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Abstract. We have shown that the renormalization group fixed point for mutually avoiding
directed random walks in {d + 1) dimensions is exactly 2me where £ =2 ~ d, with no higher
order terms in e. Since the whole calculation can be carried out to all orders exactly, the
model is also significant from a pedagogical point of view,

A directed random walker (DRwW) in D'=d +1 dimensions always takes steps in one
particular direction (to be chosen as the z axis) but can fluctuate in the transverse d
directions. Such walks, though of interest on their own, have also emerged as a viable
statistical model from various physical problems such as polymers in random media
(see, e.g., Kardar and Zhang 1987, Cook and Derrida 1989), two-dimensional com-
mensurate-incommensurate phase transitions (see, e.g., Fisher 1984, Nagle e al 1989),
biomembrane phase transitions (Izuyama and Akutsu 1982, Bhattacharjee et al 1983,
Priezzhev and Terletsky 1989), flux lattice melting in high T, materiafs (Neison and
Seung 1989), world lines of anyons (Wu 1984) and the five-vertex model {Wu 1968,
Bhattacharjee 1990). It is the preference for a particular direction that makes DRw a
" relatively simpler model to study rigorously and, in fact, many non-trivial properties
of a Drw are known more or less exactly or rigorously (see, e.g., Privman and Svrakic
1989, also Binder et al 1990). In most of the examples cited above, the physics is
determined by the properties of many mutually avoiding brRws where two chains cannot
be at the same position if they have the same z-coordinate, as shown in figure 1. Qur
interest in this letter is in such a many-chain system.

Nelson and Seung (1989}, in their studies of flux lattice melting in high T, super-
conductors, introduced a path integral approach for many DrRws, along the line of the
Edwards model for conventional polymers with excluded volume interaction (see, e.g.,

P

Figure 1. A schematic diagram of many DRws in 1+1 dimensions. Mutual avoidance
forbids a configuration such as C.
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Freed 1987, Oono 1984). In this continuum approach, the upper critical dimension
follows from a simple dimensional analysis to be d.=2. Using a momentum shell
technique Nelson and Seung (1989) showed that the fixed point of the renormalization
group transformation is from 2me to O(¢) where £ =2—d. Here we show, using the
dimensional regularization method, that the fixed point is exactly 2m¢ to all orders of
the perturbation theory.

Locating the fixed point exactly is, on its own, of significance and it is also expected
to throw much light on the various physical problems mentioned earlier. We wish to
come back to this point elsewhere, but would like to point out the pedagogic importance
of this result. The renormalization group approach and the associated techniques such
as the dimensional regularization, minimal subtraction method, etc, borrowed from
field theory and statistical mechanics, have been shown over the years to be the tool
for understanding, both qualitatively and quantitatively, the properties of polymers
especially in the Edwardian path integral formulation (Oono 1984, Freed 1987 and
references therein). In this context the model of this letter stands out as a unigue
example where all of the above techniques can be seen in action and can be carried
out to any arbitrary order unlike the conventional polymers. Hence the importance of
this model as a paradigm just as the O( N) model in the N - co limit for field theories
(Amit 1984).

Our approach here is to use the path integral method to calculate the second virial
coefficient in a diagrammatic expansion. Such an expansion, for sure, stumbles on
divergences which are to be treated by renormalization. We show how this renormaliz-
ation can be implemented exactly to all orders in the perturbation theory. The exactness
of the renormalized form is proved in two steps; first by establishing uniqueness and
then by showing that a particular ansatz (an educated guess) works. The fixed point
then follows from calculating the 8-function. The exactness of the location of the fixed
point is just a coroliary of the exactness of the renormalized interaction.

Model, The prws in D =d +1 dimensions can equivalently be thought of as random
walkers or polymer chains in the transverse d-directions with the z-coordinate playing
the role of the contour variable; the chains would be the projections of the DRws in
the transverse directions. The important interaction for the DRws is the mutual exclusion
at each z-coordinate and this, in the equivalent polymer picture, means that the
d-dimensional chains interact repuisively, if and only if, they have the same contour
variable z. We represent this short-ranged repulsive potential by a §-function. In the
spirit of the Edwards model (Edwards 1965) for conventional polymers, the dimension-
less Hamiltonian for M such brRws can be written as

M Ny ar 2 Ny
H=3 L J dz(a_;) +uo X J‘O dz 8[r.(z) — rs(z)] (1)
a=1JO

w.B

where r.(z) is the (d-dimensional) coordinate of the point at contour length z of chain
. The first term on the rRHs is the usual entropic contribution of each polymer of total
length N, while the second term ensures the mutual repulsion at the same z of chains
@ and B, with v, as the interaction strength and the summation over all pairs (a <g).

