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Equilibrium properties of the tiling model, recently introduced by Stillinger and Weber as a
means of studying glass phenomena, are investigated. In the two-dimensional model, a square lat-
tice is covered by tiles of all sizes. The tiles represent domains of well-packed particles and the
boundaries between the domains have a positive mismatch energy proportional to the length of the
wall. The existence of the thermodynamic limit for this model is proved. It is shown how to ob-
tain bounds for the free energy and the transition temperature from the free energy of semi-infinite
strips. A transfer-matrix method is developed for calculating the thermodynamic properties of
such semi-infinite strips. The best bound obtained is A/kp T, >0.2459 from a 9X « strip, where A
is the basic energy parameter in the problem. By extrapolation, the transition temperature is es-
timated as A/kpT.=0.27002. By direct counting of states for finite squares, the infinite- *
temperature entropy is obtained by extrapolation as s, =0.314. A connection between the tiling
model and electrical networks is discussed in Appendix A.

I. INTRODUCTION

A tiling model has recently been proposed by Stil-
linger and Weber'™3 as an example of a system with
glasslike dynamical properties.* It is assumed that any
amorphous structure can be divided into domains of
various sizes, the interiors of which contain only well-
packed particles such as quasicrystals.” Restructing of
these domains, as the temperature is changed, is taken to
be the important physical process for the glass transi-
tion. The relevant energy parameter for the process is
the domain wall energy. A simple statistical mechanical
model should, therefore, focus on the packing problem
of a collection of domains, with no internal energy or
structure, the only energy being the wall energy. Such a
model is the Stillinger-Weber tilting model.

Numerical simulations and mean-field theories have
been used' 3 to study the equilibrium and kinetic prop-
erties of the model in two dimensions. Remarkable simi-
larities with the kinetic behavior of real glass systems
have been observed.>? In this paper we study the equi-
librium thermodynamic behavior using analytical
methods.

The model is defined in Sec. II where the known re-
sults of importance to the present work are also summa-
rized. To put things in proper context, the aims and or-
ganization of this paper are given at the end of Sec. II.

II. THE STILLINGER-WEBER TILING MODEL

For simplicity, we restrict ourselves, throughout this
paper, to two dimensions only. We adopt the notation
where an M X N lattice refers to a square lattice with M
unit cells in the x direction and N unit cells in the y
direction. The lattice spacing is taken to be unity.

A. The model

The domains, alluded to in the Introduction, are

‘represented by square tiles of all sizes. The tiles are sup-

posed to cover an N XN square lattice completely
without any gap or overlap. Figure 1 shows an example
of such a tiling. The boundaries of the tiles (lying along
the edges of the lattice) are the domain walls (lines in
two dimensions). The states of the model consist of all
possible distinct tilings of the lattice. The ground state
has the smallest number of domain walls, and for a
square lattice it is the tiling by a single N X N tile.

...............

.......................

......................................

FIG. 1. A tiling of a 5X5 square. The tiles are shown by
solid lines and the underlying lattice by the dotted lines. Each
tile represents a domain of well-packed particles. The tiles do
not have any internal structure. The only energy involved is
the energy of the domain walls. The energy for this
configuration is E =26A.
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Let us assign an energy +A (>0) per unit length of the

perimeter of each tile, i.e, an energy A per unit length of '

interface.® For any configuration, the energy is given by

E=IAS 4jn, , 2.1)
J

where n; is the number of j X tiles. (A jX; tile will,
henceforth, be called a j-tile.) The ground state has an
energy 2NA but the energy per unit cell (~N~!) van-
ishes in the thermodynamic of N — . '

The thermodynamics is determined by the partition
function

Zyn=3 exp(—BE),

states

(2.2)

where the subscript of Z refers to an N XN lattice, with
B=1/kyT, kp being the Boltzmann constant and T the
temperature. At T'=0, the system is in its unique
ground state but at high temperatures, thanks to larger
entropy, the equilibrium configuration consists of ran-
dom packing of smaller tiles.

