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We develop a continuum path-integral approach for the ferroelectric five-vertex model in arbitrary d
dimensions by mapping it to a directed polymer problem. A renormalization-group approach with an
€=3—d expansion, 3 being the upper critical dimension, is used to study the polymer solution. The
free-energy change due to the interaction of the chains has been computed to O (¢€), and the exact expres-
sion for the second virial coefficient has been obtained. The fixed point of the problem is found to be ex-
actly 2me. By use of finite-size-scaling theory and thermodynamics, the exponents for the vertex model
are obtained from those of the polymeric system as the specific-heat exponent a=(3—d)/2, and the in-

commensuration exponent f=(d —1)/2. The model is anisotropic with two length-scale exponents
v;=1 in one direction and v, =% in the remaining d — 1 directions. It is shown that there are no anoma-
lous dimensions so that the exponents we obtain are exact.

PACS number(s): 05.70.Jk, 05.20.—y, 64.60.Cn, 36.20.—r

I. INTRODUCTION

The vertex models (see Fig. 1), conceived a long time
ago as simple models of hydrogen-bonded crystals, have,
by now, become an important class of models with appli-
cations outside equilibrium statistical mechanics [1,2].
However, in contrast to the wealth of information avail-
able for two-dimensional models, very little is known
about the critical behavior of the models in higher dimen-
sions [3,4]. This seems disturbing because the dimension-
al dependence of the critical behavior is generally a re-
quirement for a complete understanding of any model.
Against this backdrop, we study the simplest vertex mod-
el, namely the five-vertex model (5VM) in arbitrary di-
mensions, obtained by suppressing one of the two ground
states, say vertex 2 of Fig. 1 [5,6].

Apart from the interest in the critical behavior of the
vertex model, the procedure we adopt interconnects
many different problems via the common link of directed
random walks [7,8] such as commensurate-
incommensurate (CI) transition [9,10], biomembrane
phase transition [11-14], polymers in random media
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FIG. 1. (a) The arrow configurations with the “ice rule” (two
arrows in and two arrows out), (b) the equivalent line
configurations with the thick (dashed) line representing the
presence (absence) of a line, (c) the energy of the vertex. The
second vertex (infinite energy) is not allowed in the five-vertex
model.

4“4

- 6202

[15,16], flux lattice melting in high-T, superconductors
[8], world lines of anyons [17], etc. It is the developments
in the renormalization-group approach for polymers [18]
and in the flux lattice melting theory of high-T, super-
conductors [8] that paved the way for the approach pur-
sued in this paper.

Higher-dimensional 5VM are defined on diamond-type
lattices (see Fig. 2) in the 110 orientation (or its generali-
zation) [6]. The special feature is that the bonds of the
lattice are sequentially in the (x,x,,...,x;._) direc-
tions as one moves up in the z=x, direction. This pre-
ferred direction is the ground-state polarization direction
of vertex 1. The model requires putting the 5 vertices on
the lattice sites such that the arrows match perfectly on
each bond.

It goes without saying that we do not use the lattice
statistical methods to study these higher-dimensional
models. In fact, as has been done in Ref. [6], we map the
problem onto a directed random walk (DRW) problem
[7,8] (this is where the suppression of the second vertex of
Fig. 1 helps), and then go over to the continuum limit
(path-integral method) to use a renormalization-group

(b)

FIG. 2 (a) The diamond lattice in the 110 orientation. The
layers have bonds in the x and y directions in sequence. (b) A
schematic diagram of many DRW’s in 1+ 1 dimensions. Mutu-
al avoidance forbids a configuration like C.
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(RG) approach. The advantage of using the path-integral
and RG approach is to get the exponents for general d.
Such a scheme is associated with an € (=3—d, in this
case) expansion, but the remarkable thing, as we will see,
is that most of our results are valid to all orders of €.
Furthermore, the anisotropy of the vertex model, known
from the exact solution in two dimensions, becomes
transparent in the path-mtegral approach from the very
beginning.

To show the connection of 5VM with DRW, and to
define the latter, let us superpose any arbitrary arrow
configuration on the ground state consisting entirely of
vertex 1 [1,5,6]. As shown in Fig. 1, by drawing lines on
the edges where the arrows do not match we get a set of
lines which can wander in the transverse direction but are
constrained to move always in the vertical direction
(hence the name DRW) [7]. The 5VM is, therefore,
equivalent to many DRW’s which are not allowed to take
steps in the —z direction, but can do a random walk in
the transverse directions with a further restriction that
two walkers cannot be at the same site. It is the tempera-
ture in the statistical model that controls the number of
these lines because, as can be easily seen, the nth excited
state of SVM consists of # lines going across the lattice in
the vertical direction. The applications mentioned earlier
follow if the walks are taken, in two dimensions, as the
domain walls that mediate the CI transition, temperature
controlling the density of the walls [9,10]. In three di-
mensions these lines could be the flux lines of the Abriko-
sov lattice [8]. ] ) '

The exact solution of the two-dimensional 5VM
(2D5VM) was obtained by a further mapping of the
DRW problem to the Kasteleyn dimer model (K model)
[5] which was also utilized to model the biomembrane
phase transition [11,12,14]. It was realized that the phase
transition mediated by the “lines” are of a different char-
acter (a name “3/2” order was proposed [19]). This tran-
sition became the topic of extensive studies after Pokrov-
sky and Talapov pointed out the relevance of wall
wandering in two-dimensional CI transitions (now called
the Pokrovsky-Talapov transition) with characteristic ex-
ponents (see below) [9 10].

