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Abstract
Recent theoretical predictions on DNA (deoxyribonucleic acid) mechanical
separation induced by pulling forces are numerically tested within a model in
which self-avoidance for DNA strands is fully taken into account. DNA strands
are described by interacting pairs of self-avoiding walks which are pulled apart
by a force applied at the two extremities. The whole phase diagram is spanned
by extensive Monte Carlo simulations and the existence of a low-temperature
denaturation is confirmed. The basic features of the phase diagram and the
re-entrant phase boundary are also obtained with a simple heuristic argument
based on an energy–entropy estimate.

PACS numbers: 05.10.Ln, 64.60.Cn, 87.15.La, 87.14.Gy

In the last few years, the enormous technical improvements of experimental devices such
as atomic force microscopes [1, 2], optical tweezers [3, 4], and glass microneedles [5, 6]
have allowed micromanipulation of single biological systems, and the determination and
characterization of new, in part unexpected, behaviours of biomolecules [7]. These
developments have been particularly interesting and innovative for DNA molecules. DNA
micromanipulation techniques involve handles attached to the two ends of the molecule which
serve as anchoring points to manipulable physical supports [8]. In this way it has been possible
to study the response of DNA to external torques [9, 10] and its mechanical unzipping in the
absence of enzymes [11, 12]. Nevertheless, only very recently have theoretical investigations
started to consider the denaturation of DNA under the presence of forces or torques [13–15].
On the other hand, theoretical studies of thermal denaturation (or melting) of DNA have a
much longer history [16, 17] (for more recent studies see [18, 19]).
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Figure 1. The exact force (f ) versus temperature (T ) phase diagram as obtained in [23] for a
directed model (d = 2) of DNA. See equation (1) for the definition of the force. The values of ft ,
f0, and TD are model dependent.

Recently, Bhattacharjee [20] has extended a minimal model [16] in which the two strands
of DNA are ideal polymer chains, introducing a pulling force applied to two extremities5,6. By
a mapping into a non-Hermitian quantum mechanics problem, he has shown that the relative
polymer can be pulled out (i.e. the DNA can be unzipped) only if the applied force exceeds a
critical value.

These results have been further developed [23, 24] by considering analytically solvable
models in which DNA strands are represented by directed walks. Surprisingly, the force versus
temperature phase diagram revealed the presence [23, 24] of a novel re-entrant unzipping
transition at low temperature (see figure 1). These results have been subsequently confirmed
by other authors [25, 26] within ideal chain models of DNA.

The aim of our paper is to study the phase diagram of DNA in the presence of a pulling
force with a more realistic model in which self-avoidance for the DNA strands is explicitly
taken into account to verify the robustness of the low-temperature re-entrance.

We model [16,19] the two strands of a 2N -base-pair DNA by two interactingN -step self-
avoiding walks (SAW), on a cubic lattice,�1 = {�1

0, �
1
1, . . . , �

1
N } and�2 = {�2

0, �
2
1, . . . , �

2
N },

with �ip as the lattice site occupied by the pth monomer of the ith chain (i = 1, 2). The first
monomers �1

0, �
2
0 are kept fixed at one lattice unit apart. Each monomer (site) on a strand

corresponds to a base and it is supposed to have its complementary monomer at the same
contour position in the other strand. Two complementary monomers are favoured to be in
contact (i.e., if they occupy two nearest-neighbour sites of the lattice) by an energetic gain ε
representing the binding energy.

In this approach [16, 19–21] the sequence of bases is not explicitly considered since the
model is coarse grained in character. In this respect each monomer is not to be thought of as a

5 More recently a similar model which takes into account also the presence of sequence disorder has been studied [21].
6 The dynamics of unzipping has also been studied recently: see [22, 23].
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Figure 2. A typical configuration of double-stranded DNA chains (2N = 200) obtained with the
model described in the text. The different shades indicate the two different strands.

(This figure is in colour only in the electronic version)

single base, but as a group of bases (block). Consequently a mismatch between corresponding
blocks has to be very disfavoured with respect to a correct matching. This aspect is adequately
treated by our model.

To describe the mechanical unzipping of DNA, an energetic term— �f · �r is added where
�r = �1

N −�2
N is the vector joining the two ends of the strands and �f is an external force taken,

without loss of generality, along the z-axis, e.g. �f = f êz (see figure 2). Note that at f = 0,
this model is in the same universality class as that of [19].