B. Known results

Mean-field theories, similar to the Flory-Huggins
theory’ of polymeric systems, predict®? a first-order
transition at a temperature T, (=1/kpp,) below which
the system is frozen in its ground state.” The resulting
free energy is shown in Fig. 2 (curve ai. T, has also
been estimated from Monte Carlo simulations. These es-
timates -are given in Table I which also gives the esti-
mates for the infinite temperature (S=() entropy per
unit cell, s ,. This entropy is related to the total number
of partitions, Q,,, in the following way:

S, = lim

N—w

[# InQ,, @3

From the time required to .equilibrate the system at low
temperatures (3> f3,), it has been inferred that 3, is also

- 0

FIG. 2. The free energy per unit cell, in the thermodynamic
limit, is shown schematically by curve a. Ths free energy is
zero for T'<T,. T, is the first-order transition temperature.
Curve b is the schematic form of the upper bouvnd f,,, (or f,)
obtained in Sec. III (or IV). f,. . (or f,) is positive at T'=0.
T, gives an upper bound for T,.
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TABLEIL B.Aands,.
Flory* Improved Flory® Monte Carlo® This paper
B:A 0326 0.23 0.268-0.271 0.27002
s, 0244 0.299 0.3155 0314

*Reference 2.

the “ideal” glass transition temperature. (We will be us-
ing T and B interchangeably.)

C. Aims and organization

A free energy of the type shown in Fig. 2 (curve a) is
not uncommon® in statistical mechanics. In some cases,
this behavior turns out to be an artifact’ of the Flory-
Huggins approximation. It is, therefore, important to
prove or disprove the existence of a phase transition in
the tiling model. This is one of the focal themes of this
paper.

In Sec. HI the existence of the thermodynamic limit is
proved, and an upper bound for the free energy is con-
structed from the free energy of an m X o strip. This
bound also gives a bound for T,. In Sec. IV T, is deter-
mined by extrapolation of a sequence of such bounds
from different values of m. That such an extrapolation
is meaningful is shown in Sec. III. The free energy of an
m X oo strip is calculated by a transfer-matrix method in
Sec. IV. The cases of 2X o and 3X oo are explicitly
worked out in Sec. IV as examples of the technique.
From the number of tilings of finite squares, 5, is es-
timated in Sec. V. Section VI is the summary and con-
clusion. In Appendix A a connection between the tiling
model and electrical networks is point out.

III. BOUNDS FOR FREE ENERGY AND T,

In this section we construct an upper bound for the
free energy of an N XN lattice. As a corollary of this,
we prove the existence of the thermodynamic limit.
Furthermore, an upper bound for T, is obtained.

A. Formulation

Let us divide the N XN lattice into smaller m Xn
blocks and tile each block independently, keeping the
relative positions of the blocks fixed in the lattice. We
will primarily be interested in the n =N case, in the limit
N — . For generality we keep n in the following for-
mulation.

The configurations generated by the above construc-
tion form a subset of all the possible tilings of the N XN
lattice. Therefore, at any T, ‘

Zyn 2 (Zy VI (3.1)
from which one has
SN <Fmn > (3.2)

where the free energy per unit cell is defined by the rela-
tion



3334
kgT
fm,n = mlnzm,n . (3.3)
mn
1. Existence of the thermodynamic limit
Taking m =n, we have, from Eq. (3.2),
f2n,2n an,n (3-4)

for any n. Taking n =2’ where p is a positive integer
and writing

f(p)=fn,n ’

we can form a monotonically decreasing sequence {f (1’)}
of the free energy as the size increases. Note that {f?'}
is bounded above by f,,. It is shown in Appendix B
that f,, is bounded below by the free energy of the
four-state Potts model.' Since a thermodynamic limit
" (n— ) is known'® to exist for the Potts model, the se-
quence {f P} is bounded below. This proves that

f E,,l_i?i Son

exists at all temperatures. The limiting free energy will
be denoted by f(T) without any subscript.

