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Reunion of random walkers with a long range interaction:
Applications to polymers and quantum mechanics
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We use a renormalization group to calculate the reunion and survival exponents of a set of random walkers
interacting with a long range 1/r 2 and a short range interaction. These exponents are used to study the
binding-unbinding transition of polymers and the behavior of several quantum problems.
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I. INTRODUCTION

The problem of reunion of interacting random walke
appears in many situations, directly or in disguise, such
e.g., in situations involving one-dimensional stringlike o
jects such as interfaces, steps on surfaces, in one-dimens
quantum problems, in several types of polymer proble
wetting, etc. The issue quite often is the large-length sca
of the partition function of reunion~or survival! of a set of
walkers all starting, say, at origin. For a purely short ran
repulsive interaction, this is the problem of ‘‘vicious walk
ers.’’ Many of the vicious-walker reunion and survival exp
nents are known from exact calculations in one dimens
@1,2#, the renormalization-group~RG! approach@3,4# for
general dimensions, and lattice models in two dimensi
@5#. Recent studies of phase transitions on vicinal or mis
surfaces@6,7# required the scaling behavior of such partitio
functions in the presence of a long range interaction~namely
1/r 2) in addition to short range interactions. The effecti
interaction of steps on a vicinal surface has a longr 22 tail
@8# and recent studies on Si~113! surfaces indicate the pres
ence of an attractive short range interaction@9# as well. Simi-
lar long range interactions occur in the one-dimensio
Calogero-Sutherland model@10# of interacting quantum par
ticles, and as the angular momentum term in high
dimensional quantum problems.The reunion and surviva
behaviors turn out to be the unifying feature in these w
varieties of problems. These motivated us to study the sca
ing limit of various partition functions in the presence
long-range interactions, especiallyr 22. We use these result
for studying phase transitions of polymers and then sh
how many results of quantum problems can be recove
from such an analysis.

The success of the RG approach for short range inte
tions @3–5,11# and the possibility of exact renormalization
the presence of long range interactions@12,7# allowed us to
use the renormalization-group approach for this problem
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is known that the probability distribution function for a ran
dom walker can be represented by the Wiener integral, wh
as a path integral could, in the manner of Edwards, repre
a polymer. Any interaction of two or more walkers at th
same time or step length would translate into an interac
among the polymers at the same contour length.
d-dimensional walkers, we would then get (d11)-
dimensional interacting directed polymers. We shall be us
this polymer language throughout this paper.

Phase transitions in polymerlike systems by interactio
at the same contour length occur, e.g., in the case of s
already mentioned, in flux lines in superconductors@13#, in
melting and unzipping of DNA@14–19#, to cite a few. A
directed polymer formulation then becomes quite natural
this paper, our focus is mainly on the effect of the long ran
interaction on these phase transitions, recovering the res
for the short range case as a special case. Furthermore
exploit the relation between polymers and quantum proble
to show the importance of reunion behaviors in wide vari
ies of problems in various dimensions@20#.

In this paper, we recover several results known from ex
solutions, illustrating how the reunion exponent armed w
the renormalization group gives a unified approach to th
problems. The RG approach can be extended to other ty
of interactions, especially other marginal interactions,
which exact solutions are not known, such as that require
the vicinal surface problem of Ref.@7#. There lies the merit
of the approach of this paper.

The Hamiltonian and the general exponents of interest
introduced in Sec. II. The general RG approach is discus
in Sec. III, where the exponents are also calculated, w
some of the details in the Appendix. These results are t
used for polymer problems in Sec. IV and quantum proble
in Sec. V. The conclusion is given in Sec. VI.

II. HAMILTONIAN AND THE EXPONENTS

The Hamiltonian forp-directed polymers with pairwise
interaction@6,7# is

Hp5(
i

p E
0

N

dz
1

2 S ]r i~z!

]z D 2

1(
i . j

E
0

N

dzV„r i j ~z!…,

~2.1a!
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where r is a d-dimensional position vector andr i j (z)
5r i(z)2r j (z). The interaction potential is taken as

V~r !5v0dL~r !1
g

ur us
, ~2.1b!

anddL(r ) is a delta function with a cutoff such that in Fou
rier space

dL~q!51 for q<L,

50 otherwise. ~2.1c!