The specific heat in the Pokrovsky-Talapov transition
(or 2D5VM) is zero for the whole low-temperature phase
but has a strong divergence on the high-temperature side
with an exponent a=1 [¢~(T—T,)” %], the transition
temperature being T, =¢/k In2 (k is the Boltzmann con-
stant). The density of lines or walls, p (defined per unit
transverse volume) goes to zero as t=(T—T,)—0 with
an exponent B=1 (p~tP). Extensive exact finite-size-
scaling analysis [20] and correlation function calculations
[21] in two dimensions (2D) show that these models are
highly anisotropic. There are two length scales, one &
parallel to the walk (“z” direction) with exponent v|=1
and the other one &, in the transverse direction with
v, =1, even though the correlations decay algebralcally
for the whole high- temperature region.

The two-dimensional K model was extended to three
dimensions (3D) by Izuyama and Akutsu (IA) who stud-
ied it by using a free fermion approximation and predict-

ed a finite discontinuity of the specific heat at T,=€/k In
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2 [12]. We refer the reader to the original literatures for
relevant discussions but just point out that the free fer-
mion approximation necessarily fails in d =3 because of
(“anyonic” contribution)
[12,13,6]. In Ref. [6] it is shown using a scaling argument
that the free fermion approximation would work for all
d <3. This particle analogy will not be pursued in this
paper where the peculiarities of d =3 will reappear as the

-peculiarities of the system at its upper critical dimension.

A different approach for the three-dimensional IA model
was used by Bhattacharjee et al. where the first and the
second excited states were obtained rigorously for finite
cross sections [13]. A strong finite-size-scaling ansatz
was used to extract the specific-heat exponent. This pro-
cedure showed that d =3 is the upper critical dimension
of these models,

a=(3—d)/2 and B=(d—1)/2, (1.1)

both of which agree with the exact results in 2D. It has
recently been argued, using a scaling theory and the
momentum-shell renormalization-group approach of Nel-
son and Seung, that this value of « is exact [6]. Why the
two-excited-state approach of Ref. [13] worked remained
unanswered but now a justification can be given in the
present framework.

We digress a little bit to point out that the 3D version
of IA or its generalizations are not identical to SVM.
One can, however, use the mapping of Wu [5] to get a
slightly different dimer model, which has been called the
lipid analog model in Ref. [13]. It has been shown,
modulo the finite-size-scaling ansatz of Ref. [13], that it
belongs to the same universality class as the IA model. It
is not really unexpected because minor details of local
hopping should not affect the critical behavior. Such de-
tails are washed out, in any case, in a continuum formula-
tion.

Before going into the details any further let us show
how a simple scaling theory for the DRW’s in analogy
with the scaling theory of polymers can be used to under-
stand the exponents, identifying, in the process, the
relevant length scales and their exponents [22,15,16].
First note that each chain of length N is described by an
exponent v (also called the “roughening exponent”) that
describes the transverse size R ~N"V (as measured, say, by
the mean-square end-end distance or by the radius of
gyration). Now, for a density p, the average separation
should set the length scale in the transverse direction and
it is given by

E~p V¥ (d'=d—1). (1.2)

The chains, however, feel each other when this average
separation is of the order of the size of a chain, thereby
defining a length scale £ along the contour of the chain
such that £/~¢,. This is analogous to the ¢* concentra-
tion (in our notation p*) for conventional polymers that
describe the crossover from dilute to semidilute solutions
[22,18] except that for polymers, this concentration is
determined for a given length of the chains whereas here
it is the other way round. Since for the vertex models, we

are interested in the chain length going to infinity (ther-
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modynamic limit), the DRW’s are always in the semidi-
lute regime where fluctuation is relevant and cannot be
ignored. A measure of this fluctuation is the free-energy
cost for confinement which is the elastic energy
£,/ P~ p? 1=V Since this is _paid by the thermal
energy (~1) one gets [15,16]

G dv_

2(1—v) (1.3
which gives
vv"=vl=v[2(l—v)]—1 ) (1.45

for all d. Using v=
exponent 3 of Eq. (1. 1 ) and

V"=2Vl=1 Lo (1;5)

for all d. These values are, incidentally, consistent with
the hyperscaling relation

2—a=({d—1v tv,.

Our purpose in this paper is to derive the above ex-
ponents a, f, v, and v, for general d, using a
renormalization-group approach. We use the path-
integral approach of Nelson and Seung [8] (developed for
the flux lattice melting problem) but our interest is
different from theirs. They use a momentum-shell tech-
nique with a cut off a (coming from, say, the lattice spac-
ing) to study the effect of fluctuation on two chains. Car-
rying this out for many chains is not so easy. Instead, the
dimensional regularization procedure [18] is well suited
for our purpose as we have shown elsewhere that the
two-chain problem can be handled exactly to all orders
[23]. In this approach, the cutoff a is taken to be zero.
An RG approach becomes mandatory because the theory
is not well defined in this limit as reflected by the diver-
gences in the perturbation theory. Such divergences are
cured by renormalization, which, in turn, is expected to
produce anomalous exponents. The surprise here is that,
even after all this, there is no anomalous dimension. And
that is the story we want to tell.

