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Reunion of random walkers with a long range interaction:
Applications to polymers and quantum mechanics
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We use a renormalization group to calculate the reunion and survival exponents of a set of random walkers
interacting with a long range 17 and a short range interaction. These exponents are used to study the
binding-unbinding transition of polymers and the behavior of several quantum problems.
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I. INTRODUCTION is known that the probability distribution function for a ran-
dom walker can be represented by the Wiener integral, which
The problem of reunion of interacting random walkersas a path integral could, in the manner of Edwards, represent
appears in many situations, directly or in disguise, such ag Polymer. Any interaction of two or more walkers at the
e.g., in situations involving one-dimensional stringlike ob-S&Me time or step length would translate into an interaction
jects such as interfaces, steps on surfaces, in one-dimensio ong the polymers at the same contour length. For

uantum problems, in several types of polymer problems rdimensional walkers, we would then getd{1)-
q P ' yP poly P tdimensional interacting directed polymers. We shall be using

wetting, etc.:.. The issge quite oftgn is the Igrge—length scalingpg polymer language throughout this paper.

of the partition function of reunioifor surviva) of a set of Phase transitions in polymerlike systems by interactions
walkers all starting, say, at origin. For a purely short rangeat the same contour length occur, e.g., in the case of steps
repulsive interaction, this is the problem of “vicious walk- already mentioned, in flux lines in superconductid3], in

ers.” Many of the vicious-walker reunion and survival expo- melting and unzipping of DNA14-19, to cite a few. A
nents are known from exact calculations in one dimensiordlirected polymer formulation then becomes quite natural. In
[1,2], the renormalization-grougRG) approach[3,4] for  this paper, our focus is mainly on the effect of the long range
general dimensions, and lattice models in two dimension#nteraction on these phase transitions, recovering the results
[5]. Recent studies of phase transitions on vicinal or miscufor the short range case as a special case. Furthermore, we
surfaced6,7] required the scaling behavior of such partition €Xploit the relation between polymers and quantum problems
functions in the presence of a long range interactiamely to show the importance of reunion behaviors in wide variet-

1/r?) in addition to short range interactions. The effective!®S Of problems in various dimensiof0].
interaction of steps on a vicinal surface has a long tail In this paper, we recover several results known from exact

[8] and recent studies on (3L surfaces indicate the pres- solutions, illustraiing how the reunion exponent armed with
ence of an attractive short range interac{i®has well. Simi- the renormalization group gives a unified approach to these
lar long range interactions occur in the one-dimensionaPrOblems' The RG approach can be extended to other types

. . of interactions, especially other marginal interactions, for
Calogero-Sutherland modglO] of interacting guantum par- which exact solutions are not known, such as that required in

tlg:les, gnd as the angular momentum term -in h.'gher'the vicinal surface problem of Rdf7]. There lies the merit
dimensional quantum problem3he reunion and survival

. e . ., of the approach of this paper.
\t/)grri]:;i”ec;rso;l:)rpo;gtrggTEgst?ngEgE% Lesaigritgé;htisees\ggf The Hamiltonian and the general exponents of_ intgrest are
ing limit of various partition functions in the presence of !ntroduced in Sec. II. The general RG approach is dlscussed
long-range interactions, especiaily?. We use these results in Sec. Il where_ the exponents are also calculated, with
’ ' some of the details in the Appendix. These results are then

fhor studying pha&se tfransmct)ns of ptt))llymers ang then ShoVﬁ\sed for polymer problems in Sec. IV and quantum problems
ow many results ot quantum problems can be TecoVeref, go. v/ The conclusion is given in Sec. VI.

from such an analysis.

~ The success of the RG approach for short range interac- Il. HAMILTONIAN AND THE EXPONENTS
tions[3-5,11] and the possibility of exact renormalization in o _ _ o
the presence of long range interactija®,7] allowed usto ~ The Hamiltonian forp-directed polymers with pairwise
use the renormalization-group approach for this problem. linteraction[6,7] is

PN 1 ar(2)\ N
_ ) | Hp=2 f dz—( ' ) +2 | dzV(r(2),
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where r is a d-dimensional position vector and;;(z) mentun) scale in the same way for all dimensions. The
=ri(2) —rj(2). The interaction potential is taken as potential is the centrifugal barrier in quantum mechanics,
while it occurs in surface problems as an effective interaction

g between steps induced by the elastic strains on the surface
V(r)zvog/\(r)"_w, (Zlb) [8]

and 8, (r) is a delta function with a cutoff such that in Fou- Known exponents for the short range case

rier space For the noninteracting problemy=g=0, the exponents

syu(@=1 for gq=A follow from the Gaussian behavior of the chains. The parti-
A ' tion function for a Gaussian chain of lengthis given by