We shall use this cutoff for the whole potential. Our intere
is in the asymptotic behavior of the following partition fun
tions.

~a! Reunion of all the chains of lengthN at a pointr ,

ZR,p~N,r !5E DRe2Hp)
i 51

p

@dd
„r i~0!…dd

„r i~N!2r …#;

~2.2a!

;N2cR,p, ~2.2b!

~b! reunion anywhere,

ZR,p~N!5E ddrZR,p~N,r ! ~2.2c!

;N2CR,p; ~2.2d!

and ~c! survival,

ZS,p~N!5E DRe2Hp)
i 51

p

@dd
„r i~0!…# ~2.2e!

;N2cS,p, ~2.2f!

where*DR stands for the summation over all possible co
figurations of the polymers~path integrals!. The constraint
that all chains are tied together at the originis represented
by the product of thed functions. In case~c!, the ends atz
5N are free for all the chains.

In the above equations, the asymptotic behaviors de
the basic exponents (cR,p ,CR,p ,cS,p) of interest in this pa-
per. These exponents are expected to be universal, inde
dent of the detailed microscopic form of the polyme
Hence the choice of a continuum model.

The notation introduced above is used in Sec. III, wh
these exponents are calculated. However, in the subseq
sections on polymers and quantum problems, we n
mainly CR,2 . We therefore adopt the notation

C[CR,2 . ~2.3!

Our primary interest is in the marginal cases52, though
other values are also discussed briefly. The importance
s52 can be gauged if the Hamiltonian is considered a
quantum-mechanical system in imaginary timet5 iz. The
kinetic energy and ther 22 interaction~like the angular mo-
05110
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mentum! scale in the same way for all dimensions. Ther 22

potential is the centrifugal barrier in quantum mechani
while it occurs in surface problems as an effective interact
between steps induced by the elastic strains on the sur
@8#.

Known exponents for the short range case

For the noninteracting problem,v05g50, the exponents
follow from the Gaussian behavior of the chains. The pa
tion function for a Gaussian chain of lengthN is given by

Z~RNu00!5~2pN!2d/2exp~2R2/2N!, ~2.4!

from which one obtains

cS,p50, cR,p5
pd

2
, and CR,p5

~p21!d

2
. ~2.5!

It is also known that for purely repulsive walkers~vicious
walkers! in d51 ~i.e., with g50) @1,2#,

cS,p5
p~p21!

4
,cR,p5

p2

2
,and CR,p5

p221

2
. ~2.6!

We earlier generalized the above results tod522e for the
short range case~i.e., g50) by using RG and obtained@3,4#

cS,p5hp ,cR,p5
pd

2
12hp and CR,p5

~p21!d

2
12hp ,

~2.7a!

where, withe522d,

2hp5S p
2D e13S p

3D ln~3/4!e21•••. ~2.7b!

For d52, our RG yieldsZR,p;N2(p21)(ln N)2p(p21), which
has since been obtained by the exact lattice calculation
Essam and Guttmann@5# for p52. This lends further suppor
to the validity of the renormalization-group approach.

That only one anomalous exponent is needed was sh
explicitly in Refs. @3,4#. This could be understood from th
geometry that a reunion partition function can be thought
as two survival partition functions connected together.

In this paper, we calculate the anomalous parthp for the
case with long-range interaction at the one-loop level. Si
this one-loop RG generates exact results@12#, we obtain ex-
act exponents with nonzerog.

III. RENORMALIZATION GROUP

Survival partition function

To evaluate the survival exponent, we use a momentu
shell RG approach as used in Ref.@12#. The renormalization
process requires integrating out small-scale fluctuations
that the effect of interactions of the two chains within a sm
distance is taken into account by redefining the parameter
the Hamiltonian. In this problem, in addition to the param
eters of the Hamiltonian, we need to consider the survi
partition function also.
3-2
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In Fourier space, the renormalization of the interact
can be carried out using the effective interaction at the o
loop level,

Veff~k!5V~k!2EL ddq

~2p!d

V~ uk2qu!V~q!

q2
. ~3.1!

