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We consider the behavior of the overlap ofm(>2) paths at the spin-glass transition for a directed polymer
in a random medium. We show that an infinite number of exponents is required to describe these overlaps. This
is done in ane5d22 expansion without using the replica trick.

When disorder induces a new thermodynamic phase not
found in the pure system, the description of the transition
itself poses new challenges. This is exemplified by the efforts
made to understand the spin-glass transition.1,2 Other ex-
amples are magnets in random fields,3 polymers in disor-
dered media,4–7 or with random interactions,8 etc. Several
concepts emerged from the solution of the infinite range
‘‘mean-field’’ spin-glass problem using the replica trick, but
their validity for finite dimensional systems, remains to be
established.9,10

The most important concept in the replica approach is that
of the overlap which plays the role of the order parameter for
the transition.1 The overlap purports to characterize the rug-
ged free-energy landscape in the spin-glass phase through the
statistics of the pairwise common configurations in the vari-
ous minima. In principle, a many valley free-energy surface
would require higher order overlaps for a more detailed
description.11,12 These are the overlap of say, three or more
(m) minima, to be called the ‘‘m overlap.’’ All of these over-
laps vanish at the transition point asqm;uTc2Tubm for
T→Tc2,because the free-energy surface goes over to a
smooth one in the high-temperature phase. Now, how many
exponents are needed to describe these overlaps? The answer
is one for infinite range or infinite dimensionalmodels,1,11

justifying the use of the pair overlap,q2 , as the sole order
parameter in the replica approach~with b2 as the order pa-
rameter exponent!.13,14 What about finite dimensional sys-
tems? The question assumes importance because the number
of independent exponents tells us the number of quantities
one requires to characterize the transition. Alas, so little is
known of the spin-glass problem.2

In this paper, we develop a method to calculate thesem
overlaps for arbitrarym in an e5d22 expansion for the
spin-glass transition of a directed polymer in a random me-
dium ~DPRM! without using the replica trick. A d11 dimen-
sional directed polymer~DP! is a string stretched in a pre-
ferred direction and with free fluctuations in the transverse
d dimensions. In a random medium, the gain in the potential
energy from randomness can win over the ‘‘random walk’’
entropy, producing a disorder dominated ‘‘super diffusive’’
phase.5–7,15,16 For d.2, there is a transition from a low-
temperature, strong disorder, spin-glass-type phase to a pure-
type phase.6,17,18The transition is described by an unstable
fixed point @;O(e)# in a renormalization group~RG! ap-
proach via the mapping19 to a nonlinear noisy stochastic
equation for the free energy ~Kardar-Parisi-Zhang

equation!.5,6 The simplicity of the model, nontrivial solutions
in many cases,20,11,12and the possibility of studying various
fundamental questions21,22related to disorder systems in gen-
eral, make the strong disorder phase and the transition a topic
of paramount importance.7 In fact, various techniques have
been used for this purpose, as, e.g., Bethe ansatz for
d51,20 dynamic renormalization group,23,5,6,24 scaling
theory,18 numerical simulations,25 mode coupling,26 1/d
expansion,27 on a Cayley tree,11 on hierarchical lattices,12

etc. Replica symmetry breaking28 has been tried by
some15,16,29and vehemently opposed by a few others.30,31

For DP, the overlap (m overlap! describes the fraction of
paths common to two (m) minimum ~free! energy paths, and
is therefore equal to the fraction of the paths two (m) poly-
mers go together when placed in the same random
medium.15,16,11,12,24,32The two (m) polymers act as the rep-
licas of the one chain system. In the spin-glass phase, if there
is only one minimum free energy path, then both the chains
would follow the same path, an attraction induced by the
disorder. In case there are many valleys, then the chains can
get separated by hopping to a neighboring valley. Thus over-
laps contain information about the valley structure.

Them overlaps,qm , have been calculated for a DPRM on
a Cayley tree and on hierarchical lattices.12,11 The Cayley
tree problem can be thought of as an infinite dimensional
case while the hierarchical lattices are definitely finite dimen-
sional with tunable dimensionality. For the Cayley tree prob-
lem, closed form expressions forqm show thatbm51 for all
m.11 For hierarchical lattices, there is a critical dimension
above which a transition takes place.12 Numerically the tran-
sition temperature has been obtained by locating the tem-
perature whereq2 andq3 vanish. Nothing, unfortunately, is
known forbm . A linear dependence ofbm onm, in a mul-
tifractal analysis, would also mean that only one exponent is
needed, as, e.g., for pure noninteracting Gaussian chains,
~see below!. The crucial question is, therefore, whether such
linearity is maintained for finite dimensional systems. The
answer we find is no.

In this paper, we use the continuum approach. The poly-
mer is described by the Hamiltonian

H5E
0

t

dtFg2 ẋ2~t!1
l

2g
V@x~t!,t#G ~1!

wherex(t) is thed-dimensional transverse spatial coordinate
of the DP at the contour lengtht, andẋ(t)5dx(t)/dt. The
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first term on the right hand side represents the entropic fluc-
tuations of a free Gaussian chain withg as the bare line
tension.V corresponds to a space- and time-dependent ran-
dom potential seen by the chain, and the amplitudel/2g is
chosen for convenience. The random potential is taken to be
uncorrelated, normally distributed5 with zero mean, and
V(x,t)V(y,t8)52Dd(x2y)d(t2t8), where the overbar
stands for disorder averaging.