Our approach is to study systemancally a semidilute
solution of directed polymers. Such a solution is de-
scribed by the osmotic pressure and the second virial
coefficient. As is known for polymers [18], the second
virial coefficient identifies the overlap concentration p*
and the osmotic pressure gives the p dependence. For the

second virial coefficient, we take finite but large chains

which would come from a 5VM of finite extent in the
vertical direction. Finite-size-scaling (FSS) theory [24] is
then used to relate the 5VM exponents to the polymer ex-
ponents. The whole machinery of RG for polymers is
geared towards the computation of different exponents as
N, the length of the polymer, goes to infinity. The idea of
FSS is to explain the behavior near the critical point as
the system size goes to infinity. Since, in this paper N
plays the role of both, weddmg the two is surely not
frivolous. The offspring is the length-scale exponent for
SVM that one cannot get from the thermodynamic quan-
tities. The osmotic pressure calculation then gives us the
remaining exponents. We explain the procedure in detail

5 for random walks, we get back the_
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in Sec. IL.

The organization of the paper is as follows. We discuss
the method of studying the transition on a lattice, follow-
ing Ref. 13 in Sec. II where we point out how the relevant
quantities can be calculated in the continuum by using
~ polymer methods. The analysis for the second virial
coefficient is done in Sec. III. We have shown elsewhere
that this can be done exactly to all orders in the perturba-
tion theory and the end result is the same as that from
""" Some of the details not in Ref. [23] are
given in Appendix A. In Sec. IV we study the many-
chain problem using the random-field (ghosts) technique.
In a quadratic approximation, we calculate all the ex-

- ~"ponents necessary to complete the story. In Sec. V the

results are compiled and related to the vertex model ex-

_.ponents. Section VI is the conclusion where an attempt

is made to understand the results in terms of the polymer
picture. Such a procedure also acts as an independent

- check of the results.
+ (1'6). P 4

=TI METHODS AND MODELS

. We first révievx; i:he approach for the lattice problem in
Sec. IT A. Details may be found in Refs. [13, 14, and 12].
Next, in Sec. IIB we define the continuum model with
the connection between the two developed in Sec. II C.

= A, Lattice approach

The transition temperature for 5VM can be located by
studying the stability of the ground state. Note that the
first excited state requires flipping of one arrow in each
horizontal layer (i.e., creating one DRW) at a cost of to-
tal energy Ne, where N is the lattice size in the z direc-
tion. Since the walker can take one of the two possible
steps at each point, the entropy is Nk In 2, so that the
free energy of the first excited state is

=N(e—~kTn2), 2.1)

which is negative if T < T, =e/k In2, thereby locating T,
for all dimensions. This argument can be extended to
higher excited states since the nth excited state has n
DRW’s. If A, is the degeneracy for the # lines, then the
free energy is

F,=Nne—NkT InAl/N 2.2)
and the free-energy density can be written as
(e =k tpts(p) 2.3)
= =— .
f Ny, ptsle

where t=k(T—Tc Mn2, p=n/V,, V, being the volume
in the transverse direction, and

s(p)=kT In(2"/,/") 2.4)

(the limits N, ¥; — o understood, and the unimportant T
dependence of s is suppressed). This apparently trivial
manipulation has been done to isolate s(p) which
represents the loss in entropy (with respect to nonin-
teracting lines) due to the nonoverlapping restriction.
The connection with the continuum model is through
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this “entropy” function s(p).
The thermodynamics is obtained by minimizing f(p)
with respect to p, the condition being

ds(p) __

9p
which would also give j5. The spec1ﬁc heat comes from
c= eap/aT dp/ot.

It is the p dependence of s(p) that determines the criti-
cal behavior of 5VM. Had we had phantom walkers (i.e.,
noninteracting chains) then, A, =2"" making s(p) identi-
cally zero, thereby yielding a first-order transition at T,.
This is not the case because of the nonoverlapping con-
straint of the chains. In general, a power-law dependence

2. 5)

s(p)~p° : S 0.6
is expected. The exponents « and J are then given by
B= 0_1_1 and a=1—8 (2 7)

It is known from the exact solution for 2D5VM that §=3
for d =2 which gives a=1 [13]. A mean-field theory
produces #=2 leading to a finite discontinuity in the
specific heat [@=0(disc)] [13,12]. Dimensional analysis
and momentum-shell technique of Ref. [6] lead to
0=(d+1)/(d—1) to O(3—d) for d <3 as has been pro-
posed in Ref. [13]. This value of 8 reproduces the results
of Eq. (1.2). We want to calculate 6 in a
renormalization-group approach.

B. Continuum model

To set up the continuum model, we observe that the
directed walks in d =d’+1 dimensions can equivalently
be thought of as random walks or polymer chains in the
transverse d’ directions with the z coordinate playing the
role of the contour variable (or the number of steps). The
important interaction is, thanks to the directedness, the
mutual exclusion at each z coordinate [Fig. 2(b)]. We
represent this by a & function potential between two
points of two chains if and only if they have the same z
coordinate. The continuum model can, therefore, be

written, in analogy with the Edwards model [25] for con-

ventional or self-avoiding polymers, as

now [drga)
Hi=4 3 [ | =5
+u, zﬁf dz 8(r,(z)—142)) , (2.8)
a<

where r,(z) is the (d' dimensional) coordinate of the
point at contour length z of chain a, n being the total
number of chains. The first term on the right-hand side
(rhs) of Eq. (2.8) is the usual entropic contribution (or the
elastic energy) of the polymers, each of length N, while
the second term ensures the mutual repulsion at the same
z of any pair of chains a,. The two noteworthy features
worth remembering are (1) the absence of any intrachain
interaction and (2) the special nature of interaction vis-a-

vis conventional polymers.
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The thermodynamics is obtained from the partition
function
z,= [DRe ™, 2.9)
“where the integration measure is the sum over all paths,
meaning the sum over all configurations of all the chains.
The statistical-mechanical model (or the vertex model) in
the thermodynamic limit requires the length N — c. We
will study both the cases of finite and infinite N.