The Fourier transform defined generically as

F~k!5E ddr eik•rG~r ! ~3.2!

requires an appropriate analytic continuation of the integ
for singular potentials. In particular, the Fourier transform
r 2s has a singular part

A
k2d1s

d2s
in general, ~3.3a!

where

A52d2s11pd/2
G„~d2s12!/2…

G~s/2!
, ~3.3b!

and, fors52, this singular part takes a simpler form,

1

Kd

k22d

d22
, ~3.3c!

whereKd5Sd /(2p)d, Sd52pd/2/G(d/2) being the surface
of a d-dimensional unit sphere. A natural choice for the p
tential is therefore

V~k!5v01
A

d2s
gks2d. ~3.4!

Let us also introduce at this point the dimensionless par
eters

ũ5vLe,g̃5KdAgL22s, and u5Kdũ1
g̃

d2s
~3.5!

with v5v0 as the bare value of the short range coupl
constant. Note that fors52, g5g̃.

By implementing a thin-shell integration overL2dL
,k,L and then rescaling the cutoff back toL(51), the
coupling constants’ renormalization can be written in t
form of recursion relations as

L
du

dL
5eu2u21g̃, ~3.6a!

L
dg̃

dL
5~22s!g̃. ~3.6b!

The thin-shell integration is analytic and therefore does
renormalize a singularg-type long range potential in th
Hamiltonian. The flow equation of Eq.~3.6b! for g then fol-
lows from dimensional analysis. The exactness of Eq.~3.6a!
05110
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for g50 and for gÞ0 is discussed in Refs.@11,12#. This
marginality ofg is a reflection of the importance of anr 22

potential in the Hamiltonian, as is well known in quantu
mechanics. In the surface context, this marginality impl
that the strength of interaction between two steps is invar
under scale transformation.Henceforth we considers52,

and use ginstead ofg̃.
The flow equation foru gives rise to two fixed points

us,u* 5 1
2 @e6Ae214g#, ~3.7!

where the subscriptss and u represent stable and unstab
fixed points, respectively.

For the survival partition function, the one-loop contrib
tion is shown in Fig. 1. The loop contribution is similar t
the one-loop case for the interaction, though here it isO(u).
The flow equation forZS is ~see Appendix A for details!

L
dZS

dL
52uZS ~3.8!

so that at the stable fixed point of Eq.~3.6a!,

h25us* /2. ~3.9!

This result can be generalized to any number of chains
which there will be a combinatorial factor (2

p) from the pair-
wise interaction to yield

hp5
1

2 S p
2Dus* . ~3.10!

This exact relation forp52 is a consequence of the conne
tion between the coupling constantu ~vertex function! and
the survival partition function. The interactionu can be
thought of as twop52 survival partition functions joined a
the node so that renormalization ofu is a product of the
renormalizations of two survival partition functions.

The reunion-anywhere exponent ford51 is given by

CR,p5
p21

2
1S p

2Dus* . ~3.11!

A special case of this isCR,25
1
2 1us* . For only short range

interactions~i.e., g50), us* 51 and one gets back the v
cious walker exponent of Huse and Fisher@CR,p5(p2

21)/2# @1,2#. One notes that the anomalous part is just
combinatorial factor. The general results for all three reun

FIG. 1. Zeroth- and first-order diagrams for survival. The so
lines indicate the polymers and the wavy line denotes interactio
3-3
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and survival exponents are obtained by substituting
~3.10! for hp in Eq. ~2.7a!. We quote the exact result ford
522e andp52,

C[CR,25
d

2
1

e1Ae214g

2
511

Ae214g

2
. ~3.12!