2. Boundon T,

The inequality in Eq. (3.2) is maintained in the limit
N — o, because the right-hand side is independent of N.
Therefore

ST Frmn(T) (3.5)

[The T dependence was suppressed in Egs. (3.1)—(3.4).]
Since f,,,,(T) is an analytic and monotonic function of
T, with

fm,n(T=0)=Eground state >0 5

it will have a form shown in curve b of Fig. 2. If £(T) is
of the form of curve a of Fig. 2, then we must have

(3.6

Tc < Tm,n (3.7a)
or, equivalently,
Be2Bmn » (3.7b)
where T, , (or B, n) is the temperature at which
fm,n(T)=o ’ (3.8a)
Zpn(T)=1. (3.8b)

A simple physical interpretation can be given to the
above construction. We are basically studying the stabil-
ity of the ground state (in the limit N — ), against
small length scale fluctuations. T,,, is the temperature
at which the entropic contribution from further subdi-
vision of the m Xn blocks (i.e., from fluctuations up to a
length scale determined by the minimum of m and n) is
balanced by the boundary wall energy of the blocks.
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3. Example: m =n=2

As an example, we take m =n =2, so that

Zyy=x"1+x"1), (3.9)
where

x =exp(4BA) . (3.10)
From (3.8b), T, , is determined by the equation

x2—x—1=0 3.11)
giving

BcA>$InT=0.1203 - - - , (3.12)

where r=(1+1/5)/2 is the golden mean.

B. Monotonicity of the sequence of bounds

For simplicity, let us now restrict ourselves to the case
n =N with N— . Note that Eq. (3.5) is satisfied as an
equality in the limit m — . If we can obtain the parti-

. tion function Z,, , of m XN strips for different values of

m, we will have a sequence of T,,’s (N — o in the sub-
script is omitted) from which T, can be extracted by ex-
trapolation. We now argue that such an extrapolation is
meaningful.

A straightforward generalization of Eq. (3.1) for a
2m X N strip gives

\

Zyu N D) >[Z, (DT

Since the partition function is a positive definite and
monotonically increasing function of the temperature,
the solution T,,, [see Eq. (3.8b)] of

Z 2m,N (T)=1
is less than the solution of

[Zm,N(T)]2= 1,

(3.13)

(3.14)

which, incidentally, is the equation determining T, for
the m XN strip. [Note that the monotonicity of the par-
tition function guarantees that there is only one physical
solution of Eq. (3.8b).] This shows that the subsequence
{T,} where v=2"m (p an integer) is monotonically de-
creasing. One can, in fact, convince oneself that any
such sequence with v=j”m, for any positive integer p, is
monotonic. Because of the existence of the thermo-
dynamic limit, all of these subsequences will have the
same limit as that of the whole sequence {T,,}. We will
assume, as will be shown to be the case, that {T,,} is
also monotonic.
IV. BOUNDS FROM STRIPS:
TRANSFER-MATRIX APPROACH

In this section we develop a transfer-matrix approach
for calculating the free energy per unit cell of an m XN
strip, in the limit N — o,

fm=lim @.1)

1
—InZ
lle m

From Eq. (3.8a), fm =0 will give a bound for T,.



A. Generating functions

We define a new partition function Q,, . for an m ><k
strip as

Qm,k(z’y )=EZ

where y =exp(2BA), z is the fugacity for tiles, and the
summation is over all possible tilings. One can, in fact,
introduce fugacities z; for j-tiles and defin2

z;}y)=3, H#’y
J

EJ"Jy -2 , @.2)

Qe ({ =2 4.3)

from which the average numbers {n;) of j-tiles can be
calculated. Equation (4.3) reduces to Eq. (4.2) by setting
z;=z for all j. Note also that

Zm,k(T)=Qm,k(z =1,y ). 4.4)

A generating function G(t,z,y) for Q,,; is now
defined as

G(t,z,y)= i O i(z,y)t (4.5)

k=0

Thus function G can be evaluated by a (ransfer-matrix
method as we show next. :

B. Transfer matrix

In order to evaluate the partition function by a
transfer-matrix approach, we must build up the tiling
state in some unique, Markovian, and repstitious fashion
(stationary Markoff process). To do so, we define certain
intermediate states in the construction which we call
basis states or just states. This is done in part 1. See also
Figs. 3 and 4 for further explanations. The transfer ma-
trix is constructed in part 2.