The thermodynamics of the many chain system is characterized by the osmotic
pressure, or equivalently, the second virial coefficient (see, e.g., Freed 1987 and Oono
1984). As is well known, the second virial coefficient is completely determined by two
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chains and, therefore, in this paper we consider only the two chain problem (M =2
in {1}).

A simple dimensional analysis of the parameters in the Hamiltonian in (1) shows
that {Np]~ L? and [v,]~ L%, identifying d =2 as the upper critical dimension. We
would, therefore, be requiring an expansion in £ =2 —d, so that the divergences in the
perturbation theory for v, would appear as singularities at e =0. Such divergences will
be cured by regularization and renormalization. It might be pointed out here that since
there is no intrachain (or self) interaction, there will be no renormalization of N,
only a renormalization of v, is required. It is this feature that makes DrRws comparatively
simpler than polymers.

Second virial coefficient. The second virial coefficient is defined as

__Zz(No, Ny, tp) _Z%(No)

Zi(Ny) 2

A=

where Zy(N,, N,, v} is the partition function of two interacting prRws and Z,(Ny) is
that of one prw. The partition function is defined as

Zy( Ny, Ny, 1) =J‘ Dr, Pry e

where the integral is over all possible configurations (‘paths’) of the chains. Z, is also
defined similarly.

A diagrammatic expansion of A, in v, can be set up as for conventional polymers
by expanding the Boltzmann factor involving v,. It is a simple exercise to show that,
thanks to the normalization by ZZ(N,), only connected diagrams contribute to A,.
Furthermore, the special (equal z) interaction produces only ladder type diagrams as
shown in figure 2. The broken lines in the figure represent the interaction and contribute
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Figure 2. Ladder diagrams needed for the second virial coefficient. The diagram for n
loops requires interactions at {n-+ 1) positions along the chain and its evaluation involves
integrations over these positions.
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a factor v, each. The full lines are the polymers, representing the distribution function

_ (rn—r 2)2}
2z
for a random walk of length z going from r, to r,. Each loop in figure 2 represents

an integration over the internal coordinate. For example, the one-loop contribution
(figure 2(b)) is proportional to {V is the total volume)

G(r,0;ry, 2} =(272)""2 exp[

Ai-d/2
N

V[1+(1—d/2)](1—d/2)'

Without going into any further details (to be published elsewhere) we quote the general
result for the second virial coefficient as

_ - n_ Vo n{1~d/2) (1-d/2)
A "NnVn 1+ : - - w=d/ a — .
2 v'( L, Y Gy N6 T2+n(1-4/2))/

As anticipated, each term is divergent at d =2.

—
(T
p—

Renormalization. We introduce an arbitrary length scale L to define a dimensionless
coupling constant u, as

uO = UQLz_d
and define a renormalized interaction u as
u0=u(1+D]u+D2u2+...). (4)

The coefficients (D,) are to be determined to absorb the divergences in (3) order
by order. It is straightforward but tedious to show that at the nth order (n loop level),
the coefficient 1, is determined uniquely by the preceding D;s (i <n) and the terms
of (3) with order of v, less than n. In other words a D, once determined at the nth
order will remain unaffected even if higher-order terms in {3) are considered. Hence
the uniqueness.

By direct computation, we find that up to O(uf)

D,=(Q27me)™". {5)

Based on this, we make the ansafz that (5) is true for all. p. The summation in (4} can
be performed easily to get

u 2meu

uD:l—u/2w5=21rs-—u' (6)
When this renormalized u is substituted in (3) we obtain
A= NoVL™ T2 (14 () ) ™
with
Y=—8u—l"(e/2)(4ﬂ:{°)€/2.
d7e —2u \ L°

Since I'(e/2) has a pole [I'(x)~1/x as x> 0], we find Y, in terms of the renormalized
u, to be non-divergent. Moreover, the sum in (7) is well behaved and cancels the
apparent divergence at u = 27re. An appeal to uniqueness (just proved) then establishes
(6) as the correct renormalization.
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Fixed point. The fixed point for rRG is determined by the zero of the 8-function defined

as
,B(u)=L(a—lf) =E(aln uo)wn‘
" du

aL
Using the exact relation between u and u, as given by (6), we find

B(u)=ue(l—u/2mwe)

which, incidentally, is identical to the B-function at the one loop level. The fixed point,
B{u*)=0, is then

u*=2xe

which, to emphasize one more time, is an exact result valid to all orders of the
perturbation theory. QED.

We thank S Suresh Rao for helpful discussions.

Note added. We thank B Duplantier for pointing out that the sum in (7) for A,p, in the limit u—» u* can
be performed and is related to equation (18) of Duplantier B 1989 Phys. Rev. Leit. 62 2337.
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