This is used in the following sections.
A few things are to be noted here. First, the fixed poi

become complex forg,2e2/4, in particular forg,2 1
4 for

d51. For this borderline cased5262A2g, the reunion
exponent isCR,251. The locus of the points in thed versus
g plane forCR,251 andCR,252 are shown in Fig. 2. As we
show in Sec. IV, these lines are very special.

IV. BINDING-UNBINDING TRANSITION OF POLYMERS

Let us consider two directed polymers, thep52 case of
Eq. ~2.1a!. The fixed-point diagram of Fig. 3 shows that
d51, for a giveng.2 1

4 , there will be a binding-unbinding
transition asv is changed~see Fig. 1 of Ref.@7#!. The tran-
sition is defined by the unstable fixed point while the sta
fixed point describes the ‘‘high-temperature’’ phase. Seve
features of this transition have been discussed in Ref.@12# in
the renormalization-group framework and in Ref.@21#. We
show here that certain unresolved issues~e.g., order of tran-
sition! in the RG framework can be sorted out by using t
reunion exponent, thereby gaining a complete picture of
problem. The problem can be anticipated by noting that
exponentn associated with the diverging length scale, as
transition is reached, approaches the limitn5 1

2 as g→ 3
4 .

Care should, therefore, be exercised in drawing conclus
from the flow diagram. We discuss now how the behavio
the stable fixed points determines the phase transition a
unstable fixed point.

For generality, we develop the procedure in a general w
and then derive the results for the 1/r 2 interaction, especially
for p52 ~two-chain case!. The internal consistency is als
shown by a finite-size scaling argument. That the exact
sults are recovered corroborates the utility of the RG
proach, coupled with the reunion behavior, for other inter
tions as well.

FIG. 2. The locus of points in thed vs g plane for reunion
exponentCR,251 andCR,252. The shaded region is the region fo
continuous transition. The transition is first-order outside it. T
lightly shaded region has complex-conjugate fixed points that ar
importance in the context of non-Hermitian Hamiltonians.
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General approach

In order to study the nature of the transition, we adopt
procedure of Ref.@1#. The partition function is obtained by
summing over all configurations of the two chains. Our ma
interest is in the phase-transition behavior and therefore o
long-distance behaviors will be considered. The configu
tions can be characterized by the alternate sequence o
mains of bound~A! and unbound~bubble, B) regions, as
shown Fig. 3. The bound regions correspond to the left s
of the unstable fixed point of the flow diagram~the coupling
constant flows to2`), while the bubbles correspond to th
high-temperature phase characterized by the stable fi
point.

Let us denote the partition function for a segment
lengthN of typeX by QN

X . We assign a weightv to eachA-B
and B-A junction, and for simplicity we consider cases
which the chains start and end inA-type domains. This extra
factor v is to take care of the deviation from the strictA- or
B-type behavior at the junctions. The total partition functi
can be written as

QN
T5QN

A1E
0

N

dz2E
0

z2
dz1QN2z2

A vQz22z1

B vQz1

A 1•••.

~4.1!

To exploit the convolution nature of the terms of the seri
we go over to the grand-canonical ensemble with respec
the chain length. This is equivalent to taking the Lapla
transform of the partition functions with respect toN. Defin-
ing the Laplace transform as

GX~s!5E
0

`

e2sNQN
XdN, ~4.2!

whereX is A, B, or T, the above series can be written in th
form of a geometric series and can be summed to obtain

GT~s!5
GA~s!

12v2GA~s!GB~s!
. ~4.3!

The existence of the thermodynamic limit ensures thatGX(s)
is analytic for s. f X , where f X5 lim

N→`
N21ln QN

X , and

GX(s)→0 ass→`. In other words, the largest real singu
larity of GX(s), in the complex-s plane determines the cor
responding limiting free energy per unit length@22#. For

e
of

FIG. 3. ~a! A general configuration of the two polymers, con
sisting of bound~A! and unbound~B! regions.~b! A generic fixed-
point diagram foru from the RG flow. See also Fig. 1 of Ref.@7#.
3-4
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GT(s), this could either be the singularity ofGA or GB or
may come from the vanishing of the denominator of E
~4.3!, i.e., the solution of

v2GB~s!51/GA~s!. ~4.4!