C. Missing link

So far as the statistical-mechanical problem is con-
cerned we need only worry about the free energy and the
osmotic pressure of the polymer system of Eq. (2.8), as
explained below.

The free energy of the nth excited state of the vertex
model, as pointed out in Sec. II A, requires the “entropy
function” s(p) which, in the continuum language, would
be the excess free energy due to the interaction term in
Eq. (2.8), akin to the free energy of swelling of conven-
tional polymers [18,22]. Note that the number of poly-
mers in the vertex model is determined by temperature or
rather the temperature difference ¢, which, in the purely
polymer language, would correspond to the chemical po-
tential in a grand canonica] ensemble. We prefer to work
in the canonical ensemble with a fixed number of chains
and compute s(p) for it.

‘The polymer free -energy dens1ty (with N — ) can be
written as o

Hp)=F, p+Ns(p),

where &, is the free energy of a single chain. Now, the
osmotic pressure, in this canonical ensemble, is defined as

(2.10)

=20 i'f'
m=p ap , (2.11)
which, on usmg Eq (2.10), glves
R | < J
NP 3 s(p) (2.12)

ignoring the ideal-gas term. The minimization condition
of the free energy for the nth excited state in Eq. (2.5)
when inserted in Eq. (2.12) for IT shows that, at the equi-
librium value,

—mem ’

where f mln(p is the minimum free energy dens1ty of Eq.

(2.13)

_ (2.3). It is easy to check that if s(p)~p? [Eq. (2.6)], then

both fin(p) from Eq. (2.3) and II of Eq. (2.12) would go
as p®. Thus the density exponent for the osmotic pressure
of the directed polymers in the semidilute limit gives the
much needed 6 exponent for the vertex model, with Eq.
(2.13) serving as the connecting link.

D, Second virial coefficient (read: finite-size scaling)

" The scaling theory, as discussed in the Introduction,
shows that for N— 0, there is a strong overlap of the
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chains, and therefore, they are in the semidilute regime.
One can monitor the crossover from the dilute to the
semidilute regime by studying the virial expansmn of In
for finite but large N as

g AWt
For polymers, the crossover form dilute to semidilute re-
gime is determined by the importance of the second term
A,p, A, (a function of N) being the second virial
coefficient. In the limit N— o0, A4, is expected to have a
power-law behavior A,~N ¥ so that the appropriate
scaled variable for the concentration is

p=pNY,

the overlap concentration p* being ~N Y. For bulk

5VM, p~tP, which when used i in p, gives the scahng van-‘

able for temperature as
F=iNV/E

Polymer chains of large but finite lengths would corre-
spond to a vertex model which is finite in the vertical (z)
direction. The critical behavior of such a finite system is,
generally, discussed through FSS theory [24]. According
to this theory, the critical divergences are rounded off
when the correlation length becomes comparable to the
finite dimension of the system and the rounding is de-
scribed by a variable N&). This identifies the scaled tem-

perature variable as tN'/"I because the correlation length

&~t I. We immediately extract the length-scale ex-
ponent for the z direction, from Eq. (2.15b) as
"= 1/} ¢(9 1) e (2 163)

where the connection between 8 and 0 as glven by Eq.
(2.7) is used.

The exponent v, in the transverse direction is still
determined by the average separation of the lines as in

Eq. (1.2). (See also Sec. VI.) In terms of the incommen-
suration exponent 3, we find
_B. e - (.16b
VJ. d/ M (2.16b)

We can now summarize the procedure as follows. We
calculate the second virial coefficient and renormalize it
to get 3. Next, we obtain the free energy for the poly-
mers as given by the Hamiltonian in Eq. (2.8), thereby,
after renormalization, getting 6. An equivalent pro-
cedure would be to compute the osmotic pressure and
then renormalize to get 6. Once these two exponents are
known, all the exponents for the 5VM can be obtained.

E. Upper critical dimension and the irrelevance
of higher-order interactions

A simple dimensional analysis shows that the coupling
constant v, in Eq. (2.8) has the engineering dimension of
L% 72, taking the dimension of r as length (L) while z (or
N) has the dimension L2. This brings out (and shows the

(2.14)

(2.15a)

(156)
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power of the continuum approach) the anisotropy of the
d-dimensional vertex model vividly because in the lattice
approach z is just one other spatial direction. We will
see, as is known for (d = )2-dimensions, that the anisotro-
py is 1mportant

That v, is dimensionless at d'=2, identifies the upper

" critical dimension as d’ *=2 or d* —d '+1=316,8]. This

necessitates a renormalization-group approach with an
€=2—d’' expansion because, as we show, the naive per-
turbation theory encounters divergences. These diver-
gences are cured by dimensional regularization and re-
normalization.

Another question is the importance of higher-order in-
teractions. In the Hamiltonian, Eq. (2.8), we considered
only two-body interactions. In principle we can have
higher-order terms as

f ds 8(ry(s)—14(s)) - - S(rgls)—r,(s))  (2.17)

a,B,

with # chains and the sum is over all possible groupings.
Dimensional analysis shows v, to be dimensionless at
df=2/(r—1) so that around d’'=2, all these higher-
order interactions are irrelevant in the RG sense [26].
The three-body interaction, incidentally, is marginal at
d'=1, i.e., for 2D5VM. The irrelevance of the higher-
order interactions explains why, so far as the exponents
are concerned, the two-excited-state approach of Ref.
[13] works so well.