The Hamiltonian of the problem is then given by

HN = −ε
(

N∑
i=0

δ
(|�1

i − �2
i |, 1

))− f êz · �r (1)

where δ(a, b) is the Kronecker delta and |x − y| is the Euclidean distance between x and y in
lattice units.

Throughout all the calculations, ε = +1, and therefore all the thermodynamic properties
of the systems depend on the temperature T = β−1 and on the force f . The free energy per
monomer FN(β, f ), is

FN(T , f ) = − 1

βN
log

(∑
exp(−βHN)

)
(2)

where the sum is over all possible pairs of N -step SAWs �1 and �2.
The phase diagram can be studied by looking at the average fraction number of

contacts [16] � and at the z-component of the average end-point separation 〈rz〉 defined
as

� = 〈Nc〉
N

= − ∂

∂ε
FN 〈rz〉 ∼ ∂

∂f
(FNN) . (3)
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Figure 3. Average fraction of bound pairs � versus T , for several values of the force f and for
2N = 150. The error bars are of the size of the symbols. The two peaks (f = 0.625 and 0.65)
signal a zipped phase between two unzipped regions (re-entrance).

In the denaturated regime, � should vanish, whereas it should be nonzero in the zipped
phase. To compute averages, for fixed values of f and N , Monte Carlo (MC) simulations of
the model have been performed by a Metropolis-based hybrid algorithm [27,28] that consists
of local and global (pivot moves) deformations attempted on each strand of the polymer. In
addition, a move that tries to interchange the position of pairs of zipped (or unzipped) portions
of the double chain has been considered.

The efficiency of the algorithm has been further enhanced by the multiple-Markov-chain
sampling scheme [28, 29], a method that recently has been shown to be quite effective in
exploring the low-temperature phase diagrams of interacting polymers. All the runs have
been performed by covering, with at most 30 different Markov chains, a large portion of the
temperature space ranging from T = 3 down to 0.1. The values of N considered range from
2N = 50 up to 150 and the values of f go from f = 0 up to 1.

In figures 2 and 3 the numerical results respectively for � and 〈rz〉/(2N) are plotted, as
a function of T , for different values of the force strength f and for systems of 2N = 150
monomers. The data signal clearly the presence of three distinct regimes.

(a) For f < f0 ∼ 0.5 the system undergoes a transition from the denaturated to the zipped
regime. In particular at f = 0 results similar to those found in [19] are re-obtained,
namely a first-order-like transition at TD = 0.58 ± 0.02, where however the fluctuation
in the size of the ‘bubbles’ diverges. Interestingly, our data support the prediction that
the critical force near the melting point (TD) is f ∼ |TD − T |a with a < 1 [26, 30] (see
also below). This is different from the three-dimensional Gaussian chain case [20] or the
directed case of figure 1 [23] (for d = 1 + 1) where one finds a = 1. In these two cases
the zero-force melting transition at TD is continuous.
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Figure 4. End-to-end separation in the force direction versus T , for different values of the force f
for 2N = 150. Error bars correspond to one standard deviation. The two minima (f = 0.625 and
0.65) signal a zipped phase between two unzipped regions (re-entrance).

(b) For f0 < f < ft ∼ 0.70 the unzipped/zipped transition is still present, but if the
temperature is further lowered the two strands separate again through a low-temperature
denaturation or unzipping induced by the presence of the force. This is established by
the peaks in figure 3 and by the minima in figure 4 for f = 0.625 and 0.65. Analysis
of the specific heat peaks for different chain lengths supports the assertion that both of
these transitions are first order. One might think of the existence of a subtle difference
between the low- and the high-temperature denaturation. To explore this possibility we
studied the size of the molten ‘bubbles’. For f = 0 a simple argument [19] predicts that
the size fluctuation of this ‘bubble’ diverges when the thermal denaturation temperature
TD is approached from below. As already mentioned we observed this effect for f = 0,
but not for f �= 0, both approaching the low-temperature transition from above and the
high-temperature transition from below. We explain this fact by noticing that for f �= 0
the transition temperature is less than TD and the part of the two strands containing the
‘bubbles’ is not influenced by the presence of the external force (the external force acts
as a boundary effect). Thus, by approaching the transition line from the zipped phase,
bubbles can never become critical if f �= 0. Therefore we conclude that from a statistical
point of view low- and high-temperature denaturation transitions are equivalent.