1. Basis states

We start building up the strip of width m from a
straight horizontal line, at level zero, by adding tiles (of
size 1 X1 up to m Xm) with base on this horizontal line
only, until level zero is full. A typical configuration

LEVEL STATE

(000DO00OOI I 1)

(0022200000)
(110001 1000)
(00ND0000000)

T
v

FIG. 3. Building up an m X « strip. m=10 for this figure.
The underlying lattice points are indicated by < . -Tiles shad-
ed similarly are added at the same step. Note that the new
base line corresponds to the lowest upper boundary of a tile
added. The states produced are also given. There is no state
at level 3.
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achieved is illustrated in Fig. 3 for m=10. In this
configuration, we identify the new base line as the lowest
unoccupied level, level 1 in Flg 3. The shape of the
upper boundary at this point is called a state (renaming
the base line level 0). We then add tiles to the base line
only, until it is full. A new base line (at level 2) is
identified (and renumbered zero) as the lowest unoccu-
pied level, and the boundary shape is another state as il-
lustrated 'in Fig. 3. This process is repeated w times,
ending with a flat upper boundary. The intermediate
states correspond to one or more specific types of tilings
that achieve that state. Tilings corresponding to defined
states must be such that removal of any tile lowers the
base line level, i.e., the tile cannot be attached to the
base line or a higher level.

It is easy to generate the states but not uniquely. The
tiling of the uppermost level can be made of tiles of size
I,1y, ..., 1, with # <m, such-that 3/_,/;=m. There
are P, ——2”‘ -1 such ordered partitions of the integer m.
(See Appendix C for a proof.) Corresponding to each
such partitions, there is a state such that a tile of size J;
may have its upper boundary at levels from 0 to ;—1
above the base line. In this way, its lower boundary will
be below the base line, as required by the definition.
Also, at least one of the r tiles must have its upper
boundary at the base line. Several such ftile
configurations may produce the same upper boundary
shape as illustrated in Fig. 4. For m=4, all the possible
upper tile configurations have been drawn. That figure
also shows all the unique states.

LEVEL  STATE REALIZATION
O_ T -
0000 . 3 1 2 |2
0000
110
0000
N I T T
2 2
1100 1001 0000
| o— b
O_
1110 3 [0 *
*
2220
2
|—_.
| 3
o — *
2220 1
% 0000
I_
0 — i
00 1 |
oooo 100
' 55 ozl
. 0110
0000

FIG. 4. All the basis states for m=4. The levels each state
occupies are shown at the left. The possible tilings that can
generate a particular state are shown on the right. The old
state from which the state in question is obtained is also indi-
cated. * indicates that another state (or tiling) is obtained by
left-right inversion. For example, in addition to 1110 there is
state 0111.
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A basis state can be represented by explicitly stating
the height of each lattice edge of the boundary above the
base line with O representing the base line. Hence, the
intermediate states for an m X oo strip can be denoted by
m integers (a;,a,, . .. ,a,,) with ¢; €[0,m —1] for each
i. This notation is used in Figs. 3 and 4. We have not
been able to obtain a general formula for the number of
basis states B,,. Table II lists these numbers for sizes up
to m=10.

2. Construction of the transfer matrix

The rule for adding new tiles at the boundary is to put
them only on the base line, covering it completely, so
that a new base line has to be defined. Figure 3 shows
an example for m=10. It is easy to check that the set of
basis states is closed under this rule of transformation.

In any state |j), if g; is the number of zeros (or the
total length of the base line), then the above rule guaran-
tees that the total perimeter of all the tiles next added is
4g;. The Boltzmann factor associated with this addition,
from Eq. (2.1), is y ~ ¥, where, as before, y =exp(2BA).

The elements Vi; of the transfer matrix V is associated
with tilings that take state |j) to state |i) and is given
by

V= 3 kL), 7Y

LE(j—i)

) (4.6)

where the summation is over the tilings L that take | j)
to |i), k(L) is the number of complete rows added by
that tiling, and n(L) is the number of tiles added. Re-
call that ¢ and z are generating function variables intro-
duced in Egs. (4.5) and (4.2) to keep count of the total
number of rows and tiles, respectively. Examples of ¥
are given in Sec. IVD.