1. SECOND VIRIAL COEFFICIENT

" The second virial coefficient is defined as
_ " Zy(N,N,vy)—Z{(N)Z,(N)

= , 31
2T Z(NZ,() 3.1
N N
A 2=
ol
) ol 1
20 [~
° ° (@)
I, N e ) U ¢ b NP

(b)

FIG. 3. (a) Diagrams needed for the second virial coefficient.
The diagram for n loops requires interactions at (n+1) posi-
tions along the chain and its evaluation involves integrations
over these positions. (b) A few one-loop diagrams involving
many chains. Such diagrams contribute to the free energy.
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where Z,(N,N,v,) is the partition function for two
chains and Z,(N) is that for one chain. A diagrammatic
expansion of 4, in vy can be set up as for conventional
polymers, and it is a simple exercise to show that only
connected diagrams contribute to 4,. Furthermore, the
special (“equal z”’) interaction simplifies the diagrams be-
cause no crossed diagram, only ladder-type diagrams,
occur as shown in Fig. 3. This two-chain problem and
the virial coefficient has been studied elsewhere [23].
Some details regarding the computation of the diagrams
are given in Appendix A. We have shown that the renor-
malization procedure can be carried out exactly and the
fixed point can be located exactly. The final answer for
the fixed point, remarkably, is identical to the 1-loop level
result and agrees with the Nelson-Seung result of Ref. [8].

We introduce an arbitrary length scale L to define a di-

mensionless coupling constant u, as
ug=voL>" % . (3.2)

In terms of this u,, the second virial coefficient can be
written as (see Appendix A and Ref. [23])

. n ne/2
_ b Ug 47N
A,=LNVL "¢ —1)* | —
2732 Up 1+n§1( 1) dr Lz
T(e/2)
T2+nes2) |’ 3.3

where e=2—d’ and V is the volume [henceforth, the sub-
script L of volume in Eq. (2.3) is dropped]. Since I'(x)
diverges as x approaches zero, each term of the above
series for 4, is divergent.

Renormalization, fixed poinf

To absorb the divergence as e —0, we define the renor-
malized coupling constant u as

wo=ull+fiu+ - fou®™+---). - (3.4

Since there is no intrachain interaction, the chain length
remains unrenormalized. An order-by-order calculation
shows that the divergences in Eq. (3.3) can be absorbed
by choosing B o

f,=(me)™" . (3.5)

It has been shown in Ref. [23] that this choice absorbs
the divergences for all n. The fixed point is then obtained
from the zero of the 8 function [18,26],

(3.6)

1.9%

Blu)= 3L

=eu(l—fu),

i]

yielding u*=f1!=2me [23]. Standard analysis [26,18]
shows that u* is the stable fixed point for € >0, whereas
the Gaussian fixed point is the stable one for negative €.

At the fixed point of the coupling constant, the renor-
malized A4,y is obtained as (see Appendix B)

1—e/2 Sin7T€/2

A —
2k = VTN /D)

s 3D
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and, most importantly, the arbitrary length scale L drops
out.

The arbitrary length scale introduced for any renor-
malization procedure plays a significant role in changing
the scaling dimension (or exponent) from the engineering
dimension. If this L drops out, then only the engineering
dimension is possible and no anomalous exponent ap-
pears. This can be traced to the absence of the intrachain
interaction in the Hamiltonian. (No renormalization
constant for the chain length.) The exponent ¥ of Eq.
(2.15a) for the second virial coefficient is therefore

_2—e_d'
4 2 2
which is exact and also the engineering dimension ob-

tained by demanding that 4,p in Eq. (2.14) is dimension-
less.

(3.8)

IV. MANY-CHAIN SYSTEM

The second virial coefficient evaluated in Sec. III sets
the scale of concentration for the crossover from the di-
lute to the semidilute regime. However, to get the extra-
polation formula, it is required to go beyond the two-
chain problem and obtain the free energy (or the osmotic

_ pressure) through a systematic loop expansion, which en-

tails summations of infinite sets of diagrams, some of
which are shown in Fig. 3 [18]. In the path-integral
formulation, the summation of the one-loop diagrams can
be done indirectly by introducing ‘“ghost” fields in the
so-called Gaussian-random-field method [25b,18]. In this
section we discuss the many-chain problem in the
infinite-chain-length (N — o) limit using the random-
field method. Our aim is to compute the exponent 8 for
the osmotic pressure or the entropy s(p) of Eq. (2.6).

A. Formulation

The crossover from the dilute to the semidilute regime
is governed by fluctuations in the density which in the di-
agrammatic language means the dominance of the loops
over the trees. To isolate the contribution from fluctua-
tions, in Sec. IVA 1 we introduce a fluctuation variable
and then in Sec. IV A 2 introduce a ghost field to disen-
tangle the interaction term. The partition function, Eq.
(2.9), can then be expressed as a functional integral over
the ghost or Gaussian random field with a different Ham-
iltonian.

