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Abstract

We model single strand binding (SSB) proteins as agents exerting randomly oriented force on the bonds in DNA unzipping.

The fluctuating force is found to unzip the double stranded DNA (dsDNA) via opening of bubbles along the chain.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Enzymes like helicases, polymerases, etc. exert force on dsDNA and unzip it to initiate processes like DNA
replication or RNA transcription [1]. It was predicted theoretically [2–7] that under the applied pulling force at
one end while keeping the other end fixed, the dsDNA unzips to two single strands if the force exceeds a
critical value which depends on temperature. Ever since the theoretical prediction of unzipping of DNA [2],
various extensions of the basic model have been studied. These include studies of models with intermediate
phases [8–11], dependence on pulling directions [12], models with additional features like semiflexibility [13],
heterogeneity [14–19], saturation of hydrogen bonding [20], randomness in the medium [21], etc.

The unzipping is a first order phase transition which sets in due to the competition between the binding of
the base pairs (to be called monomers) and the orientation of individual links connecting the monomers.
However, in a cellular medium there are SSB proteins which bind to single strands thus preventing the strands
to get rezipped. The variation in the response of such local regions to force can be modeled by a randomly
oriented force which either tries to keep the strands bound or unzip it. In this paper we follow the analysis of
Ref. [22] where a single polymer was considered and generalize it to the DNA problem.

2. Model

The Hamiltonian for the DNA, in the continuum, can be written as [2]

H ¼
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where riðzÞ is the d-dimensional position vector of a monomer at length z along the contour of the ith strand
from the end z ¼ 0, N is the length of each strand, V ðrÞ is the binding potential, rðzÞ ¼ r1ðzÞ � r2ðzÞ, and gðzÞ is
a random force. Both the strands are anchored at end z ¼ 0. The first two terms on the right hand side
represents the elastic energy or the connectivity of each polymer (taken to be Gaussian). The base pair
interaction is for monomers at the same location on the two strands. For the ‘‘pure’’ problem, gðzÞ is constant
and the force term reduces to the standard form �g � rðNÞ. In a discrete form, qri=qz would represent a link
connecting two successive monomers and the force tries to orient the link along it. One may note that on
integration by parts the third term gives

�gðNÞ � ðr1ðNÞ � r2ðNÞÞ þ

Z N

0

qgðzÞ
qz
� ðr1ðzÞ � r2ðzÞÞdz, (2)

i.e., a fixed force at the free end plus the gradient of force which acts locally on the strands. Therefore,
for a negative force gradient, the two strands stay far apart, thus creating a bubble to minimize the free
energy. On a lattice the partition function for the above Hamiltonian can be calculated exactly for a directed
polymer via a recursion relation. In D ¼ 1þ 1 dimensions the two strands of the DNA are represented by two
directed random walks which cannot cross each other and directed along the diagonal of a square lattice.
Whenever the strands meet there is a gain in energy ��ð�40Þ. On each bond between the two consecutive
monomers, there is a random force gðzÞ ¼ gzðzÞ (zðzÞ same for a layer) which is always perpendicular to
the strands. The magnitude g, related to the standard deviation of the force, is kept fixed but the
direction zðzÞ ¼ �1 is chosen randomly with equal probability so that the average force, ½gzðzÞ�dis ¼ 0. The
random force either keeps the strands apart or keeps it close. The schematic diagram of the model is shown
in Fig. 1(a).

Let Dnðx1;x2Þ be the partition function of DNA with nth (or the last) monomers of the two strands at
positions x1 and x2. For every realization of the randomness, the partition function can be calculated exactly
by iterating the recursion relation

Dfagnþ1ðx1;x2Þ ¼
X

i;j¼�1

Dfagn ðx1 þ i;x2 þ jÞeðj�iÞbgzfagn ½1þ ðeb� � 1Þdx1;x2
� (3)

with x2Xx1. The superscript a in above expression denotes a particular realization and b ¼ 1=T in units of
kB ¼ 1.

The quantities of interest are the distance between the strands at the free end, ½hxi�dis, given by
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Fig. 1. Schematic diagram for a randomly forced DNA in D ¼ 1þ 1 dimensions. The direction of the random force gẑðzÞ is shown by the

arrows on each bond.
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and the isothermal extensibility, the response to the force, can be expressed in terms of position fluctuation of
the end monomers