In caseGA or GB diverges, then the denominator of Eq.~4.3!
vanishes for a larger value ofs, and then it is the root of Eq
~4.4! that is the relevant one. In such a situation, the f
energy will not have any singularity. It follows that it is onl
the nondiverging branch points that could lead to phase t
sitions.

For theA-type region, the partition functionQN
A5e2b«N,

whereb is the inverse temperature. Its Laplace transform
a simple pole. Therefore, the singularity ofGA is not impor-
tant for our discussion. Consequently, it is the partition fu
tion of the bubbles~high-temperature phase! that determines
the behavior of the chains@23–25#. The partition function of
the bubble at the stable fixed point for largeN is given by

QN
B'

qe2Ns0(T)

NC
, ~4.5!

where the reunion-anywhere exponentC at the stable fixed
point appears. Here and in the following discussion, for c
venience, we have removed the subscripts of the reun
exponent introduced in Sec. II@see Eq.~2.3!#. The Laplace
transform of this partition function has a singularity ats
5s0(T), and the nature of the singularity depends on
value of the reunion exponent,C. There is a divergence a
this singularity ifC,1. A phase transition therefore occu
only for C>1. The details of the graphical solution, for th
discrete case, can be found in Ref.@1#.

For C.1, the high-temperature phase is described by
root of Eq.~4.4! and the transition is given by the temper
ture T5Tc at which the root of Eq.~4.4! coincides with the
singularity of GB(s). Defining the deviation of temperatur
ast5Tc2T, the free energy@from the root of Eq.~4.4!# can
be written as

f T's0~T!2utu1/(C21) for 1,C,2, ~4.6a!

's0~T!2 (
1

m21

aj t
j1utu(C2m) for m,C,m11.

~4.6b!

We find a critical behavior for 1,C,2 but a first-order
transition for C.2. In case of a critical behavior, th
specific-heat exponent can be read off from the free ene
as

a522~C21!215
2C23

C21
. ~4.7!

B. dÄ1

The crucial feature in the approach developed in the p
ceding subsection is the alternate sequence of the two t
of ‘‘bubbles’’ and therefore the results can be used, for
05110
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ample, in the case of unbinding ofp chains with p-body
interaction@11,4# and other cases. To take advantage of p
vious studies, we concentrate on the two-chain problem.

Let us now consider the case of two directed polymers
(111) dimensions, for which we obtainedC5(1
1A114g)/2. The fixed points~see Fig. 3! indicate that there
is a binding-unbinding transition at the unstable fixed po
for any giveng as u is varied. For anyu0,uu* , the renor-
malized flow goes to2`, so that a length scale can b
identified fromu( l * )→2`. From this, asu0→uu* , the di-
verging length scale comes out as (t[Du5u2uu* )

j';utu2n' with n'5
1

us* 2uu*
. ~4.8!

For d51, we have

n'5
1

A114g
. ~4.9!

This shows thatn'5 1
2 at g5 3

4 , a signature of something
special happening there. The reunion exponent, coupled
the analysis of the preceding subsection, tells us that th
cannot be a phase transition forg,2 1

4 , a fact corroborated
by the fixed-point diagram~see Fig. 1 of Ref.@7#!. A critical
behavior is expected for34 >g>2 1

4 and a first-order transi-
tion for g. 3

4 .
For 2 1

4 <g< 3
4 , which includes the pure short rangeg

50 case, the average fraction of the length in the bound s
is given by

Q~ t !;
] f

]t
;utub. ~4.10!

This defines the order-parameter exponentb. This exponent
and the specific-heat exponent are given by

b5
22C

C21
5

22A114g

A114g
and a52

A114g21

A114g
.

~4.11!

Note thata51 at g5 3
4 , a requirement for a first-order tran

sition.
The bubble lengths have fluctuations and this gives

measure of the diverging length scale parallel to the chain

j i;utu2n i with n i52n' . ~4.12!