1. Hamiltonian reformulated

Our starting point is the # chain Hamiltonian Eq. (2.8).
" 'In the canonical ensemble, we are interested in the finite-
density limit obtained by taking the number of chains
n—o and the volume of the d’-dimensional space
V— 0, with p=n/V =fixed. A mean-field theory (ob-
tained by keeping the tree diagrams) would be completely
described by the average density p. To study the effect of
~fluctuations on the variation in the local concentration
arising from the various configurations of the chains, it
helps to introduce the fluctuation variable p(r,z) as [18]

plrz)= }n‘, d(r—r,z))—p. (4.1)
a=1
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The reason for keeping the contour varlable Z as an argu-
ment will be clear soon.

To express the mutually avoiding term of the Ham11-
tonian Eq. (2.8) in terms of p, we rewrite each & function
as

8(r(z)—rg(z))= fdr 8(r—1,(2))8(r—14(2)) (4.2)
so that
%, =7{0,,+%°— [drdzip(r,2)+pl?, .3)

with #,, as the free Gaussian part (first term) of %, of
Eq. (2.6). Using the identity f p(r,z)dr=0, reflecting the
conservation of chains, #, can be expressed as

Py =FHow+LvoVNp + 10, [ plr,2) (4.4a)
where o LIl
J =[drdz. (4.4b)

It transpires that the first two terms would give the

mean-field contribution while the fluctuation contribution
would come from the last term. If the fluctuation part in
Eq. (4.4a) is ignored, the free energy via the partition
function in Eq. (2.9) would be

Hp)=Fg,+LvoNp* , (4.5)
giving s(p)~p? [i.e., 6=2, see Eq. (2.6)] the mean-field re-
sult as already discussed. The manipulations done so far
reproduce the mean-field (MF) part easily but it is clearly
inadequate. Getting the loop corrections is not straight-
forward because an expanswn in the fluctuation term
would be an expansion in powers in v,. The random-field
technique is a way to convert this power series it v, into
a loop expansion, to which we now turn.

2. Hamiltonian through ghosts

Let us introduce a ghost or Gaussian random field
¥(r,z) in place of p(r,z) and force it to be p(r,z)Vr,z, as

zZ,= fi)ﬁ Dy exp( —Ho, —1v,VNp?)

)
X T 8((x,z)

nz

Xexp

p(r,z)) . (4.6)

By introducing the Fourier representation for the § func-

tion, and doing the resultant Gaussian 1ntegratlon over 1ﬁ,

we can write
(1/2)VNogp?

Z =¢e R - i o .
Xfi)ﬁfl)(ﬁe exp{ fr’z [2—11);¢2+i¢p

n

@.7
where ¢ is the Fourier conjugate of ¥ and the (r,z)
dependence of ¢ and p has been suppressed for simplicity.
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The information regarding the chains is in the last ip¢
term and since, by definition Eq. (4.1), p is a sum of # in-
dependent quantities, one for each chain, and functional
integration over the chains factorizes, sufficing considera-
tion of only one chain.

Defining

G((ﬁ)_(e—qup)o

for one chain [p of Eq. (4.1) with n =1], the average be-
ing over the free one-chain Hamiltonian H,
=1 [(3r/8z)*dz, the partition function can be rewritten
as )

(4.8)

— 2
Z,=(Z, ) (1/2)0,NVp

X f:Dd: exp

_ 1
f,,,[2u0¢ n InG(¢) ] 4.9)

which is equivalent to an effective dimensionless Hamil-

) toman

H(¢>—f {ﬁqf"*n InG(¢) (4.10)

hz

a functional of ¢.

We now pause a little to see that the effect of the ran-
dom fields ¢ and 1 is to replace, as evident from Eq. (4.7),
the interacting rn chain system by n noninteracting chains,
but each chain is in an external random (or fluctuating)
potential whose variance is controlled by the original
coupling constant. And there lies the difference with a
mean-field theory which also replaces a many-body sys-
tem by an effective single-particle system.

The manipulations done so far are exact in nature but,
nevertheless, Eq. (4.9) cannot be studied exactly. We,
therefore, resort to a-quadratic approximation as men-
tioned, which reproduces the one-loop correction.

B. Quadratic approximation

Experience in polymers shows that the kind of
random-field technique used in Sec. IV A leads, after ex-
panding G to quadratic terms in ¢, to one-loop correc-
tions in the original path-integral approach [18,27]. With
this in mind, we expand G(¢) and stop at the quadratic
term to get

G(¢)= 1—;-fdz drdz'dr'¢(r,z)é(r’,z’)
4.11)

(Note p refers to one chain only.) The pp average is
similar to the structure factor for one chain [18,28] and

X{p(r,z)p(r’ 2 ).

__can be calculated by going over to the Fourier space
’[p(q,

fdrexp(iq r)p(r, )]

(p(q,z)p(q ,z") )— 7(7237)

8(q+q (ezq [e(z)—r(z' )])

d'
= (277) 8(q+q')€ —g¢?z—z |/2
(4.12)
The partition function for the ¢-dependent Hamiltonian
of Eq. (4.10), up to terms quadratic in ¢, is
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Z(g))=[Dpexp |=5 - [ dlai(—q2)=1[ pe —<4’/2”2'2"¢(q,z>¢(—q,z'>]

o

with the determinant in a Toeplitz form [a shorthand no-
tation [ qu,=(217')—d' J dqdz dz' has been used]. Evalua-
tion of the determinant in Eq. (4.13) is done in Appendix
C; we just quote the result here: In the limit N — o,
combining all the terms from Egs. (4.9) and (4.12), the
free-energy density is given by (kT =1),

F
N =plnZ, -I-%vop2

b

1 1 /2
+—— [dkd¥in |-—+—L2L 15
22 f 7% [21}0 g /A+ k2

(4.14)

where g comes from Fourier transformation in space and
k comes from a similar transformation for the z coordi-
nate. The last term in this equation is the one-loop
correction to the mean-field result as represented by the
first two terms on the right-hand side (rhs). The first
term on the rhs is the free-energy contribution from
noninteracting chains. Therefore the free-energy contri-
bution, needed for the “entropy function” s(p), is the last
two terms of the above equation.