C. Connection to thermodynamic

1. Partition function and free energy

After w applications of ¥, the partition function for all
states with w intermediate base line is

(o|pyv|o),

where |0) is the flat state (00. ..0). The number of in-
termediate base lines is not physically significant, but one
can recover the generating function G of Eq. (4.5) by
summing over w

Glt,z,p)="3 (0| ¥*|0)
w=0

={(0](L—-p)"'|0), @.7

where [ is the identity matrix. The partition function

Om,k is recovered as the coefficient of tk by Cauchy’s
theorem as

1 1 _
Qm,k=2—m.¢ s (0] 47 |0)ar,

(4.8)

44. =l _Z y (4.9)
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TABLE II. The number of basis states B,,.
m 2 3 4 5 6 7 8 9 10

B,, 1 3 8 18 42 97 223 506 1145

and the contour encloses the origin of the ¢ plane and no
singularities of (0] 4~']|0). To give each tiling equal
weight, irrespective of the number of tiles, set z=1 in
Eq. (4.8).

The contour of the Cauchy integral in Eq. (4.8) may
be deformed out to infinity and the result for @, ; writ-
ten as an integral about the singularities of
(0] 41| 0). Since the elements of A are finite polyno-
mials in ¢ the singularities of (0| 4~1|0) are poles at
the zeros of the determinant | 4 |. Since we are in-
terested in long strips, kK — o0, the dominant contribu-
tion comes from the smallest ¢ for which

call it £;. We assume that this is always real and posi-
tive, although we do not have a proof other than the re-
quirements of the physics. Thus the free energy per cell,
from Egs. (4.1) and (4.4), is given by

kyT

fm=—m—lnt0 > (4.11)

where 1 is a function of y only.
2. Transition temperature

The bound for the transition temperature T, from Eq.
(3.8a), is obtained by equating f,, to zero, which is
equivalent to setting zo=1. Therefore the bound for T,
comes from the equation

[ I-F(t=1,z=1,y)]| =0. (4.12)

Numerical results are presented in Sec. IV E.
. 3. Other thermodynamic properties

Other thermodynamic properties can be easily extract-
ed from the transfer matrix. To do this, we introduce
the spectral representation as

(0]4-110y=5012Xp10) 4.13)

r  %(62,p)

where p labels the right and left eigenvector of 4, |p)
and (p |, corresponding to eigenvalue a,. The partition
function is then determined by #y(z,y) which is the
smallest ¢ for which an eigenvalue a, =0. Let p, be the
label for that eigenvalue.

To determine the density of tiles (reciprocal of the
average tile size), we use

1 4
km azanm,k(z’y)

p= lim
i k—co z=1

— L B izy) 4.14)

m 0z

z=1

The required derivative is easily evaluated by



8t0 (aa/az),
— =——— 4.15a)
9z |,—o (da /0t), |t=ty,z=1
and
da
5;=—(p0 [O¥ /3v | pg) » (4.15b)

where v is ¢ or z.

The density of individual tile sizes can be ascertained
by returning to a formalism with individual fugacities
Z1,Z7,... in the transfer matrix, as mentioned earlier
[Eq. (4.3)]. By varying these z;’s from unity the thermo-
dynamics of a system at constant tile numbers can be
determined. Since the energy is a unique function of
these tile numbers, there is no temperature dependence
but one can count the number of ways of tiling a lattice
with n; 1-tile , n, 2-tile, etc.

The energy and specific heat are related to derivatives
with respect to y, which again can be obtained from the
spectral representation of 4. Details will not be given.

D. Examples

In this section we explicitly consider two cases: (1)
m=2 and (2) m=3, as examples of the method
developed so far.

1. m=2

For m=2, there is only one basis state, namely, 00.

The transfer matrix is, therefore, a scalar. From Eq.
(4.6), it is given by
V=(tz,+tz3)y 2. (4.16)

Here z, and z, are the fugacities for 1- and 2-tiles, which
we retain separately because of the simplicity of this
case.