Note that the hyperscaling relationdn i522a is obeyed by
these nonuniversal exponents withd51. This is because the
free-energy density is the free energy per unit length of
polymers and not the unit (d11)-dimensional area.

If g. 3
4 , Q(t)→const ast→02. This indicates a first-

order transition. The longitudinal length-scale exponent
n i51, i.e., it sticks to its value atg5 3

4 . However, the free
energy as given by Eq.~4.6a! shows a weak singularity tha
will be reflected in the divergence of an appropriate high
derivative. One therefore finds a rather unusual first-or
transition with weak singularities and diverging length sca
3-5
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@21#. Such scales can be determined from the higher cu
lants of the length fluctuations of the bubbles. We disc
these issues in the next section in the context of the equ
lent quantum problem.

C increases withg and every timeC crosses an integer
the diverging derivative shifts by 1. These special values
g5(m21)22 1

4 .
At g52 1

4 , two fixed pointsus* anduu* merge at a com-
mon valueu* 5 1

2 . The bound phase corresponds to theu0
, 1

2 region and the transverse length scale diverges as

j'; exp@1/~1/22u0!#. ~4.13!

However a Kosterlitz-Thouless-type behavior is observe
g is varied@12#.

Finite-size scaling for the critical point

We have derived the exponents for the critical point fro
our results of the stable fixed point or the high-temperat
phase. An independent verification of the exponents co
from a finite-size scaling argument used strictly in the criti
region characterized by the unstable fixed point. The reun
describes the contacts of the two chains and therefore
number of contacts at the unstable fixed point would hav
finite-size scaling behavior (L is a length along the chain!

QL;L2C$u%
;tC$u%/n i, ~4.14!

which identifies

b5
22C$s%

C$s%21
5

C$u%

n i
, ~4.15!

where we have introduced the superscripts$s% and $u% to
distinguish the values of the exponent at the stable and
stable fixed points, respectively.@C of Eq. ~4.11! is C$s%

here.# Using the unstable fixed point value in Eq.~3.11!, we
do see this equality to be true because

C$u%512
A114g

2
. ~4.16!

C. dÅ1

For 1,d,2, i.e.,d522e with positivee, the results of
the preceding subsection can be repeated by usingC of Eq.
~3.12!. The reunion exponent requiresg.2e/4 ~so thatC
.1) for a phase transition that is identical to the condition
the real fixed point of the flow equation. The length-sc
exponent becomes equal to1

2 at g5d(42d)/25(42e2)/2,
which coincides with the value ofg at which C54. The
exponents satisfy the general scaling relations of Eqs.~4.12!
and ~4.15!.

The stability of the fixed points flips atd52. The results
for d.2 can be obtained by doing an analytic continuat
from e.0 to e,0. For example, on the stable branch no
C511Ae214g/2. Figure 2 shows the regions of critica
and first-order transition in thed versusg plane.
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V. QUANTUM PROBLEM

The Hamiltonian of Eq.~2.1a! represents two quantum
particles either in the path-integral representation in ima
nary time or as a statistical mechanical problem atT50. In
the center-of-mass frame, the equivalent Schro¨dinger equa-
tion for s52, wherev0(r ) is the short range part of th
interaction, is

2“

2c~r !1Fv0~r !1
g

r 2Gc~r !5Ec~r !. ~5.1!

For zero energy, the radial part of the wave function can
written as

R~r !5expF E u~r !

r
drG ~5.2!

with u(r ) satisfying

r
du

dr
5~22d!u2u21g. ~5.3!

Taking l 5 ln(r/a), we can recast the above equation in a fo
resembling the RG flow equation. In other words, the R
flow equation at long distances determines the radial par
the zero-energy wave function.

We consider the transition point itself, which correspon
to the unstable fixed point. In caseu of Eq. ~5.3! reaches a
fixed point, the wave function has an algebraic tail asR(r )
;ur uu* .

