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It is shown that the RVB wave function can be expressed
as the Pfaffian of an antisymmetric matrix whose size
is equal to the number of lattice points. The matrix repre-
sentation helps in proper counting of all the paired states.

Exact matrix representation of the RVB wavefunction

The resonating valence bond (RVB) approach for the
two dimensional Heisenberg antiferromagnet shows that
the energy one gets from such wavefunctions is very close
to the estimate of the ground state energy known from
other sources [1-4]. There are proposals that the RVB
state can be stabilized by introducing disorder and/or
hole in the system [see, e.g., 4]. Attempts have also been
made to construct Hamiltonians that would have the
RVB state as the ground state [5]. Our purpose in this
paper is to show that many of the RVB wavefunctions
considered in the literature can, in fact, be given an exact
matrix representation. The RVB wavefunction is given
by the Pfaffian (defined below) of an antisymmetric ma-
trix of order equal to the number of lattice points. This
is reminiscent of, but not analogous to, the Slater deter-
minant for fermions. In the Slater determinant, the ma-
trix structure helps in the symmetrization of the wave
function, but here it is necessary for proper combinator-
ics of the paired states in the RVB wavefunction.

The Pfaffian of a 2nx2n antisymmetric matrix A
with elements a;; is defined as
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where the summation is over all allowed permutations
P15 D2 Pa, of the integers (1, 2, ... 2n), &, being the par-
ity of the permutation. An operational definition is
[Pf(A)]*=det(A4) which also sets the Pfaffian of an odd
ordered antisymmetric matrix as zero. Several decompo-
sition formula for Pfaffians can be found, though in a
different context, in Ref. 6.

The RVB wavefunction is defined in terms of the
paired states ¢;; for sites i and j. A valence bond state
is defined as ¢, =]]¢;; where the product is over the

pairings of the sites (each site is paired with one and
only one other site). A linear combination of these va-
lence bond states will then be an RVB state:

Yrve= an @y ]

The form of the wave function that has been most widely
used or used as the starting point is the nearest neighbor
RVB (NNRYVB) wavefunction [1-4, 7] for which c,=1
and the pairing is over the nearest neighbours only. The
pairings then constitute the dimer coverings of the lattice.
In the simplest situation, ¢;; is taken as the singlet ¢;;

=(1:l;) =Lt ))/)/2 where |1,> and | ;) are the up and
down eigenstates at site i with the convention that the
first up spin is always on the same sublattice. More gen-
eral ¢;; as, e.g, in Ref. 2, can be considered in our ap-
proach without any modification.

The Pfaffian construction requires a properly ori-
ented lattice (i, each bond has an arrow) such that
every closed loop of even number of bonds has an odd
number of arrows in the opposite direction. This “clock-
wise-odd” condition can be ensured for 2-d Bravais lat-
tices by enforcing the same for the smallest loop (2 x 2
square) on the lattice [8, 9]. The sites are numbered
such that the odd numbered sites are on one sublattice
and the even numbered on another (Fig. 1). The arrows
go always in the direction of increasing site labels. Any
larger square lattice can be built up by translating the
basic 2x 2 block of Fig. 1. For the 2x 2 case with free
boundary condition (FBC), we construct a 4 x 4 antisym-
metric matrix 4 whose ij element is ¢;; with the sign
determined by the arrow from i to j as follows:
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Note that the sign convention of the previous paragraph
requires that the odd index comes first (ic., ¢5, and
not ¢,;). The Pfaffian (=square root of determinant)
of this matrix is Pf(4)=¢,, ¢34+ ¢4 ¢, Which is pre-
cisely the NNRVB wavefunction [7]. The proper arrow
choices guarantee that all the dimer coverings appear
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Fig. 1. An oriented 2x 3 lattice. The ij arrow goes from i to j
ifi<j. The 2 x 2 part of it is used in (3)

with the same sign as is required by Marshall’s sign crite-
rion [1, 2]. Generalization to bigger and other lattices
is straightforward.