The bound for T, is obtained from Eq. (4.12) as

2y 2=1 4.17)
This gives exp(23,,A)=2 or
BcA>1In2=0.173 - - , 4.18)

which is a remarkable improvement over Eq. (3.12), for
a 2X2 square.

The full thermodynamics for the 2X o strip can also
be obtained from Eq. (4.16). The relevant zero of 1—V
is

Ltz h) =]

v - (4.19
0 2, . (4.19)

From Eq. (4.11), the free energy is obtained, by setting
zy=z,=1, as
fo=1kpT{In[(1+4pH)'2—1]—1n2} . (4.20)

If p) and p, are the average densities of 1- and 2-tiles,

=(1+4p2)~172 4.21a)

Z1 zy=2zy=1
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and

(—Inzg) =[1—(1+4y?)~12]/4 .

Zy=zy=1

~139
P2= 3z,

NI)—-

{4.21b)

Note that p;—0 and p,—1 as y >« (e, T—0) as
they should.

2. m=3

For m=3, the basis states are (i) 000, (ii) 011, and (iii)
110. Taking, as before, z; as the fugacity for i-tiles
(i=1,2,3), the transfer matrix is given by

(Pzs 41230 1zl zp!
V= 1212,y 3 0 0 (4.22)
tz42,y 3 0 0

The bound for T, is obtained from Eq. (4.12) as the
solution of

yi-2y—-2=0. (4.23)

This equation has only one real positive solution at
y=1.4945. . ., giving the bound

BA>0.2009 - - - . (4.24)

E. Sequence of bounds

The transfer matrices for m=4 to 9 have been gen-
erated on the computer and the zero of the correspond-
ing determinant, Eq. (4.12), found numerically.

The results for x =exp(48,,A) are plotted against 1/m
in Fig. 5 (set b). These points are fitted to a curve

1031
023
8
w
0.6
I/m
FIG. 5. 1/m extrapolation plots for T, and s.. @, bounds

Tomm on T, from m Xm squares from m=2 to m=7. b, T,
from m X oo strips. The solid line is obtained by fitting Eq.
(4.25). ¢, the entropy per unit cell, from m Xm squares up to
m=7. The intercepts in b and ¢ on the y axis give values for

the bulk.
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x=a+2 4L (4.25)
m m

which gave a=2.94496, b =—2.596, and.c=1.411. The
fitted curve is shown in Fig. 5 by solid line b. The
coefficient a gives the estimate for x, and hence for A,
as m — o. The value we find is

B.A=0.27002 - - - , (4.26)

which is to be compared with the values given in Table
I

For high m, the analysis of the transfer matrix can be
simplified using the symmetry of ¥V with respect to left-
right inversion of the states. For comparison, the
bounds obtained from Z,, ,, are also shown in Fig. 5 (set
a). This sequence shows odd-even oscillation.

V. INFINITE-TEMPERATURE ENTROPY

We have determined the partition function of m Xm
squares for m =3-7 by using the analogy with electrical
circuits (see Appendix A) and also by the method of Sec.
1V. From these, the entropy per unit cell at T= o0, as
defined in Eq. (2.3), has been obtained. These are shown
in Fig. 5 (set ¢) plotted against 1/m. Extrapolation to
m— oo gives

s, =0.314 , (5.1)

which is to be compared with the previous estimates
given in Table I.

Figure 5 shows that the approach to the thermo-
dynamic limit is algebraic with size. Because of the
analyticity of f(T) above T'>T, a similar algebraic ap-
proach is expected for all T > T,. In contrast, we found
rapid exponential looking approach [f(T)=0] for
T <T,. This difference in behavior is a manifestation of
the singularity at T=T,.

VI. CONCLUSION

In this paper we proved the existence of the thermo-
dynamic limit and obtained upper bounds for the free
.energy of the tiling model. From these bounds, upper
bounds for T, are also determined. The best bound is

BA>0.2459 -+ ,

which is obtained from the free energy of a 9X oo strip.
The partition functions for such strips are obtained by a
transfer-matrix method as developed in Sec. IV. From
extrapolation of the bounds for T,, from m X o strips
with m =2 to m=9, T, is estimated as

B.A=0.27002 - - -

Similar extrapolation of the total number of tilings of
m X m squares, up to m="7 gives

5, =0.314 .