The wave functionR(r ) satisfying the Schro¨dinger equa-
tion is analogous to the partition function of a polymer sta
ing from origin to the pointr. Its behavior is similar to the
survival partition function because in the process the part
may feel~in a perturbative approach! the potential any num-
ber of times. The scaling that time and space are related
@N#5@r #2 then gives, via the scaling of the survival partitio
function, R(r );ur u2CS,2;ur uu* . This is what we get from
Eq. ~5.3!.

At d51, we then get atu5uu* @the unstable fixed point o

Eq. ~3.7! with e51# R(r );ur uuu* . The moments of scala
r 25r•r , defined for generald by

^r 2p&5

E ~r•r !pR~r !2r d21dr

E R~r !2r d21dr

, ~5.4!

would depend on the long tail of the wave function. T
wave function itself is not normalizable foruu* .2 1

2 , i.e., for
g, 3

4 . This is a signature of an unbound state. In such
situation, by tuning the short range part of the potential fro
below, one can get a bound state arbitrarily close to z
energy. As the zero-energy state is reached, the length-s
that measures the boundedness or localization of the s
increases without bound. Obviously, all the moments are
vergent. This is the quantum picture of the criticality di
cussed in the preceding section for polymers.
3-6
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For g. 3
4 , the zero-energy wave function is normalizab

This means a bound state with zero energy but with a l
tail of the wave function. In this region, the bound state c
also be made to approach the zero-energy state, but there
always be a finite length scale coming from the finite m
ments of the wave function. This is a first-order transitio
but with a difference. The moments ofr 2 are finite for p
,(A114g)/221, i.e., for p,C22, and any value ofp
,C22 may be used to define a finite length scale. Ho
ever, the divergence of the higher moments indicates s
remnants of the ‘‘criticality.’’ The integer values of the re
union exponent, which show up in the free energy in E
~4.6a!, also make their presence felt here as the special
ues at which a new integer moment becomes finite.

We immediately see that all the moments ofr 2 are diverg-
ing for uu* .2 1

2 , and the firstp moments are finite for

g.~p11!22 1
4 . ~5.5!

For p violating this criterion, using a finite-size scalin
analysis~i.e., by cutting off the integral for larger by the
length scale!, one gets

np5
1

4p
~2p122A114g!. ~5.6!

That there is a diverging length scale coming from high
moments gives ana posteriori justification of the RG analy-
sis based on fixed points.

The states withE,0 always have at least exponential~or
faster! decays of the wave function at large distances. T
rapid decay ensures finiteness of all moments. Howeve
the transition point, the possibility of diverging momen
arises because of the power-law~‘‘critical’’ ! decay of the
wave function.

Short range interaction, generald

We now show that the one-dimensional exact results
the reunion behavior can be made to bear upon the hig
dimensional problems also. In the process, we recover m
results obtained earlier from detailed exact solutions for e
d by using the properties of special functions@26,27#.

Let us consider a short-range central potentialV(r ). De-
fining f(r )5r (d21)/2R(r ), whereR(r ) is the radial part of
the wave function, the Schro¨dinger equation ind dimensions
can be written as@26#

2
d2f

dr2
1S Al~d!

r 2
1V~r !D f~r !5Ef, ~5.7!

whereAl(d)5(d12l 23)(d12l 21)/4 is the coefficient of
the angular momentum~or centrifugal! barrier, l being the
integer angular momentum quantum number. Note that
factor r (d21)/2 makes the integral overr the same as that o
the one-dimensional problem. Thed-dimensional problem is
then reduced to the one-dimensional problem, and the e
results ford51 for variousg as obtained in the precedin
subsection can be used to get the features asd and l are
05110
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changed. The ground state is obtained froml 50 for d>1.
For other values ofd, l is to be chosen such that 122l<d
,322l . ~The choice makes the minimum centrifugal ba
rier.! By using our results, we see that forAl(d), 3

4 , there is
no zero-energy bound state, though the state can be rea
continuously from below. Substituting the expression
Al(d), we find C5(d/2)1 l for d.2. This shows that for
l 50 and 1,d,4, there can be no bound state at zero e
ergy. As the short range parameter is tuned, the localiza
length of the bound state diverges with an exponent

n'5
1

2
n i5

1

ud22u
for 1<d,4, ~5.8!

with C52 at d54. Ford,1, the ground state comes from
l 51, so that

n'5
1

udu
for 21<d,1. ~5.9!