½w�dis �
qhxi
qg

����
T

� �
dis

¼ ðkBTÞ�1½hx2i � hxi2�dis. (5)
3. Results and discussions

For zero force at T ¼ 0, the ground state of the DNA is one in which the two strands are completely zipped.
On a D ¼ 1þ 1 square lattice there can be 2N degenerate conformations for the zipped DNA of N base pairs
contributing an entropy of S0ðg ¼ 0Þ ¼ N ln 2 for the ground state. The new states can be obtained by flipping
the monomers. At any location on the DNA, our model allows flipping of a bound monomer from one of the
strands only, because of the non-crossing constraint of the strands. In Fig. 2(a) we have shown four possible
force configurations on a particular bound pair of DNA which allows flipping. The mirror images of such
configurations also allow flipping. In the presence of a random force these configurations contribute to the
entropy. Let n1; n2; n3 and n4 be the number of such vertices. We have n1 þ n2 þ n3 þ n4 ¼ N. For small g,
there is no gain in energy in flipping the monomers of DNA. We gain only for configuration (ii) if g4�=4.
For such cases one sees small bubbles. Below this force, the ground state is unique. For g4�=4, after flipping
all the type (ii) vertices, the average energy is

E0 ¼ �ðn1 þ n3 þ n4Þ�� 4n2g ¼ �
N

4
ð3�þ 4gÞ, (6)

taking all the four possible vertices to be equally probable. Equating this with the energy of the unzipped
state, �2Ng, in which the DNA favors a configuration where each bond of both the strands get oriented
in the local force direction, we get the critical value of the force, gc ¼ 3�=4. This simple analysis shows
that there is a critical force fluctuation above which the DNA favours the unzipped state at T ¼ 0.
Let us calculate the ground state entropy for g ¼ �=4. Notice that the flipping of vertex (ii) does not cost any
energy if g ¼ �=4. On an average there are N=4 such twofold degenerate vertices. Same number of twofold
degenerate vertices is also contributed by the mirror image of vertex (ii). Therefore, the entropy of the ground
state for g ¼ �=4 is S0ðg ¼ �=4Þ ¼ ðN=2Þ ln 2 which is half the entropy of the ground state in the absence
of force.

A typical configuration of DNA of length N ¼ 64 is shown in Fig. 2(b) for three different force values at
T ¼ 0:5. At each force the configuration shows bubbles which grow in size with increase in force fluctuation
and finally the two strands get separated at some critical force which is realization dependent.
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Fig. 2. (a) Energy cost in flipping a monomer of DNA. (b) Typical configurations of DNA for three different g at T ¼ 0:5. The length of

the DNA is N ¼ 64.
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Fig. 3. (a) ½hxi�dis vs g at T ¼ 0:5 for various chain lengths. (b) Data collapse of above data.
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For a fixed pulling force at the free end we have gðzÞ ¼ g which is equivalent to choosing zðzÞ ¼ 1 in Eq. (3).
For such a case, the above recursion relation can be solved exactly giving the phase boundary

gcðTÞ ¼
T
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� 1þ e�b�
� 1

� �
(7)

with a purely temperature driven (zero force) denaturation at Tc ¼ �= lnð4=3Þ. The phase boundary is shown
by the solid line in Fig. 1(b). The critical force increases with temperature reaching to a maximum and then
decreases till it becomes zero at Tc, thus showing reentrance at low temperatures. The reentrance is attributed
to the entropy gain of the bound strands which wins over the entropy of two stretched single strands. Below
gcðTÞ the DNA is in the zipped phase whereas above gcðTÞ the DNA is in the unzipped phase with the average
distance between the free strands hxi�N. The unzipping transition is of first order with a discontinuity in hxi
at the phase boundary, i.e., hxi=N�jg� gcj

�1.
For the random force case, the g vs ½hxi�dis isotherms, averaged over 40,000 force realizations at T ¼ 0:5 for

N ¼ 128; 256; 384; 512 and its collapse are shown in Fig. 3((a) and (b), respectively). The Bhattacharjee–Seno
procedure [23] for data collapse yields a scaling form

½hxi�dis ¼ NdGððg� gcÞN
fÞ (8)

with exponents d ¼ 0:53� 0:007, f ¼ 0:1326� 0:0002 and gc ¼ 1:81� 0:03. Therefore the quenched average
distance between the end monomers ½hxi�dis=N ¼ jg� gcj

ð1�dÞ=f�jg� gcj
3:5, increases continuously with

increase of force making it a continuous transition. Using the above procedure we obtain the critical force at
various temperatures. The g vs T phase boundary thus obtained for the random force case is shown in
Fig. 1(b) by points. The critical force increases with temperature and starts decreasing only close to Tc where it
becomes zero.

4. Conclusions

We have studied the unzipping of DNA by a random force which acts locally on each bonds of the DNA.
We found that depending on the strength of the force, bubbles can be developed in the DNA even at T ¼ 0
(ground state). The size of these bubbles increases with increase of the force fluctuation, and the DNA gets
unzipped when the random force exceeds a critical value. In contrast to the case of pulling at the end where the
DNA unzips discontinuously as the pulling force exceeds a critical value, the unzipping via bubbles by random
force is a continuous transition.
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