=0 otherwise. (21@ Z(RN|OO)=(27TN)7C”2€XF(—RZ/ZN), (2.4

We shall use this cutoff for the whole potential. Our interestfrom which one obtains
is in the asymptotic behavior of the following partition func-

tions. pd (p—1)d
(@) Reunion of all the chains of lengtN at a pointr, sp=0, ‘//R,p:7y and RP= 5 - (2.9
p
B H . It is also known that for purely repulsive walkefgicious
ZR’p(N’r)_J DRe pil;[l [8%ri(0)3°(ri(N) = D)]; walkerg in d=1 (i.e., withg=0) [1,2],
2.2
(2.23 _p(p—1)  p? 4w _pP-1 -
~N~¥Rp, (2.2 Ysp= 4 1¢R,p_?yan RP= 5 - (2.6)
(b) reunion anywhere, We earlier generalized the above resultgsite2 — e for the
short range casg.e.,g=0) by using RG and obtaind@®,4]
zRyp(N)=J d¥rZg o(N,r) (2.20 nd (p—1)d
Ysp= ﬂpv'//R,p:?"'Z’?p and \PR,p:T+277py
~N~¥rep; (2.20 (2.79
and(c) survival, where, withe=2—-d,
P [P p 2
stp(N):fDRe-HpH (20.0)] (220 2= |€e+3 5| INEHE+ . (2.7b
=1

Ford=2, our RG yieldsZg ,~N~®P~H(InN)~PP~1, which

has since been obtained by the exact lattice calculations of
Essam and Guttmans] for p=2. This lends further support

to the validity of the renormalization-group approach.

That only one anomalous exponent is needed was shown
explicitly in Refs.[3,4]. This could be understood from the
geometry that a reunion partition function can be thought of
as two survival partition functions connected together.

In this paper, we calculate the anomalous pgytfor the
Sase with long-range interaction at the one-loop level. Since
this one-loop RG generates exact res[ii2], we obtain ex-
act exponents with nonzeigp

~N"Vsp, (2.2f)

where [ DR stands for the summation over all possible con-
figurations of the polymerspath integrals The constraint
that all chains are tied together at the origiis represented
by the product of theS functions. In caséc), the ends at
=N are free for all the chains.

In the above equations, the asymptotic behaviors defin
the basic exponents/i ,, W, ¥sp) Of interest in this pa-
per. These exponents are expected to be universal, indep
dent of the detailed microscopic form of the polymers.
Hence the choice of a continuum model.

The notation introduced above is used in Sec. lll, where
these exponents are calculated. However, in the subsequent IIl. RENORMALIZATION GROUP
sections on polymers and quantum problems, we need Survival partition function

mainly ¥ ,. We therefore adopt the notation )
’ To evaluate the survival exponent, we use a momentum-

V="g,. (2.3)  shell RG approach as used in RE#2]. The renormalization
process requires integrating out small-scale fluctuations, so
Our primary interest is in the marginal case=2, though  that the effect of interactions of the two chains within a small
other values are also discussed briefly. The importance afistance is taken into account by redefining the parameters of
o=2 can be gauged if the Hamiltonian is considered as @&e Hamiltonian. In this problem, in addition to the param-
guantum-mechanical system in imaginary timneiz. The eters of the Hamiltonian, we need to consider the survival
kinetic energy and the 2 interaction(like the angular mo- partition function also.

051103-2



REUNION OF RANDOM WALKERS WITH A LONG RANGE. .. PHYSICAL REVIEW E 63 051103

In Fourier space, the renormalization of the interaction
can be carried out using the effective interaction at the one-

loop level,
A dlq V(lk—q])V(q)
V (k)=V(k)—f . (32
o emt g
The Fourier transform defined generically as @ ®
FIG. 1. Zeroth- and first-order diagrams for survival. The solid
F(k)= J ddr eik~rG(r) (3.2 lines indicate the polymers and the wavy line denotes interaction.

r g=0 and forg#0 is discussed in Ref§11,12. This
arginality ofg is a reflection of the importance of an?
potential in the Hamiltonian, as is well known in quantum
mechanics. In the surface context, this marginality implies

. . . . . . 0
requires an appropriate analytic continuation of the mtegraln
for singular potentials. In particular, the Fourier transform of
r 7 has a singular part

K-d+o that the strength of interaction between two steps is invariant
Ad— in general, (3.33 under scale transformatiomenceforth we consides=2,
and use gnstead ofg.
where The flow equation fou gives rise to two fixed points
A:2d—rr+1ﬂ_d/2r((d_0-+2)/2) (3 3b) u;u:%[fi \/62+4g]1 (37)
I'(o/2 ' ' .

