant under half

of the original 16 space-time supersymmetry

transformations.

The left-moving oscillators can be excited with-

out violating supersymmetry.

The L0 = L̄0 constraint gives:

NL = 1 + n w

NL: contribution to L0 from the left-moving

oscillators.
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NL = 1 + n w

For large nw, ı.e. large NL, the degeneracy

d(n, w) of these states grows exponentially:

d(n, w) ∼ exp(4π
√

NL) ∼ exp(4π
√

nw)

Thus

Sstat = ln d(n, w) ' 4π
√

nw .

Does this agree with the entropy of a black

hole carrying the same charges?
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What is the black hole description of this state?

Recall that for heterotic on T6 we have a 28-

dimensional electric charge vector Q and a 28-

dimentional magnetic charge vector P .

Q2 ≡ QTLQ, P2 ≡ PTLP, Q · P ≡ QTLP

L =

 I6
I6

−I16


Ik: k × k identity matrix

In this case we have

Q2 = 2nw , P2 = 0, Q · P = 0
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Q2 = 2nw , P2 = 0, Q · P = 0

We can use entropy function formalism to cal-

culate the entropy of such a black hole.

In the leading supergravity approximation, the

entropy function, after elimination of the scalar

fields uM , takes the form:

E =
π

2

[
uS(v2 − v1) +

v1

v2

Q2

uS

]

This has no extremum as a function of uS, v1

and v2.
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Now consider including the tree level Gauss-

Bonnet term.

The entropy function gets modified to

E =
π

2

[
uS(v2 − v1) +

v1

v2

Q2

uS

]
+ 4πuS

This has extremum at

uS =
√

Q2/8 =
√

nw/4, v1 = v2 = 8

At this extremum

E = 4π
√

Q2/2 = 4π
√

nw

→ agrees with statistical entropy! Dabholkar
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What about other higher derivative / string
loop corrections?

Note: uS =
√

nw/4 is large for large nw.

Thus string coupling at the horizon is small.

→ can ignore string loop corrections.

But v1 = v2 = 8

Thus sizes of AdS2 and S2 are of order 1.

→ curvature is of order 1.

→ cannot ignore other tree level higher deriva-
tive terms.
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There is however a general argument due to

Kraus and Larsen which shows that the tree level

higher derivative corrections do not modify this

result.

This is based on

1. Space-time supersymmetry

2. The observation that the AdS2 factor and

the compact direction S1 along which the string

wraps together form an AdS3 space locally.

Thus for half BPS state we also have agree-

ment between black hole and statistical en-

tropy, at least in the leading order.
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