These values of B.A and s, agree well with those ob-
tained by numerical simulations as given in Table 1.23
We have noted that the approach to the bulk behavior
looks algebraic for, T > T, but exponential for T < T,.
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{ A

+
+

+
+ +

B

(a) (b)
FIG. 6. (a) A particular tiling of a 5X 5 lattice. (b) The cor-

responding electrical network. Note that Fig. 1 has the same
network as (b). The multiplicity associated with (b) is 4.

APPENDIX A: CONNECTION
WITH ELECTRICAL NETWORKS

Take any configuration of a finite N XN lattice, as
shown in Fig. 6(a). Replace each horizontal line of the
lattice by a point. Connect two points 4 and B by a
unit resistance if the two corresponding horizontal lines
are connected by a square. Delete all isolated points.
The result is Fig. 6(b).

Let us now put arrows on the links of Fig. 6(b) so that
they flow from upper horizontal lines to lower ones. As-
sign a number to the link equal to the size of the square.
If a current N flows between the two extreme points 4
and B, then it is easy to convince oneself, from the t1hng
rules, that KirchhofP’s laws are obeyed.

This connection shows that each tiling can be
represented by a planar network. However, the mapping
is many to one. Each network is associated with a mul-
tiplicity factor that gives the number of tilings that can
be generated from it. This number can be obtained from
the distinct arrangements of all possible paths from A to
B, each obeying Kirchhoff’s law. In doing so, one can
split a point, again respecting Kirchhoff’s law, as in Fig.
7 and arrange the new paths. Drastic reduction in
counting occurs if one considers graphs with no cut ver-
tices and then combines them. Further simplification
occurs if special symmetries are taken into account. (A
similar problem is known in graph theory as the “squar-

A

@B@ + bl o +
c .

(ay (b)

(c)

FIG. 7. Splitting a point. The degeneracy associated with
(a) is obtained by splitting the point B as in (b). Note that, in
doing so, Kirchhoff’s law has not been violated. The multipli-
city is 3. The tilings associated with this multiplicity are
shown in (c).
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ing the square” problem.!') Therefore, the tiling
configurations can be obtained by solving a set of linear
equations involving positive integers only.

APPENDIX B: LOWER BOUND FOR f,, ,

It is shown in Ref. 2 that four colors are necessary for
coloring the tiling model. From the four-color conjec-
ture,'? we know that four colors are sufficient.

Let us put a four-component spin (representing the
four colors), o;, at the center of each celi i of the n Xn
lattice (i.e., at the lattice points of the dual lattice).
Once the tiling configuration is colored, the energy can
be obtained from the Hamiltonian

H=AS [1—8(c;,0;)]+2nA ,
(ij) .

(B1)

where 8(0;,0;)=1 if 0;=0; and zero otherwise, and
the summation is over the nearest neighbors (ij).
Equation (B1) is the Hamiltonian of a four-state Potts
model up to an additive constant. Writing Z*) for the
partition function obtained from H by swmming over all
spin configurations, we have

Z,(:,Z >Zn,n » (B2)

because of gross overcounting of states; (i) the Potts
model can have domains which are not necessarily
squares, and (ii) each tiling configuration can be colored
in more than one way, each way corresponding to a dis-
tinct spin configuration. Therefore f,, is bounded
below by the free energy per spin of the four-state Potts
model [Eq. (B1)] on a square lattice with n? lattice
points.
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APPENDIX C: PROOF OF P,, =2""!

Suppose an integer m can be partitioned into exactly n
positive integers, not necessarily all distinct, in P}, ways.
We define ‘

Pl=0ifn>m or n=0. (C1)

P,,, the total number of partitions into not more than m
integers, is ‘

m
P,=T3 PI.

(C2)
n=1
We also have
m
Ph=73 PnC] (C3)

i=1

because the first integer can have any value i €[1,m]
and (m —i) can be partitioned into n —1 integers in
P2~} ways. Therefore

P,=3 3 PnT
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