(o/2) where the subscripts and u represent stable and unstable

and, foro=2, this singular part takes a simpler form, fixed points, re_spectlve_ly. ) _
For the survival partition function, the one-loop contribu-
1 k*d tion is shown in Fig. 1. The loop contribution is similar to

K_d d—2" (339 the one-loop case for the interaction, though here @(s).

The flow equation foZg is (see Appendix A for details
whereK =S4/(2m)9, Sy=27%%T(d/2) being the surface

of a d-dimensional unit sphere. A natural choice for the po- LdZs_ 7 3.8
tential is therefore T (3.8
A . .
V(K) =0+ gko—d, (3.4 so that at the stable fixed point of E®.63,

d—o
No=UZ /2. (3.9
Let us also introduce at this point the dimensionless param-
eters This result can be generalized to any number of chains for
which there will be a combinatorial factoB) from the pair-
wise interaction to yield

. 1/p
39 ”PZE(z

«l

U=vLsg=K4AgL? %, and u=Kqu+ =

ul . (3.10

with v=v, as the bare value of the short range coupling

constant. Note that for=2, g=0. This exact relation fop=2 is a consequence of the connec-
By implementing a thin-shell integration oveY—dA tion between the coupling constamt(vertex function and

<k<A and then rescaling the cutoff back fo(=1), the the survival partition function. The interaction can be

coupling constants’ renormalization can be written in thethought of as twg=2 survival partition functions joined at

form of recursion relations as the node so that renormalization afis a product of the
g renormalizations of two survival partition functions.
u 5 . c
Ld_L: cu—u2+g, (3.69 The reunion-anywhere exponent fd= 1 is given by
_p=1 (p}
a5 ~ ‘I’R,p—T+(2)Us . (3.11
Lﬁz(Z—o)g. (3.6b

A special case of this i¥g ,= 3 +u% . For only short range
The thin-shell integration is analytic and therefore does notnteractions(i.e., g=0), uf =1 and one gets back the vi-
renormalize a singulag-type long range potential in the cious walker exponent of Huse and Fishebg ,= (p?
Hamiltonian. The flow equation of E43.6b) for g then fol-  —1)/2] [1,2]. One notes that the anomalous part is just the
lows from dimensional analysis. The exactness of (Bda combinatorial factor. The general results for all three reunion
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FIG. 2. The locus of points in the vs g plane for reunion FIG. 3. (a) A general configuration of the two polymers, con-
exponentVr ,=1 andW¥,=2. The shaded region is the region for sisting of boundA) and unboundB) regions.(b) A generic fixed-
continuous transition. The transition is first-order outside it. Thepoint diagram foru from the RG flow. See also Fig. 1 of R¢fr].
lightly shaded region has complex-conjugate fixed points that are of
importance in the context of non-Hermitian Hamiltonians. General approach

In order to study the nature of the transition, we adopt the
and survival exponents are obtained by substituting Edprocedure of Ref[1]. The partition function is obtained by
(3.10 for 7, in Eq. (2.79. We quote the exact result fak  summing over all configurations of the two chains. Our main
=2—eandp=2, interest is in the phase-transition behavior and therefore only

long-distance behaviors will be considered. The configura-
tions can be characterized by the alternate sequence of do-

B ~d et Vel +4g B JVe’+4g mains of bound(A) and unbound(bubble, B) regions, as
\I'ZXI’R,Z—E“L 2 =l (312 shown Fig. 3. The bound regions correspond to the left side

of the unstable fixed point of the flow diagraithe coupling
constant flows to-«), while the bubbles correspond to the

This is used in the following sections. high-temperature phase characterized by the stable fixed
A few things are to be noted here. First, the fixed pointsPoInt. N _

d=1. For this borderline casd=2+2\—g, the reunion lengthN of typeX by Qq - We assign a weight to eachA-B

exponent is¥ r ,= 1. The locus of the points in tnetversus ~ @nd B-A junction, and for simplicity we consider cases in
g plane for¥ g ,= 1 andW¥ 5 ,=2 are shown in Fig. 2. As we Which the chains start and endAatype domains. This extra

show in Sec. IV, these lines are very special. factorv is to take care of the deviation from the strist or
B-type behavior at the junctions. The total partition function
can be written as

