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Abstract

We discuss various aspects of the randomly interacting directed polymers with emphasis on
the phases and phase transition. We also discuss the behaviour of overlaps of directed paths in a
random medium.

1. Introduction

Polymers with randomness can be classified into two categories: (1) random medium,
and (2) random interaction, analogous to the random field and random bond problems
for magnets. These random problems remain notoriously difficult [1]. Attention has
therefore gradually shifted to simpler models, and for the past ten years directed polymers
played a crucial role in unraveling various issues concerning disordered systems. This
model is also important because of its rich behavior, and connection with nonequilibrium
surface growth problem with noise, flux line pinning in dirty samples etc. [2]. We like
to give an overview of the problem of randomly interacting directed polymers.

The pure problem is discussed in the second section. The randomly interacting model
and its field theoretic study can be found in Section 3. An exact real space renormaliza-
tion group approach to study the finite size effect is given in Section 4. The question of
overlap of two paths in a random medium that can be recast as a problem of interacting
directed polymers in a random medium is explored in Section 5. A summary is given
in Section 6.
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Fig. 1. Flow diagrams for (a) the pure coupling u for two chains, and (b) the disorder r,, for m chains. Here
dy, = 1/(m — 1). In both cases * denotes nontrivial fixed points.

2. Pure problem: binding-unbinding

Directed polymers (DP) are lines or polymers with a preferred direction. For m such
DPs a general Hamiltonian with many-body interaction can be written as

N mn-—

N
;Z/dzr? /dz om Hsd(r,,+1(z))+2/dz V(r2), (1)
=1 9

where 7; = dr;/dz, and r;j(z) = ri(z) —r;(z), ri(z) being the d-dimensional transverse
coordinate of a point at z on the contour of the ith chain [3-6]. The first term is the
elastic energy, taking care of the connectivity of the chains. The polymers interact with
a coupling constant v, if all the m chains meet at a point. There can also be an external
potential V(r,z) which in the random potential problem is a stochastic variable. For
most of this paper we will consider only m = 2 and m = 3 cases. The external random
potential problem will be considered in the last section.

With V = 0, the polymers undergo a binding-unbinding transition as the strength of
the potential is varied. For the two-body (m = 2) problem, the transition takes place
at v = 0 for d < 2, while a minimum strength of attraction is needed for binding
at d > 2. This is reflected in the renormalization group (RG) approach through the
unstable fixed point for the B-function for the coupling constant. This S-function tells
us the flow of the coupling as the system is probed at a bigger length scale. It is now
well known that the field theoretic RG can be implemented exactly for this class of
many-body problems. Introducing a dimensionless coupling constant u; = v2L?¢, the
exact SB-function is given by

_ L, u
B(u) :Lﬁ—2eu<] —477_6,), (2)

where u is the renormalized dimensionless coupling constant [3]. Note that 2¢’ =
(2 -4d).

The flow diagram for the dimensionless coupling constant u is shown in Fig. la. The
fact that for d < 2 any small attractive interaction is able to form a bound state is
reflected by the flow to the nonperturbative regime for any negative u. The repulsive or
the positive u region is dominated by the stable, “fermionic” fixed point u* (= 4#e’).



S.M. Bhattacharjee, S. Mukherji/ Physica A 224 (1996) 239-247 241

For d > 2 there exists a nontrivial unstable fixed point ¥ = u*, which separates the
bound and the unbound states for the two polymers. In short, the unstable fixed point
represents the critical point for the binding-unbinding transition. The correlation length,
£, for the transition describes the average separation of two contacts along the chain,
and it diverges as the critical point is approached with an exponent » = 1/| €’ | for
1 < d < 4, except for d = 2, where the correlation length diverges exponentially as
exp(1/v;). Other approaches seem to suggest that d = 4 is the upper critical dimension
for this problem [7,8], however RG is yet to give us that result. We would like to point
out that the exact B-function of Eq. (2) is obtained by absorbing the poles at d =2 in a
dimensional regularization scheme. This, of course, leaves the poles at d = 4 untreated.
Is it the signal for an upper critical dimension at d = 4?

The stable fixed point describes, in this problem, the unbound phase. A way of
characterizing the phase is to look at the asymptotic behaviour of the reunion partition
function, Zg (N). This partition function describes the situation where the chains are tied
together at both the ends, and the end points can be anywhere in space. The asymptotic
behaviour of Zg(N) ~ N~¥ was studied long ago for d = 1 in a different context
[9,10]. It is known that ¥ = 3/2 for two chains in 1 dimension with repulsive two-body
interaction. It follows from an exact random walk analysis or from a use of fermionic
nature of the quantum particles. These methods are restricted to one dimension only.
RG is the appropriate framework to obtain the asymptotic behaviour for other d, and
the exponent follows from the multiplicative renormalization constant for the partition
function. In this framework, the Huse-Fisher 1-dimensional exponent can be recovered
as an O(€’) result which is, in fact, exact [11,12]. Furthermore, this RG analysis also
shows that because of the marginality of the coupling at d = 2, there is a special
log correction to the Gaussian behaviour, and Zgx(N) ~ N~!(log N) 2. More general
results can be found in Ref. [12]. This log correction in two dimensions has recently
been recovered by Guttmann and Essam in an exact lattice calculation [13].

