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ISING TRANSITION TEMPERATURES FOR QUASICRYSTALS:
DOES THE TOPOLOGY MATTER?
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We study by Monte Carlo simulation the variation of the Ising critical temperature on
pentagonal two-dimensional quasicrystals with the change of the continuous parameter
that controls the local isomorphism of the quasicrystals.

The Ising model on any lattice is defined by the Hamiltonian

HZ—JE $i8j , (1)
{i7)
where the spins s; = £1 are located at the sites 7, and the summation is over nearest
neighbours only. The universal critical behavior of this model is well understood,
though several unanswered questions remain.! The situation is not so transparent
for nonuniversal quantities, the most important one of which is the transition tem-
perature T.. There are various ways of putting bounds on 7., but what of the
lattice actually determines remains obscure.? One of the reasons may be the un-
availability of simple, tunable translationally invariant (Bravais) lattices. With the
advent of quasicrystals, it is now possible to have nonisomorphic classes of lattices
that can be parametrized by a number v € [0, 1).2 Since the lattice structure, both
global and local, can be tuned continuously, the transition temperature is expected
to change continuously. Such a variation might lead to new insights. Our purpose
is to determine the T vs 4 curve.
We consider two-dimensional quasicrystals which are dual to the periodic pen-
tagonal grid, e, = (cos 27n/5, sin 27n/5), n = 1,2, ..., 5. The grid consists of
lines x,, in each direction such that

xn'en=p+7n, (2)

where p is an integer. Note that each ¥, determines the relative shift of the set of
lines (for different p) from the origin. The important quantity for us is

Y=Y Y- (3)
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It is known that the lattices with v differing by an integer are locally isomorphic.3
It therefore suffices to consider ¥ in the range [0,1) with v = 0 and v = 1 as
the well-known Penrose lattice.> By construction, the grid lattice is always four-
coordinated, but the quasicrystals have coordination numbers in the range 3 to 9.
Since the quasicrystals are obtained from periodic pentagrids, the ratio of the fat
to skinny rhombi is 7 : 1, where 7 = (v/5 + 1)/2 is the golden mean.3

It is now well-accepted that the critical exponents on such lattices do not depend
on their structure or the lack of translational invariance.*® But T is expected to
change. We performed Monte Carlo (MC) simulation of the Ising models on such
quasicrystals for various values of v.

The standard important sampling MC procedure is adopted. For a given lattice,
new spin configurations are generated by flipping the spins one at a time. Whether
a spin is to be flipped or not is determined by comparing the Boltzmann factor
associated with the change in energy to a random number between 0 and 1.°

To extract the relevant information at different temperatures, we follow the
histogram approach.”® We determine, at a given temperature T, the histogram
Pr(E, S), where E is the total energy and S = }_s; is the total magnetization.
The probability distribution at any other temperature T” is then obtained from the
formula

Pr«(E, S) = Pr(E, S)exp[-E(K' - K))/Z(T"), 4)
where
2(1") = Y Pr(E, S)exp[-E(K' - K)], (5)
E,S

K = J/kT, and K' = J/kT'. Once we know the probability distribution, the
averages can be calculated easily.
The transition temperature is determined by using the fourth cumulant

Un =1-(5%)/(3(5*)* (6)

for a lattice with N points.® It is known that Uy — 2/3 as T — 0, and it goes to
zero as T — oo. Right at T, Ux has a size-independent (i.e. fixed-point) value.
Therefore,

Un(T)

Un'(T) M

Ryn(T)=1-

goes to zero at T' = T,. Hence, T, can be determined by locating the root of
Ry (T) without any adjustable parameter.

For each vy, we choose lattices of various sizes, typically in the range 300 to
800. MC simulation is done at kT'/J = 2.4 for 10° steps and the first 10* steps are
excluded for thermalization. We choose the smallest size as N’ in Eq. (7). For all
the cases studied, Ry n/(T) can be fitted very well by a cubic equation of the type
Rnn'(T) = ap+ 1T + apT? + a3T? (T is in units of k/J; see Fig. 1). The solution
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Fig. 1. A representative plot of Ry i (T) vs T for N = 421 and N’ = 291. Note that T is in units
of kT /J. The solid line is a cubic fit to the data and only a few points are shown for clarity.
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Fig. 2. Tc vs v curve. T¢ is in units of k/J. The accurate value (see Ref. 5) for the Penrose lattice

{+ = 0) is shown in the plot. The error bars indicate the spread in the value.
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of the cubic equation then gives T,.. The results for various v are shown in Fig. 2.
The figure includes the accurate estimate of T, for the Penrose lattice from Ref. 5.

By construction, all of these lattices have a four-coordinated dual lattice. There-
fore, the mean field transition temperature on the dual lattice will be independent
of 4. If we use duality transformation at this stage, all of the quasicrystals would
have the same mean field transition temperature. The actual variation we find is
very small, but still there is an interesting pattern. However, our accuracy is limited
because of the small sizes. A study of this problem on bigger lattices might reveal
more interesting features.
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