IV. BINDING-UNBINDING TRANSITION OF POLYMERS

T_AA N 2 A B A
Let us consider two directed polymers, the-2 case of Qu=0nt fo dzzfo 021 QN-7,0 Q2,7 Qz -+
Eqg. (2.19. The fixed-point diagram of Fig. 3 shows that at 4.9
d=1, for a giveng> — %, there will be a binding-unbinding
transition as is changedsee Fig. 1 of Ref[7]). The tran-  To exploit the convolution nature of the terms of the series,
sition is defined by the unstable fixed point while the stablewe go over to the grand-canonical ensemble with respect to
fixed point describes the “high-temperature” phase. Severathe chain length. This is equivalent to taking the Laplace
features of this transition have been discussed in[R&l.in  transform of the partition functions with respectNo Defin-
the renormalization-group framework and in REf1l]. We  ing the Laplace transform as
show here that certain unresolved iss(eg., order of tran-
sition) in the RG framework can be sorted out by using the o
reunion exponent, thereby gaining a complete picture of the GX(S)ZJ e sNQUdN, (4.2
problem. The problem can be anticipated by noting that the 0
exponentr associated with the diverging length scale, as the _ ) ) )
transition is reached, approaches the limit 3 as g—:. whereXis A, B, or.T, the_ above series can be written in fche
Care should, therefore, be exercised in drawing conclusion@™™ Of & geometric series and can be summed to obtain
from the flow diagram. We discuss now how the behavior at
the stable fixed points determines the phase transition at the - GA(s)
unstable fixed point. G(s)= 1—02GA(5)GB(s) (4.3
. . v°G7(s)G"(s)
For generality, we develop the procedure in a general way

and then derive the results for the 4interaction, especially Th ist fthe th d ic limit
for p=2 (two-chain case The internal consistency is also . ¢ &XIStence ot the thermodynamic fimi erlsluresxﬁlé(ts)
is analytic for s>fy, where fy=Iim _N""InQy, and

shown by a finite-size scaling argument. That the exact re=
sults are recovered corroborates the utility of the RG apG*(s)—0 ass—x. In other words, the largest real singu-
proach, coupled with the reunion behavior, for other interaciarity of G*(s), in the complexs plane determines the cor-
tions as well. responding limiting free energy per unit lengtB@2]. For
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G'(s), this could either be the singularity @* or GB or  ample, in the case of unbinding @f chains with p-body
may come from the vanishing of the denominator of Eg.interaction[11,4] and other cases. To take advantage of pre-

(4.3), i.e., the solution of vious studies, we concentrate on the two-chain problem.
- A Let us now consider the case of two directed polymers in
v°G=(s)=1/G™(s). (44 (1+1) dimensions, for which we obtainedV=(1

A B . ++/1+4q9)/2. The fixed pointgsee Fig. 3indicate that there
In caseG” or G* diverges, then the denominator of 4.3 is a binding-unbinding transition at the unstable fixed point

vanishes for a larger value sf and then it is the root of Eq. f . . : *

. oo or any giveng asu is varied. For anyug<<ug , the renor-
(4.4) that is the relevant one. In such a situation, the freemalized flow qoes to—o so that a lenath scale can be
energy will not have any singularity. It follows that it is only dentified f 9 ) — ' F hi 9 * the di
the nondiverging branch points that could lead to phase trarjdentifie romu(l™) — —co. From this, aslo—u , the di-

sitions. verging length scale comes out ds=QAu=u—uy)
For theA-type region, the partition functio@y=e #°N,
whereg is the inverse temperature. Its Laplace transform has g ~t|7" with v, = _ (4.8
a simple pole. Therefore, the singularity @f* is not impor- uy —uy
tant for our discussion. Consequently, it is the partition func-
tion of the bubbleghigh-temperature phasthat determines Ford=1, we have
the behavior of the chairf23-25. The partition function of
the bubble at the stable fixed point for larjes given by 1
e (4.9
qe_NUo(T) 1+4g
QN*—NW ' (4.9 This shows thatr, =% at g=2, a signature of something

special happening there. The reunion exponent, coupled with

where the reunion-anywhere expondntat the stable fixed the analysis of the precgqling subs?ction, tells us that there

point appears. Here and in the following discussion, for con€@nnot be a phase transition fgr — 3, a fact corroborated

venience, we have removed the subscripts of the reuniofly the fixed-point diagrantsee Fig. 1 of Refl7]). A critical

exponent introduced in Sec. [see Eq.2.3]. The Laplace Pehavior |53expected fof=g= -7 and a first-order transi-