The above construction is valid for the wavefunction
with ¢,=1. If the coefficients are factorizable so that
¢, can be written as a product of weights x;; of the bonds
present in the a valence bond state, then the matrix rep-
resentation would require an additional factor x;; for
the corresponding matrix element, i.c. [4];;= £ x;;0;;
with the sign determined by the orientation of the ij
bond. The Pfaffian, as before, gives the correct wavefunc-
tion.

The form with bond weightfactors, though may not
be the most general NNRVB wave function, has the
potentiality of gauging the importance of a subclass of
bonds. Such a scheme is necessary if there are certain
static defect sites like holes. If the effect of the hole is
to produce a local change in the interaction, then the
corresponding wavefunction can be discussed by putting
in the weight factors for the bonds that emanate from
the defect site. If, on the other hand, the effect of the
hole is to prevent pairing, then the corresponding matrix
clements are zero. For odd number of holes, the Pfaffian
is zero. This merely reflects the fact that perfect pairing
is not possible with odd number of sites. Two or more
even number of holes pose no such problem.

An interesting situation would be to take the weight-
factors for different bonds in such a way that a particular
valence bond state is stabilized. The transition to the
RVB state can then be studied by varying these weights.
Incidentally, the corresponding classical dimer models
show rich critical behaviors [9]. It remains to be seen
what one can learn about the quantum system from the
classical problem. Another intriguing feature is the con-
nection between the dimer states and the spanning trees
onasubsetofasublatticeofthesquarelattice[ 10]. Thiswould
mean that for the NNRVB wavefunction only
a subset of bonds are really important, others are deter-
mined by them. What can be the significance of that?

Long range paired states (as in Ref. 1) can also be
represented in this matrix form though one would lose
the control on the sign of these “long ranged” states
in the total wavefunction. Nevertheless, the Pfaffian ex-
pansion still guarantees that only the perfectly paired
states appear in the wavefunction. As an example we
consider the 2x 3 lattice (Fig. 1) with (1, 6) and (2, 5)
pairings and with FBC. With the same arrow convention
as before, the Pfaffian of this 6 x 6 matrix is

Prve=012 034 P56+ P12 P36 Psat+ D14 b3z bs6
— 014952 036+ D16 $32 Dsat dr6 P52 030 (4)

Although one configuration enters with a wrong sign,
but still all the valence bond states are present. Factoriz-
able weights as in Ref. 1 can be handled as discussed
after (3). Incorporating long ranged dimers (which makes
a lattice nonplanar) in a Pfaffian description (so that
all states appear with the same sign) remains an open
problem.

Just to show that one can handle these matrices, we
have calculated the normalization Ny of NNRVB wave-
function with singlet ¢;;'s for 2x N lattices (with FBC)
using REDUCE upto N=7. The difficulty with the
Pfaffian approach, at present, is the nonavailability of
numerical procedures for evaluating Pfaffians. The nor-
malization can be calculated easily because it is actually
the square root of the determinant of A% From graph
theory, it is known that the ij element of A% contains
the weights for going from j to i in all possible ways.
Therefore, for a bipartite lattice, 4> can be written in
block diagonal form with elements only in the odd-odd
and even even blocks. Since the determinant of the two
are the same, the normalization requires evaluation of
the determinant of an N x N (instead of 2N x 2N) ma-
trix.

By extrapolating the results we have for N upto 7,
we get, for large N, Ny~exp(0.738 N). We now postulate
that Ny~(Qy)* for large N, where Qy is the number of
dimer coverings. Since Qy on this ladder lattice forms
a Fibonacci sequence with N (2y~t" for N - o0, 7 being
the golden mean), we obtain a=1.53. Taking « to be
universal, we estimate for an M x N lattice }¥ =(2.44)4¥

In summary, we have shown how a Pfaffian represen-
tation can be used to describe exactly the RVB wave-
function. This representation is capable of handling
wavefunctions with different bond weight factors and
also long range pairings. In the later case, however, a
few “long range” states appear with a different sign. Fix-
ing the sign of these states in this approach remains
a problem that deserves further studies. We also suggest
that, given the importance of this problem and the rele-
vance of Pfaffians in other problems [6, 9], numerical
procedures be developed for direct computation of Pfaf-
fians.

A part of this work was presented in the DAE symposium, Solid
state Physics, held in Madras, India, Dec 19-22 1989.
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