C. Renormalization

Focusing attention on the last fluctuation correction
term (to be called 1) of the free energy of Eq. (4.14) the k
integration can be carried out exactly [29], yielding

(d'+2)/2

_ 1 2 . 40+d)
I= . 2
2027)%72 T(d' /2) (

X fo‘”dq qd'+r1[(1+q'—2')1/2_1] .

on)

This integral is ultraviolet divergent and requires regular-
ization. By integrating by parts and doing the integral in
the convergent domain of d’, we get
= L2 TO+d/)
2?2 D' /20d'+2)  T(1/2)
XT(—d' /2)(pvy)\4'T272

(4.16)

Since our worry is with the last two terms of Eq. (4.14),
which give s(p), we find by expanding Eq. (4.16) around
e=2—d'=0, . C - C

wd [ 1, 142y —41
2s(p)=p"L "¢ ”o*ﬁ[‘:*ﬁr‘“&
+ilny | |+0(e), (4.17)

where Y=pu,L?¢/7 and v is the Euler gamma and u,
is the dimensionless coupling constant of Eq. (3.2). The

Detq’z [*2'11;;8((«1+q’)8(2 —z' )+—;-peq2|2‘z’l/28(q+ql)

" (4.15)

-172
»  (4.13)

f

renormalization procedure follows Sec. III in fofo, and so
details are not given. We get the same fixed point
u*=2me as for the two-chain problem. Using this fixed-
point value, and reexponentiating [18,26] we get

14+2y —41n2 c

1+
4

<2 . (4.18)

s(p)=1p’L ~2me

This gives s(p)~p>*¢/2. The exponent 6, Eq. (2.6), is
therefore

0=2+¢/2, 4.19)

which agrees with (d'+2)/d’ up to order of €. Further-
more, up to O(¢), the arbitrary length L drops out, as we
have seen for the second virial coefficient. Though we
have not done the calculations for higher-order terms, we
believe, based on the result of Sec. III and the location of
the fixed point, that this cancellation of L is true for all
orders. We can then conclude that 6 is really (d'+2)/d’,
which incidentally is the engineering exponent.

V. EXPONENTS FOR THE VERTEX MODEL

We now compile the results of the previous sections.
We showed that the second virial coefficient 4,~N?
with ¢¥=d’'/2=(d—1)/2 and the free-energy change
[Eq. (2.10)] goes like p® with §=2+¢/2, which is equal to
(d'+2)/d’ up to O(e). The second virial coefficient has
been computed exactly [Eq. (3.7)]. Interestingly enough,
the length scale that would have given an anomalous di-
mension for the free energy gets canceled as for 4,. We
therefore believe that the exponent 8 will also be the en-
gineering dimension, namely, (d'+2)/d’ [13,6]. Using
these, the incommensuration and the specific-heat ex-
ponents are (d'=d —1,d <3)

B=1-2=d'/2, a=(3=d)/2 (5.1)
if Eq. (4.19) is used.  Using ¢=d’'/2=1—€/2 (exact)
from Sec. III, we find [see Eq. (2.16)] that the length-scale
exponents are [30,31]

w=B/¢=1 and v,=B/d'=1. (5.2)

V1. CONCLUSION

In this paper we developed a continuum approach for
studying the five-vertex model in any dimensions by map-
ping the problem to that of a semidilute solution of
directed polymers. A path-integral method for these po-
Iymers have been used. The approach brings out the an-
isotropic nature of the model clearly. The method uti-

lizes the techniques used in polymers combined with the
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standard dimensional regularization procedure and re-
normalization. The use of finite-size-scaling theory con-
nects the polymer exponents to the vertex-model ex-
ponents as explained in Sec. II. The exponents for the
vertex model are given in Sec. V.

The upper critical dimension of the vertex model is
shown to be 3, below which the thermodynamic ex-
ponents [Eq. (5.1)] depend on d but above which mean-
field theory is valid because the Gaussian fixed point is
the stable one. The simplicity of the model that led to
the exact values of the thermodynamic exponents is the d
independence of the length-scale exponents [Eq. (5.2)].
This is strikingly similar to the Gaussian or spherical
model [26] in critical phenomena but a deeper connection
is not yet clear.

The directed polymers are described by two exponents, FIG. 4. Schematic diagram showing the mesh and the length
¥ giving the length dependence of the second virial  scales.
coefficient [Egs. (2.14), (2.15), and (3.8)], and 0 giving the
density p dependence of the excess free energy or the
osmotic pressure [Eqgs. (2.13) and (4.19)]. It is easy to un-
derstand the 1 exponent by comparing the virial series
Eq. (2.14) for the polymers with that of a hard-sphere
gas. For the latter problem, the second virial coefficient
is proportional to the volume of the spheres. For the
problem at hand, the volume of each polymer is of the or-
der of N?7, giving ¥=d’'/2 as we have already found.
Note also that this is indeed the engineering dimension of
the second virial coefficient. ’ .