transform of this partition function has a singularity @t toNn f°r91>71- . o

—o(T), and the nature of the singularity depends on the FOr —3=g=3, which includes the pure short range

value of the reunion exponent,. There is a divergence at _=0_case, the average fraction of the length in the bound state

this singularity if# <1. A phase transition therefore occurs 'S 9iven by

only for ¥ =1. The details of the graphical solution, for the of

discrete case, can be found in Rf]. O(t)~ —~|t|~. (4.10
For¥>1, the high-temperature phase is described by the at

root of Eq.(4.4) and the transition is given by the tempera-

ture T=T, at which the root of Eq(4.4) coincides with the

singularity of GB(s). Defining the deviation of temperature

This defines the order-parameter expongnihis exponent
and the specific-heat exponent are given by

ast=T.—T, the free energyfrom the root of Eq(4.4)] can R m m_ 1
be written as B= = and a=2————.
v-1 1+4g J1+4g
fr=oo(T)—[t[Y~D  for 1<W¥<2, (4.69 (4.12)
m—1 Note thata=1 atg=1$, a requirement for a first-order tran-
~oo(M— 2 at! +[t|™™  for m<¥<m+1. sition. . o
1 The bubble lengths have fluctuations and this gives the

(4.6b measure of the diverging length scale parallel to the chain as

We find a critical behavior for £¥ <2 but a first-order E~It|7" with  p=2v, . (4.12
transition for ¥>2. In case of a critical behavior, the . _ _
specific-heat exponent can be read off from the free energlote that the hyperscaling relatiahy=2— « is obeyed by

as these nonuniversal exponents witk- 1. This is because the
free-energy density is the free energy per unit length of the
., 2¥-3 polymers and not the unitd 1)-dimensional area.
a=2-(¥Y-1)""= v—1 (4.7) If g>32, ©(t)—const ast—0—. This indicates a first-

order transition. The longitudinal length-scale exponent is
v=1, i.e., it sticks to its value ay=2. However, the free
energy as given by Ed4.63 shows a weak singularity that
The crucial feature in the approach developed in the prewill be reflected in the divergence of an appropriate higher
ceding subsection is the alternate sequence of the two typelerivative. One therefore finds a rather unusual first-order
of “bubbles” and therefore the results can be used, for extransition with weak singularities and diverging length scales

B.d=1
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[21]. Such scales can be determined from the higher cumu- V. QUANTUM PROBLEM
lants of the length fluctuations of the bubbles. We discuss The Hamiltonian of Eq(2.19 represents two quantum
these issues in the next section in the context of the equiva-_ . . ; g4 P D quan .
lent quantum problem. part|cl_es either in the_path-lntegral representation in imagi-
¥ increases wittg and every time¥ crosses an integer nary time or as a statistical mechanical problenT &t0. In
the diverging derivative shifts by 1. These special values ar he center-of-mass frame, the equivalent Sdhmger equa-
—(m-1)>—1 ion for =2, wherevy(r) is the short range part of the
9 LA . . . interaction, is
At g= — 7, two fixed pointsui andu; merge at a com-
mon valueu* =3. The bound phase corresponds to the 9
<3 region and the transverse length scale diverges as —V2h(r)+|vo(r)+ 2

P(r)=E(r). (5.7)

~ exd 1/(1/2—up)]. 4.1
J HA 2 .13 For zero energy, the radial part of the wave function can be

However a Kosterlitz-Thouless-type behavior is observed itVritten as
u(r)
R(r)=ex f Tdr (5.2

g is varied[12].

We have derived the exponents for the critical point fromwith u(r) satisfying
our results of the stable fixed point or the high-temperature
phase. An independent verification of the exponents comes du )
from a finite-size scaling argument used strictly in the critical rgr = (2-du—u"+g. (5.3
region characterized by the unstable fixed point. The reunion
describes the contacts of the two chains and therefore th&akingl=In(r/a), we can recast the above equation in a form
number of contacts at the unstable fixed point would have aesembling the RG flow equation. In other words, the RG
finite-size scaling behavioi(is a length along the chain flow equation at long distances determines the radial part of

the zero-energy wave function.