If we now go to the three-body interaction, then again a similar exact analysis can
be carried out [4]. We, in this paper, however, restrict ourselves only to d = 1 which
turns out to be the marginal case for v3. The critical exponent for unbinding transition is
v =2/|1—d|, except for d = 1, where the correlation length diverges like exp(1/v3). The
three-chain reunion partition function will have a log correction, identical to the marginal
two-chain case, namely, Zz(N) ~ N~2(log N) 2. The similarity in the behaviour of the
many-body interactions, if proper variables are used, is a novel feature of the multicritical
directed polymers, and has been termed “Grand Universality” [5]. We will see that such
a grand universality is preserved also for the random case.

Since there is only one fixed point at d = 2 (d = 1) for the two- (three-) chain
problem, one can identify the fixed point at zero as the critical point while the approach
to the fixed point as describing the phase of the system.
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3. Random interaction

We now consider the random version where the polymers interact with a random cou-
pling constant and there is no external potential. For simplicity we consider randomness
to be dependent only on z. A physical realization would be a random distribution of
monomers (or charges) along the backbone. The interaction is given by

N

/dzvo[1+b(2)]5(r1z(z)), (3)

[

where the randomness is introduced through 5(z). We take uncorrelated disorder with
a Gaussian distribution

P(b(z2)) = (2ma) "2 exp[—b(2)?/(24)], (4a)
(b(2))=0 and (b(z1)b(22)) = 48(z1 — 22). (4b)

For the many-body interaction problem, the random Hamiltonian would be similar to
Eq. (1), except that the coupling constant vy, is to be replaced by v, (1 + b(z)) inside
the integral.

The approach we take is to study the various cumulants of the partition function.
The first cumulant, as one might expect, behaves like the pure problem but with a
shifted critical point. Since there are sites with attractive interaction, the critical point
for unbinding occurs not at zero average interaction but at a certain nonzero repulsion,
It would also mean that even if the chains are on the average repulsive, (i.e., v2 > 0),
a binding-unbinding transition can be induced by tuning the disorder or changing the
temperature. Such a thermal unbinding is not possible in the pure case for d < 2. Apart
from that, the critical behaviour remains the same. The situation is different for the
second cumulant.

When we consider the second cumulant of the partition function, we require four (six)
chains for the two- (three-) body case. On averaging over the disorder, an interaction
(“inter replica” interaction) is generated that couples the original chains with the replica.
For example, for the two-body problem, the interaction is of the type

N

Hiep = ~fo/dz 5(ra(2)) 8 (ra(2)) » (5)
0

with 7y = v%A. This interaction, different from the four-body multicritical interaction of
Eq. (1), is a correlation effect. If chains 1 and 2 meet at length z, then it is favourable
for 3 and 4 also to have a contact at that same z though not necessarily at the same
transverse space coordinate. The importance of the disorder can therefore be understood
if we know the flow of this interaction as the probing length scale is changed. If we
are at the critical point of the average interaction, then RG can be implemented exactly
[14,15]. Defining the dimensionless coupling constant ry through an arbitrary length
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scale L as ro = 7FoL?**(47)~ %, € = 1 — d, and denoting the renormalized coupling as ,
the RG B-function is given by

B(r) = Lg—£ =2(er +r%). (6)

There are two fixed points: (i) r =0 and (ii) r* = —e, see Fig. 1b. The bare coupling
constant ro which originates from v34, where 4, the variance of the distribution, is
strictly positive, requires a positive r. Therefore, the nontrivial fixed point for d < 1
in negative r is unphysical. It however moves to the physical domain for d > 1. The
main feature that comes from the analysis is that the disorder is marginally relevant at
d = 1. This means that even a small disorder will change the nature of the unbinding
transition and take the critical system to a “strong” coupling regime. There is however
no perturbative fixed point to describe the strong coupling regime. A marginally relevant
variable means that a new critical feature would appear for higher dimensions. This is
reflected in the new unstable fixed point. For small enough disorder, the B-function for
d > 1 takes A4 to zero, reproducing a pure type behaviour. If however, the starting disor-
der is higher than the fixed point value, then it goes to the strong coupling regime. The
unbinding transition is therefore of the pure type for small disorder (“weak” disorder)
and beyond a critical disorder, in the “strong” disorder regime, a new critical behaviour
is expected.