(c) For f > ft the pulling force always dominates over the base–base interaction and the
system is always in the denaturated state. The value of f0 can be exactly calculated, and
the basic features of the phase diagram and the re-entrant phase boundary can be obtained
with a simple heuristic argument based on an energy–entropy estimate. Indeed at T = 0,
when thermal fluctuations are absent, the only allowed configurations are those in which
the first l monomers of the strands are parallel and form l contacts, whereas the remaining
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N − l point in opposite directions parallel to the force. Hence, the resulting energy is a
simple function of l:

E(l) = −l(1 − 2f )− f (2N + 1). (4)

For f > 1/2 the energy minimum occurs for l = 0 (complete stretching) whereas for
f < 1/2 it occurs for l = N (complete zipping). This argument states definitively that
f0 = 1/2 in full agreement with our numerical findings. Notice that for f = f0 = 1/2,
E(l) is independent of l, indicating coexistence.

For low enough temperatures we expect the dominant configurations to still be Y-like
configurations with 2(N − l) monomers zipped and two ‘free’ strands each of length l whose
extrema are kept at a relative position �r by the force �f . In this Y-model the energy is thus
given by

E = −(N − l)ε − �r · �f (5)

whereas the entropy is

S = log
[
P2l(�r)µ2l

u µ
N−l
z

]
(6)

where PN(�r) is the probability that an N -step strand has an end-to-end displacement �r and µu
and µz are the effective coordination of the single strand and of the double strand respectively.
For the simple model introduced before, µz = µu, but in general this need not be true.

It is well known [31] that

P2l(�r) ∼ exp

[
−
( r
lν

)δ
c

]
lν  r  l (7)

where r = |�r|, δ = (1−ν)−1, ν is the usual polymer critical exponent [31], and c is a constant.
For an ideal polymer, ν = 1/2, and one recovers the usual Gaussian distribution.

In the last equation power-law corrections lead to subleading terms in the entropy estimate.
From the last three equations the following free energy is obtained:

F(l, �r) = l

(
ε − T log

µ2
u

µz

)
− �r · �f + cT

( r
lν

)δ
+ constant. (8)

Minimization of F with respect to �r yields

r(l, f ) = l

(
f

cδT

) 1
δ−1

(9)

where r is the magnitude of �r in the direction of �f . This r gives a free energy

F(l) ≡ F(l, r(l, f )) = l

[
ε − T log

µ2
u

µz
− δ − 1

δ
δ
δ−1

(cT )−
1
δ−1 f

1
ν

]
(10)

implying that F(l) takes its minimum at l = 0 (zipped phase) and l = N (unzipped phase)
when f < fc(T ) and f > fc(T ) respectively with

fc(T ) ∼ T 1−ν
(

1 − T

TD

)ν
(11)

where TD = ε/log
(
µ2
u

µz

)
is the thermal denaturation temperature for this Y-model. Thus at

fc(T ) a first-order phase transition occurs where the fraction of the bounded bases has a jump.
The last equation predicts a re-entrance with fc → 0 when T → 0. This limit is given by
a spurious effect due to the assumption that equation (7) applies also at very low T where
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equation (9) predicts r → ∞. Indeed if equation (7) is assumed to hold until P2l(r)µ
2l
u ∼ 1,

e.g. r � rM ∼ 2l and after that r remains constant, then we easily find that at low T

fc(T ) = 1
2 (ε + T logµz). (12)

Equation (11) near the denaturation temperature and equation (12) at the lowest T predict a
behaviour qualitatively in agreement with the one described in figure 17 and confirmed by our
simulation analysis8.

In conclusion, we have shown how a pulling force applied to the extrema of a model of a
double-stranded DNA molecule could introduce nontrivial effects in the phase diagram. The
results obtained on MC simulations in which, unlike in previous studies, excluded volume
effects are fully taken into account, confirm the existence of a low-temperature denaturation.
Although in our approach the intrinsic helicity of the DNA and the randomness of the base
sequences have not been incorporated, we believe, on the basis of preliminary numerical
results, that they should not affect the main features of the phase diagram and in particular the
existence of a re-entrance region. Therefore we expect that such an effect could be pinpointed
by high-precision measurements of DNA denaturation under a pulling force.

EO thanks E Carlon for helpful discussions. FS acknowledges the hospitality of SISSA and
ICTP. This work was supported by MURST (COFIN 99).