Finite-size scaling for the critical point

L~L“1’{“)~t‘1’{”}’vu, (4.14 We consider the transition point itself, which corresponds
to the unstable fixed point. In caseof Eq. (5.3 reaches a
which identifies fixed point, the wave function has an algebraic tailR{s)
~[r|"".
2—plsh plu The wave functiorR(r) satisfying the Schidinger equa-
p= pist—q - v (419 tionis analogous to the partition function of a polymer start-

ing from origin to the point. Its behavior is similar to the
survival partition function because in the process the particle
nay feel(in a perturbative approagihe potential any num-

er of times. The scaling that time and space are related by
[N]=[r]? then gives, via the scaling of the survival partition

where we have introduced the superscrifds and {u} to
distinguish the values of the exponent at the stable and u
stable fixed points, respectively¥ of Eq. (4.11) is W%
here] Using the unstable fixed point value in E§.11), we

do see this equality to be true because func(tion), R(r)~|r[?¥s2~|r|"". This is what we get from
Eq. (5.3.

) V1+4g At d=1, we then get at=u}, [the unstable fixed point of

=1 (4.16 Eq. (3.7 with e=1] R(r)~|r|“3. The moments of scalar

r2=r.r, defined for generad by

C.d#1
r\P 2,d-1
For 1<d<2, i.e.,d=2— e with positive e, the results of 20\ _ j (r-DPR(N7 T dr
the preceding subsection can be repeated by ugirgf Eq. (reb)= ' (5.4

(3.12. The reunion exponent requires> — e/4 (so that¥ J R(r)?r¢tdr
>1) for a phase transition that is identical to the condition of
the real fixed point of the flow equation. The length-scalewould depend on the long tail of the wave function. The
exponent becomes equal }oat g=d(4—d)/2=(4—€?)/2,  wave function itself is not normalizable fof >—3,i.e., for
which coincides with the value of at whichW=4. The g<2 This is a signature of an unbound state. In such a
exponents satisfy the general scaling relations of E§82  situation, by tuning the short range part of the potential from
and(4.15. below, one can get a bound state arbitrarily close to zero
The stability of the fixed points flips at=2. The results energy. As the zero-energy state is reached, the length-scale
for d>2 can be obtained by doing an analytic continuationthat measures the boundedness or localization of the state
from €>0 to e<0. For example, on the stable branch nowincreases without bound. Obviously, all the moments are di-
W =1+ e?+4g/2. Figure 2 shows the regions of critical vergent. This is the quantum picture of the criticality dis-
and first-order transition in the versusg plane. cussed in the preceding section for polymers.
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Forg> 3, the zero-energy wave function is normalizable.changed. The ground state is obtained fros0 for d=1.
This means a bound state with zero energy but with a londror other values ofl, | is to be chosen such that-12l <d
tail of the wave function. In this region, the bound state can<3—2I. (The choice makes the minimum centrifugal bar-
also be made to approach the zero-energy state, but there wiler)) By using our results, we see that #y(d) <2, there is
always be a finite length scale coming from the finite mo-no zero-energy bound state, though the state can be reached
ments of the wave function. This is a first-order transition,continuously from below. Substituting the expression for
but with a difference. The moments of are finite forp  A,(d), we find ¥ =(d/2)+! for d>2. This shows that for
<(y1+4g)/2—-1, i.e, forp<¥ -2, and any value op  |=0 and 1<d<4, there can be no bound state at zero en-
<W¥ -2 may be used to define a finite length scale. How-ergy. As the short range parameter is tuned, the localization
ever, the divergence of the higher moments indicates somlength of the bound state diverges with an exponent
remnants of the “criticality.” The integer values of the re- L L
union exponent, which show up in the free energy in Eq. _ _
(4.6, also make their presence felt here as the special val- LM d=2] for 1<d<4, 58
ues at which a new integer moment becomes finite.

We immediately see that all the moments éfre diverg-  with W=2 atd=4. Ford<1, the ground state comes from

ing for u® > — 3, and the firspp moments are finite for =1, so that
g>(p+1)°—3. (5.5) 1 B
Vi_|d| for 1s=d<1. (5.9

For p violating this criterion, using a finite-size scaling
analysis(i.e., by cutting off the integral for large by the  Similarly, v, =1//d+2| for —3<d<-1 when|=2. In
length scalg one gets general,

1 1
Vp:E (2p+2—+1+49). (5.6 Vl—m for 1-2l=d<3-2l. (5.10

That there is a diverging length scale coming from higherFor all d<4, v /v, =2. Ford>4, we find from Eq.(5.5)
moments gives aa posteriorijustification of the RG analy- that thepth moment ofr will be finite [27] if p<d—4, and

sis based on fixed points. for p>d—4 one gets
The states wittE<0 always have at least exponentiat
faste) decays of the wave function at large distances. This v :E_ d—4 (5.11)
b . .