The exact nature of the RG is lost if v # 0. In a one-loop approach, there are
indications of the existence of a fixed point for the stable fixed point of v, [16]. Since
the flows are different on the two sides, one wonders whether this indicates a new phase
also.

The exact B-function of Eq. (6) tells us also that around the critical disorder, the
relevant length scale exponent is 1/|1 — d| along the chain. In one dimension, the
length scale diverges exponentially around r = 0. These exponents have been verified
numerically.

A dynamic renormalization group approach has also been developed for the two-chain
problem. In this approach, instead of looking at the moments of the partition function,
the free energy is probed directly. This approach yields the same results and shows that
there is no special fluctuation exponent for the free energy [17].

4. Real space RG

Due to the absence of any fixed point for the strong coupling regime, it is necessary
to study the problem using nonperturbative methods. One such method is the real space
RG (RSRG), which can be implemented exactly on hierarchical lattices [18,19] as
shown in Fig. 2. To avoid unnecessary approximations, we work with these lattices from
the beginning. As per construction, we consider the partition function for two chains
tied at the both ends and with a random site interaction. We want to study the various
moments of the partition function.
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Fig. 2. Plot of B. (n)~Y" vs n for b = 4 and various temperatures. (a) logy = 0.065, and r = 0.73; (b)
log¥v = 0.04, and r = 0.73; (c) logy = 0.03, and r = 0.72; (d) logy = 0.02, and r = 0.72. Inset shows the
construction of a hierarchical lattice with b = 2.

It is again clear that for the nth moment, we require 2n chains and they will be
coupled by the disorder. An effect of this is that there is an analog of the binding-
unbinding transition for each moment, and the higher the moment (n) the higher is
the transition temperature. In the high temperature phase for the nth moment, the free
energy is expected to approach the free entropy of 2n chains. Subtracting out this free
part, the free energy approaches zero in the thermodynamic limit for high temperatures,
while it has an O(1) value per bond in the low temperature phase. Let us define
Z,(n) = ZZ/SEL", where u is the generation, S, is the entropy of a single chain
of length L, = 2#~!, the overline representing the disorder average. If we keep the
temperature fixed (above the critical point for the first moment), then there exists a
critical n, n., so that for n < n. the moments are in the high temperature phase. We
want to study the finite size correction to the moments of as n — n.—.

The approach to the thermodynamic limit can be written as

Z,(n) =Z*(n) + B, (n) LY + ..., (7

where Z*(n) is the thermodynamic limit (u — o0), and B, (n) is the amplitude of the
finite size correction.

For a given realization of the disorder, the partition function can be written as (see
Fig. 2)

Zun =bZVyZ P + b(b— 1S, (8)

The first term originates from the configurations that require the two DPs to meet at C,
while the second term counts the “no encounter” cases. There are no energy costs at
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the two end points. The Boltzmann weight is random, and for a Gaussian distribution
— 2
of energy, y" =" . Note also that S, = b™~!, where L, = 2* is the length of DP.
The moments of the partition function, from Eq. (8), are

Zu1(n) =67 P Zl(m), 9)
m=0

where Py, = () (b—1)"~"y™, with the initial condition Zo(n) = 1 for all the moments
because there is no interaction in the zeroth generation (one single bond). By iterating
these recursion relations, the moments are calculated exactly and the finite size correction
is estimated. As shown in Fig. 2, the amplitude has a power law divergence as n. is
approached, namely

B,(n) ~ (n.—n)~", for n — n.—, (10)

with r = 0.71 £ 0.02. The exponent is independent of temperature but depends on the
effective dimensionality of the system. We call this a scar left by disorder in the high
temperature phase.

5. Overlap in a random medium

Much has been achieved in the problem of directed polymers in a random medium
(DPRM). Unlike the random interaction case, carrying out a systematic RG beyond one
loop is extremely hard [20]. On the other hand a remarkable extra gain in the DPRM
case is the exact knowledge of the nontrivial geometric and thermal properties at least
at d = 1. It is known through the mapping of DPRM problem to the nonlinear noisy
growth equation of a surface (KPZ equation) [21] that at d = 1 the transverse extension

of the polymer and the free energy fluctuation scale as Zx_)2]/2 ~ N3 and f ~ xx=1/2,
These results can be proved to be exact through the fluctuation dissipation theorem. At
d =1 this new value of { # 1/2 persists for all temperatures and the system is always
at the strong disorder or “low temperature” phase. For d > 2 there is a transition from a
high temperature phase (free polymer) to a low temperature ( ‘spin glass’ type) phase.
Though the unstable fixed point is well under control, the strong disorder fixed point is
not reachable through perturbation. Numerical approaches intensified the controversies
about the strong disorder phase. Another unsolved question is the existence of an upper
critical dimension (UCD), which, in some approaches, seems to be 4. There is a hope
that if RG can resolve the question of UCD for the pure interacting DP problem, as
mentioned in Section 2, then the UCD problem for DPRM can also understood.