References

[1] Hansma H G 1996 J. Vac. Sci. Technol. B 14 1390
[2] Bustamante C and Keller D 1995 Phys. Today 48 32
[3] Svoboda K and Block S M 1994 Annu. Rev. Biophys. Biomol. Struct. 23 247
[4] Ashkin A 1997 Proc. Natl Acad. Sci. USA 94 4853
[5] Kishino A and Yanagida T 1988 Nature 34 74
[6] Cluzel P, Lebrun A, Heller C, Lavery R, Viovy J L, Chatenay D and Caron F 1996 Science 271 792
[7] Moy V, Florin E L and Gaub H E 1994 Science 264 257

Merkel R, Leung A, Ritchie K and Evan E 1999 Nature 397 50
Rief M, Oesterhelt F, Heymann B and Gaub H E 1997 Science 276 1109

[8] Strick T R, Allemand J F, Croquette V and Bensimon D 1998 J. Stat. Phys. 93 647
[9] Strick T R, Allemand J F, Croquette V and Bensimon D 1999 Physica A 263 392

[10] Leger J F, Romano G, Sarkar A, Robert J, Bordieu I, Chatenay D and Marko J F 1999 Phys. Rev. Lett. 83 1066
[11] Essevaz-Roulet B, Bockelmann U and Heslot F 1997 Proc. Natl Acad. Sci. USA 94 11 935
[12] Bockelmann U, Essevaz-Roulet B and Heslot F 1997 Phys. Rev. Lett. 79 4489

Bockelmann U, Essevaz-Roulet B and Heslot F 1998 Phys. Rev. E 58 2386
[13] Cocco S and Monasson R 1999 Phys. Rev. Lett. 83 5178
[14] Peyrard M 1998 Europhys. Lett. 44 271
[15] Thompson R E and Siggia E 1995 Europhys. Lett. 31 335
[16] Poland D and Scheraga H A 1966 J. Chem. Phys. 45 1464–9
[17] Fisher M E 1966 J. Chem. Phys. 45 1469
[18] Cule D and Hwa T 1997 Phys. Rev. Lett. 79 2375
[19] Causo MS, Coluzzi B and Grassberger P 2000 Phys. Rev. E 62 3958
[20] Bhattacharjee S M 2000 J. Phys. A: Math. Gen. 33 L423 (cond-mat/9912297)

Bhattacharjee S M 2000 J. Phys. A: Math. Gen. 33 9003 (cond-mat/0010132)
[21] Lubensky D K and Nelson D R 2000 Phys. Rev. Lett. 85 1572

See also Bhattacharjee S M and Marenduzzo D 2001 Preprint cond-mat/0106110

7 In the critical case of figure 1, ν is the critical correlation length exponent for melting as in [20].
8 Note that the model that we simulated on the lattice, at T = 0, behaves essentially as a locally flat ribbon. This means
that our numerical model presents a value for µz slightly lower than one would expect for a pure three-dimensional
model. This implies a smaller slope of the boundary curve at T = 0. However, the existence of the re-entrance itself
is not influenced by this artifact which is model dependent. We thank a referee for raising the issue of clarification of
this point.



L758 Letter to the Editor

[22] Sebastian K L 2000 Phys. Rev. E 62 1128
Cocco S, Monasson R and Marko J F 2001 Proc. Natl Acad. Sci. USA 98 8908

[23] Marenduzzo D, Bhattacharjee S M, Maritan A, Orlandini E and Seno F 2001 Phys. Rev. Lett. at press (cond-
mat/0103142

[24] Marenduzzo D, Trovato A and Maritan A 2001 Phys. Rev. E 64 031901
[25] Lubensky D K and Nelson D R 2001 Preprint cond-mat/0107423
[26] Mukamel E A and Shakhnovich E I 2001 Preprint cond-mat/0108447
[27] Madras N and Sokal A 1987 J. Stat. Phys. 47 573
[28] Orlandini E, Seno F and Stella A L 2000 Phys. Rev. Lett. 84 294
[29] Tesi M C, van Rensburg E J, Orlandini E and Whittington S G 1996 J. Stat. Phys. 29 2451
[30] Kafri Y, Mukamel D and Peliti L 2001 Preprint cond-mat/0108323
[31] Fisher M E 1966 J. Chem. Phys. 44 616

See also de Gennes P G 1979 Scaling Concepts in Polymer Physics (Ithaca, NY: Cornell University Press)
section 1.2