rapid decay ensures finiteness of all moments. However, at
the transition point, the possibility of diverging moments
arises because of the power-Idiicritical” ) decay of the VI. CONCLUSION
wave function. '
In conclusion, we have investigated the reunion of ran-
Short range interaction, generald dom walkers having both short range and Iong range inter-
h hat th di ional Its actions. By using a momentum-shell renormalization-group
We now show that the one-dimensional exact results ofg -\nique, the reunion and survival exponents have been cal-
the reunion behavior can be made to bear upon the h'gheE'ulated The exponent? =g, for polymers has been
dimensional problems also. In the process, we recover many, | ated at the unbound phase and at the binding-unbinding
results obtained earlier from detailed exact solutions for eacﬂansition point represented by the stable and the unstable
d by using the.propemﬁs of special funci‘tlo[mﬁ,Zﬂ. fixed points, respectively, in the coupling constant space.
_Letus consider a short-range central potendl). De- e yalue of this exponent in the unbound phase is crucial in
fining ¢(r)=r"""""R(r), whereR(r) is the radial part of = jatermining the nature of the binding-unbinding transition
the wave function, the Schdinger equation il dimensions [21,12,7. This transition is critical for ¥ ¥ <2 and first

can be written a$26] order with higher moments diverging far >2. SinceW¥ is

42 A(d explicitly dependent on the strength of the long range inter-
— _¢+ I )+V(r) H(r)=Eé, (5.7)  actiong, the order of the phase transition depends on this
dr? r2 parameter. See Fig. 2. For exampledat1, the dimension

more relevant in the context of the experimental observation
whereA(d)=(d+2l—3)(d+2l—1)/4 is the coefficient of of vicinal surfaceqd7], one finds a first-order transition for
the angular momenturtor centrifugal barrier,| being the g>3 and criticality for —3<g<32. In the quantum-
integer angular momentum quantum number. Note that thenechanical picture, the different nature of the phase transi-
factor r(4~Y’2 makes the integral overthe same as that of tion is reflected in the approach of the bound state to the
the one-dimensional problem. Tidedimensional problem is zero-energy state as the short range part of the potential is
then reduced to the one-dimensional problem, and the exatined. Forg<3, one can get the bound state arbitrarily close
results ford=1 for variousg as obtained in the preceding to the zero-energy state with a diverging length scale as the
subsection can be used to get the featuresl amd | are  gap vanishes, whereas for the first-order cage ), the
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length scale remains finite. In the latter case, it is possible tén the Fourier space, this term appears as

define diverging length scales from higher momésee Eq.

(5.6)]. This one-dimensional case can further be extended to N

the case of a quantum particle subjected to a short range f fde(Z,p)Z(Z,—p)[v0+v|r(p)], (A2)
potential in dimensiongl#1 with the centrifugal barrier 0

playing the role of the long range potential. The fact that allyhere 4, (p)=Agp’ ¥(d—). By using Z(z,p)=exp

the details and the nuances of the? interaction problem [—p?2/2], we perform integration only over an outer shell of
known from exact solution$10,21,26,27 could be recov- ra4ii A and A(1— ), where § is a very small parameter.
ered in a unified manner via the reunion behavior lends crerhjs js done essentially to integrate out the small-scale fluc-
dence to the general approach developed in this paper. Oyfations. In the largéd limit, the contribution of the above
method can be used for other problems and interactions §gym after the momentum-shell integration is
well.

A=K f[vo+or(A)]. (A3)

APPENDIX: RENORMALIZATION OF THE SURVIVAL . . . .
PARTITION EUNCTION By taking this term into account, one can exprésviewed

at a larger length scale\(— §A) ! in terms ofZ viewed at
In the noninteracting case, the survival partition functiona smaller resolution as
Z for Gaussian walkers is unity. The anomalous exponent of B
N in the survival partition function appears due to the inter- Z(A = S6N)=Z(A) = ZJ(A)KgA ™ Tvotvi(A)],
action among the chains. The nontrivial contribution of this (A4)
interaction is apparent from the one-lo@gu) term, which

) S N S ; where only the cutoff dependence is shown explicitly. This
is shown in Fig. 1. The contribution of this diagram is

equation can further be transformed into a differential equa-

tion form
N
dr,dr,Z(z,r1|0,00Z(z,r,|0,0) dinz
JO J 1Yt 2 1| 2| s:_u’ (AS)
dA
X | vod(r—ra)+ _9 _ (A1) whereL=A"1. By using the fixed-point value fou, one
[ri—rol” obtains the exponent given in E@.9).
[1] M.E. Fisher, J. Stat. Phy84, 667 (1984). R703(1992; S.M. Bhattacharjee, Physica #86, 183(1992.
[2] D.A. Huse and M.E. Fisher, Phys. Rev.23, 239 (1984. [12] E.B. Kolomeisky and J.P. Straley, Phys. Rev4B 12 664
[3] S. Mukherji and S.M. Bhattacharjee, J. Phys.28, L1139 (1992. E.B. Kolomeisky Phys. Rev. Let?3, 1648(1994.
(1993. [13] See, e.g., S. Mukherji and T. Nattermann, Phys. Rev. Z6ft.