Here we discuss how the overlap behaves in this problem. Since the low temperature
phase is a spin glass type phase, we expect the overlap to serve as an order parameter.
The m-chain overlap is in general defined as
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1

1
q,,,:—--t'/dz<H6(xi,i+l(Z))>’ (1)
0

i=1

where x;;11(z) = xi(z) —x;11(z), bar and the angular brackets denote the discrder and
thermal average respectively. In the replica language, this overlap describes the common
configurations of the valleys (i.e. common to m) of a rugged free energy landscape. The
overlap comes from the common path of m chains in the same random medium. The
behaviour of the overlap is nontrivial because the disorder induces an attraction among
the replicas. We consider only the two-chain overlap here.

The main key to solve the problem is to introduce a 2-body interaction in the Hamil-
tonian of the DPRM problem and use a mapping that leads to a KPZ type nonlinear
equation [22]. Defining the quenched free energy as f2(vs,z), the overlap can be ob-
tained as ¢ = —z ! df2(v2, 2) /dva|u,=0. With the scaling hypothesis for the free energy,
fa = 2X/¥f(vyt~%%), we find the scaling of the overlap as g» ~ z= with 3 = (y—¢—1)¢.
Our interest here is in finding out 3.

The working Hamiltonian is therefore similar to Eq. (1) with m = 2. For convenience,
we introduce a line tension 7y so that the elastic part of Eq. (1) is of the type %yi‘?
and also choose the coupling constant as Avp/2y and AV/2y as the random potential.
The random potential is with zero mean and (V(r,7)V(r/,7')) = A8(r — r')}8(7 — 7').
The free energy defined as A({x;},t) = (2y/A) InZ({x;},t), where Z({x;},1) is the
partition function, satisfies

oh < 2 1 2

5=Z(yvjh+ﬂ(v,-h) ) + g0, (12)

=

where gy = Zil V(xj,t)+v28(x12(1)). In order to bring out the similarity with growth
equation we use ¢ instead of z as the variable for the special direction. A dynamic
renormalization group calculation upto O(A?) and O(v,) for the above equation in the
Fourier space leads to the following crucial results [22]: (i) There is no change in
the single chain behavior. The renormalization of the single-chain propagator, and the
nonlinearity is the same as that of a single chain in a random medium. (ii) The coupling
constant gets renormalized even at O(v;) as given below:

var = Uy + 8(—$A)%(20,4) ﬁp“Go(p,n)[Go(—p,—m]ZGo(p,—p,O). (13)
P,
Here Gy is the bare propagator, defined as Go({k;}, w) = [721- kf —iw]™Y, (k,®)
being the Fourier conjugate variables for (#,7). A short hand notation f o ™ f dpdw/
(27r)4*! is used. In the above equation only the nonzero momentum vectors are written
explicitly as the arguments of Gy.
The next obvious point is the presence of an anomalous dimension in the coupling
constant as is apparent from the recursion relation

dvy

7 =[z -y —d+ Ulu,. (14)
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Here the term proportional to U = K;A*4/(2y’) is the anomalous part from the RG
and Ky = (2m)~4S,, with S, being the surface area of the unit d-dimensional sphere.
Since we find that the single chain properties remain unaffected, we use in the following
the KPZ fixed point value for U. Let us first consider d = 1. It has been shown that
the KPZ fixed point is a stable one and indicates a glassy behavior at all temperatures.
By substitution of U* = 1, we find that 3 = 0, which one would expect in the low
temperature phase, as one finds numerically [23]. For d = 2 + € the KPZ fixed point
U* = 2¢, being an unstable fixed point, corresponds to the spin glass transition. The
exponent for the overlap can be readily obtained at this fixed point as ¥ = ~[d + 7],
where n = —2¢. The analysis can be extended to m-chain overlap also.

6. Conclusion

Randomly interacting directed polymers exhibit a weak to strong disorder transition
for d > 1. This can be established by an exact renormalization group approach. Real
space renormalization group approach for hierarchical lattices reveals a diverging finite
size correction. This might indicate the existence of a phase with no counterpart in the
pure system. Could it be a Griffiths phase? This is an open question. Using interacting
directed polymers in a random medium, we have calculated the decay of overlap at the
spin glass transition point in 2 + € dimensions. In one dimension, this analysis recovers
the result based on fluctuation arguments and numerical simulation.
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