One can also use a simple scaling picture for polymers
to get an independent consistency check of the results of
this paper. This is best done for the transverse length-
scale exponent. For a single chain of length N, the
relevant length is the average size R ~N". For the
many-chain or the semidilute case, the density-density We thank B. Duplantier for pointing out the integral
correlation would give the necessary length scale. Since representation of Appendix B.
the overlap concentration p* of Sec. II sets the scale for
concentration, one can write a scaling form for the length APPENDIX A
scale &, as o T T LT

the arbitrary length scale one introduces during the re-
normalization procedure cancels out. It is this length
scale that produces the anomalous dimensions and its
cancellation signifies the nonexistence of anomalous ex-
ponents both for the directed polymers and the five-
vertex model, even though the theory is described by a

. nontrivial (i.e., non-Gaussian) fixed point (u*=2re,
€=3—d=2—d’'). As a consequence, the exponents are
the respective engineering dimensions, and so they are ex-
act.

ACKNOWLEDGMENT
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which limit Eq. (6.1) should have an N independent limit.
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E,~p~"Y. A different power-law connection between
these two have been used in Eq. (1.2). It is therefore gra- . .
tifying to note that the exponent ¢ we have obtained in G is properly normalized such that

S.ec. I rc?ally Ele:kes the two independent arguments con- f d1,G(r;,0;rp2)= f dr,G=1 (A2)
sistent, with v=7 (which is surely true).

If we push the analogy with polymers a little further  for a random walk of length z going from r; to r,. Each
then, following Ref. [22], the transverse correlation loop in Fig. 3 represents an integration over the internal
length £, would be the length scale for the transient net- _ coordinate like zy, z,, etc. For example, the one-loop dia-
work or the average size of a mesh as shown in Fig. 4 gram in Fig. 3, after integration over the external end

For a given mesh size, one can then estimate the length  coordinates, requires integrations over the internal coor-
along the chain as £}”*, giving a measure for the length  dinates z,,z, as
scale in the z direction of the vertex model. In this pic- Vo? .
ture & would. then correspond to ﬂlg_ average spacing, _ 2p7 ()= — d/(2> fN dz, f 1 d2,G(0,2(z, —2,))
along the chain, between two collisions, consistent with o . 2 0 0

the picture used for the two-dimensional commensurate- V2 N2—d22
incommensurate transition [10]. 0 0

To conclude, we note that for the polymer problem, 7 7 29542 (1-d /2)(2—d /2) °

(r;—r,)
2z

G(r1,0515,2)=(27z) % %exp | — (A1)

(A3)
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The factorial coming from the expansion of the in-
teraction part of partition function is canceled by the fac-
torial that comes from the “z ordering” in (A3). This
cancellation is, in fact, true for all orders. We now ex-

n+l

vt (N)= 4 )d/zf dzlf dzy(z,—2z,) d/2f dzs(z,—245)792 -

It immediately follows that

o ¥ z, 8l (z5)
[n+1_———2dﬂd/2 fo dz1f0 dz,(z;—z,) 792 yrath
(AS)
Now, take
I(N)=C,N"" . (A6)

By rescaling x =z, /z;, and doing the necessary mtegra-
tions, we get
d/2+1

/ 1 ]\[ n I1—d/2)Ne,)
R G2 (0, —d /24 D0, —d 72+ 1) "0
(A7)
which implies
I'e/2) o, )
C’n+1 Cn n d/2
(47w, —d /2+1) ’
(A8)
wn+1 C() +€/2
With the initial condition [usmg Eq. (A1)] Co we=1
iteration gives S
I'(e/2)T(2+ne/2)
= == C, .
on =¥/l G = Y (n Des2] ©"
(A9)

Equation (A9) gives the second virial coefficient of Eq.
(3.3). The details of renormalizing the second virial
coefficient can be found in Ref. [23].

APPENDIX B

We evaluate the sum in Eq. (3.3) for the second virial
coefficient to get Eq. (3.7). The renormalized u follows
from Eq. (3.4) as uy=2meu /(2we—u), using which we
get

a
Ay =NVL™ 2meu da e

¢ 2mia® 1+ZT(e/2)a"*N '
(B1)
=L(4rN/L*** and € is a

u*—u

where Z=¢eu /(u*—u),
suitable Hankel contour [32].
reduces to

For (u—u*) Eq. (B1)
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plicitly demonstrate the calculation of any general loop
using the above rules. A general n loop diagram after the
integration can be written as

S f dssi (A4)
[
_ da_ e <2
— € ———————
A”‘ NVL 27 ] o T(e/2N
— f~e/2 sinmre /2
4 4@) (1—e/2)m B2
as quoted in Eq. (3.7).
APPENDIX C
In this appendix we vs;ill calculate the determinant
1 ' '
Det,, —20—08(q+q )3(z—z")
+1pe?=#128(q+ q)) (G

which occurs in Eq. (4.13). Note that this is already diag-
onal in ¢’s but not in z’s. Going over to the “Rouse coor-
dinates” [28]

b, ='-j-i[—cos BT | (C2)
- the transform of g(g,z,2")=e? 2~71/2 is given by
2 (q,p,p fCOS [ 2[2-—2 |72
X cos ’%Z dz dz' (C3)

which, in the limit N-— o produces (see, e.g., Ref, [28],
p. 99)

sz dz cos [P—— cos

N

N

Xf“ (—g?/2)lz"| o [

_ . ..q2

PP gt fatpir /IN? T

The determinant now requires integrations over the two
variables q and k =p /N, leading to Eq. (4.14).

We just add that the procedure adopted is the method
of evaluating a Toeplitz determinant (in disguise) [33].
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