[4] S. Mukherji and S.M. Bhattacharjee, Phys. Rev4d& 3427
(1993; 52, 3301E) (1995.
[5] J.W. Essam and A.J. Guttmann, Phys. Re%2E5849(1995.

139 (1997, and references therein.
[14] S.M. Bhattacharjee, e-print cond-mat/9912297; J. Phy33A

[6] S.M. Bhattacharjee, Phys. Rev. Lef6, 4568 (1996; Note 1423 (2000; 33, 9003E) (2000; D. Lubensky and D.R. Nel-
thatg andh of this reference should be the same. See also M, _ SO Phys. Rev. LetB5, 1572(2000.
Lassig,ibid. 77, 526 (1996; and V.B. Shenoy, S. Zhang, and [15] S:M. Bhattacharjee, e-print cond-mat/0010132.
W.F. Saamijbid. 81, 3475(1998; e-print cond-mat/9901153; [16] A. Maritan, E. Orlandini, and F. Sen@npublished
Surf. Sci.467, 58(2000. The last reference makes a comment, [17] D. Marenduzzo, A. Trovato, and A. Maritan, e-print
after Eq.(53), on the nonapplicability of the continuum theory cond-mat/0101207.
for g>3/4. This is not correct. The proper use of RG in this [18] M.S. Causo, B. Coluzzi, and P. Grassberger, Phys. R&2, E

region has already been shown in Rdf] below. The present 3958(2000.
paper provides more details. . [19] S.M. Bhattacharjee and S. Mukheriji, Phys. Rev. L&, 49
[7] S.M. Bhattacharjee and S. Mukherji, Phys. Rev. L&¥.2374

(1999 (1993; S. Mukherji and S.M. Bhattacharjeiid. 70, 3359E)

[8] V.J. Marchenko and A. Ya Parshin, Zﬁkﬁa. Teor. Fiz.79, (1993. Phys: Rev. EI8 3483(.1993' .
257 (1980 [ Sov. Phys. JETB2, 129 (1980]; W. Kohn and [20] The connection between reunion and overlaps of directed poly-

K.H. Lau, Solid State Commuri8, 553 (1976. mers in a random medium has been noted earlier. See S.
[9] S. Song and S.G.J. Mochrie, Phys. Rev. Lég, 995 (1994); Mukheriji, Phys. Rev. B50, 2407(1994), and S. Mukherji and
Phys. Rev. B51, 10 068(1995; M. Yoon et al, Surf. Sci. S.M. Bhattacharjee, Phys. Rev.53, 6002(1996.
411, 70 (1998. [21] R. Lipowsky, Europhys. Lettl5, 703 (1991); For a review,
[10] F. Calogero, J. Math. Phy40, 2191(1969; 10, 2197(1969; see, e.g., G. Forgacs, R. Lipowsky, and Th. Nieuwenhuizen, in
B. Sutherlandibid. 12, 246(1971); 12, 251(1971); Phys. Rev. Phase Transitions and Critical Phenomenadited by C.
A 4, 2019(1971); 5, 1372(1972. Domb and J.L. LebowitZAcademic, New York, 1991 Vol.
[11] S.M. Bhattacharjee and J.J. Rajasekaran, Phys. Red6 A 14.

051103-8



REUNION OF RANDOM WALKERS WITH A LONG RANGE . .. PHYSICAL REVIEW E 63 051103

[22] This is analogous to the condition determining the radius of (1966.
convergence of the generating function for the discrete case d25] M.E. Fisher, J. Chem. Phy45, 1469(1966.
Ref.[1]. Note that this corresponds to the root closest to origin[26] R. Balian and G. Toulouse, Ann. Phy#.Y.) 83, 28 (1974).

in the formulation of Ref[1]. [27] R. Lipowsky and Th. M. Nieuwenhuizen, J. Phys.2A, L89
[23] S. Lifson, J. Chem. Phy40, 3075(1964). (1988; R.K.P. Zia, R. Lipowsky, and D.M. Kroll, Am. J.
[24] D. Poland and H.A. Scheraga, J. Chem. Ph45, 1464 Phys.56, 160 (1988.

051103-9