Similarly, n'51/ud12u for 23<d,21 when l 52. In
general,

n'5
1

ud12l 22u
for 122l<d,322l . ~5.10!

For all d,4, n i /n'52. For d.4, we find from Eq.~5.5!
that thepth moment ofr will be finite @27# if p,d24, and
for p.d24 one gets

np5
1

2
2

d24

2p
. ~5.11!

VI. CONCLUSION

In conclusion, we have investigated the reunion of ra
dom walkers having both short range and long range in
actions. By using a momentum-shell renormalization-gro
technique, the reunion and survival exponents have been
culated. The exponentC[CR,2 for polymers has been
evaluated at the unbound phase and at the binding-unbin
transition point represented by the stable and the unst
fixed points, respectively, in the coupling constant spa
The value of this exponent in the unbound phase is crucia
determining the nature of the binding-unbinding transiti
@21,12,7#. This transition is critical for 1,C,2 and first
order with higher moments diverging forC.2. SinceC is
explicitly dependent on the strength of the long range int
action g, the order of the phase transition depends on t
parameter. See Fig. 2. For example, atd51, the dimension
more relevant in the context of the experimental observa
of vicinal surfaces@7#, one finds a first-order transition fo
g. 3

4 and criticality for 2 1
4 ,g, 3

4 . In the quantum-
mechanical picture, the different nature of the phase tra
tion is reflected in the approach of the bound state to
zero-energy state as the short range part of the potenti
tuned. Forg, 3

4 , one can get the bound state arbitrarily clo
to the zero-energy state with a diverging length scale as
gap vanishes, whereas for the first-order case (g. 3

4 ), the
3-7
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length scale remains finite. In the latter case, it is possibl
define diverging length scales from higher moments@see Eq.
~5.6!#. This one-dimensional case can further be extende
the case of a quantum particle subjected to a short ra
potential in dimensionsdÞ1 with the centrifugal barrier
playing the role of the long range potential. The fact that
the details and the nuances of ther 22 interaction problem
known from exact solutions@10,21,26,27# could be recov-
ered in a unified manner via the reunion behavior lends
dence to the general approach developed in this paper.
method can be used for other problems and interaction
well.

APPENDIX: RENORMALIZATION OF THE SURVIVAL
PARTITION FUNCTION

In the noninteracting case, the survival partition functi
Zs for Gaussian walkers is unity. The anomalous exponen
N in the survival partition function appears due to the int
action among the chains. The nontrivial contribution of th
interaction is apparent from the one-loopO(u) term, which
is shown in Fig. 1. The contribution of this diagram is

E
0

NE dr1dr2Z~z,r1u0,0!Z~z,r2u0,0!

3S v0d~r12r2!1
g

ur 12r 2us
D . ~A1!
M
d
;
nt
y
is

05110
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to
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In the Fourier space, this term appears as

E
0

NE dp Z~z,p!Z~z,2p!@v01v lr~p!#, ~A2!

where v lr(p)5Agps2d/(d2s). By using Z(z,p)5exp
@2p2z/2#, we perform integration only over an outer shell
radii L and L(12d), whered is a very small parameter
This is done essentially to integrate out the small-scale fl
tuations. In the large-N limit, the contribution of the above
term after the momentum-shell integration is

L2edKd@v01v lr~L!#. ~A3!

By taking this term into account, one can expressZs viewed
at a larger length scale (L2dL)21 in terms ofZs viewed at
a smaller resolution as

Zs~L2dL!5Zs~L!2Zs~L!KdL2e@v01v lr~L!#,
~A4!

where only the cutoff dependence is shown explicitly. Th
equation can further be transformed into a differential eq
tion form

d ln Zs

dL
52u, ~A5!

where L5L21. By using the fixed-point value foru, one
obtains the exponent given in Eq.~3.9!.
t
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