A formal way to define them overlap is to putm chains in
the system and take

qm52
1

t E0
t

dtK )
i51

m21

d@xi ,i11~t!#L , ~2!

wherexi ,i11(t)5xi(t)2xi11(t), and^•••& stands for ther-
mal average for a realization. One way of computingqm is to
couple them chains or replicas with a weakm-body inter-
action. Then overlap would follow from an appropriate de-
rivative of the total free energy with respect to the hypotheti-
cal coupling constant~see below!. This procedure was
adopted for the overlap (q2) in the numerical work of
Mezard in 111 dimensions15 and by one of us in a one-loop
RG approach24 ~see also Ref. 32!. We generalize the method
of Ref. 24 forqm . The RG analysis is geared towards cal-
culating the scaling exponent of the coupling constant. A
judicious use of finite-size scaling, as explained below, then
gives us the exponentbm .

With the definition of them overlap in Eq. 2, we consider
anm chain interacting Hamiltonian

Hm5(
i51

m

Hi1~l/2g!vmE
0

t

dt )
i51

m21

d@xi ,i11~t!#, ~3!

whereHi is the Hamiltonian of Eq. 1 for thei th polymer.
Defining the quenched free energyf m(vm ,t)5 lnZm where
Zm is the partition function forHm , them overlap is ob-
tained asqm52t21 d fm(vm ,t)/dvmuvm50 .

Our interest is in the scaling part of the free energy,
f m'tx/zf (vmt

2fm /z), wherefm is the scaling exponent for
vm , andx andz are the single-chain-free energy fluctuation
(D f;tx/z) and dynamic~size x;t1/z) exponents.24,5 We
have verified that, as expected, there is no change in the
single-chain exponent. Taking derivative then gives
qm;tSm, with Sm5(x2fm2z)/z. Incidentally, the system
is taken to be infinite in extent in all thed transverse direc-
tions and is of lengtht in the preferred direction. This form
of qm can, therefore, be treated as a finite-size scaling form.

33

Now, the transition takes place only in the thermodynamic
limit of t→`. In that limit, for d.2, there is a diverging
length scale with exponentn, j i;uT2Tcu2n, parallel to the
specialt-like direction.5,17Finite-size scaling suggests a scal-
ing form qm5 t2bm /ng(t/j i). Therefore, right at the critical
point ~i.e., the unstable fixed point in RG!, qm;t2bm /n. A
comparison then yieldsbm52nSm . Remember, thatn is
strictly m independent. Our strategy is therefore to calculate
fm .

Defineh($xj%,t)5(2g/l)lnZ($xj%,t), whereZ($xj%,t) is
the partition function for chains with end points at$xj%, all
starting at the origin. Thish satisfies the equation,24

]

]t
h5(

j51

m Fg¹ j
2h1

l

2
~¹ jh!2G1g0 , ~4!

whereg05( j51
m V(xj ,t)1vm) j51

m21d@xj , j11(t)#. This equa-
tion, though resembling a higher (md) dimensional KPZ
equation,5 is actually not so for the peculiar noise term. We
prefer this equation to Eqs.~1! or ~3! because an RG can be
implemented with the nonlinear terml as perturbation. This
is different from a perturbation in the random potential
around the Gaussian chains. Moreover, the equation de-
scribes the free energy and averagingh will naturally give
the quenched average free energy without any recourse to the
replica trick.

A scaling of x→bx,t→bzt, then shows that, in the ab-
sence of nonlinearityl, vm →bz2(m21)d2xvm . An anoma-
lous parthm would creep in through renormalization when
the nonlinearityl is present. The crossover exponent is
thereforefm52@z2(m21)d2x1hm#. This gives

bm5n@d~m21!1hm#/z. ~5!

Them dependence, apart from the Gaussian one, therefore
comes fromhm . At the Gaussian level the exponents depend
linearly onm.

The formal solution of Eq.~4!, in the Fourier space
(k j ,v) conjugate to (xj ,t), can be written as

h~$k j%,v!5G0~$k j%,v!g̃02~l/2!G0~$k j%,v!

3E
$•%

S (
j51

m

P j D h~$pj%,V!h~$k j2pj%,v2V!,

~6!

whereG0($k j%,v)5@g( j kj
22 iv#21 represents the barem

particle propagator~Green’s function! ~see Fig. 1!, andg̃0 is
the Fourier transform ofg0 . A shorthand notation is used,

FIG. 1. Diagrammatic representation of the parameters~a! and
the solution~b!. @See also Figs. 1 and 2 of Ref. 5~b!.# The solid
square represents the vertex function which for zero external mo-
menta givesvmR. The dotted line in the series forvm is a dummy
line signifying loop closing. This line indicates that two different
indices are coupled by the dummy momentump. There are two
factors in ~b!. ~i! A combinatorial factor 8 from the insertions of
l vertices and the subsequent noise contraction and~ii ! (2

m) for
choosing the wave vectors.
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viz., P j5pj•(k j2pj ), *$•%5(2p)2md21* dV ) i51
m dpi ,

and $k j% to represent all them k vectors. To tame possible
divergences, we put an upper cutoffL ~51! for all p inte-
grals. This cutoff actually comes from a short distance cutoff
in real space.

We now use a dynamic renormalization group approach to
determine the behavior ofvm for large length scales by inte-
grating out fluctuations on smaller scales. This is based on
Eq. ~6!. The procedure is well documented, especially for the
KPZ equation5 and for them52 case of Eq.~4!.24 The basic
idea is to~i! integrate out the fluctuations at the shortest scale
by taking a sliceLe2d l<p<L from the momentum inte-
gral, ~ii ! absorb it in the coupling constant, and~iii ! rescale
all the momenta, etc., to get back the original cutoffL. The
resulting changes are then absorbed by renormalizing the pa-
rameters of the problem. In the limitd l→0, these changes
are expressed in terms of differential equations~recursion
relations! that tell us the flow of the parameters as we go to
longer length scales. Special care is needed, for the problem
at hand, to keep track of the momenta indices that get
coupled by the noise. These interchain connections produce
the necessary anomalous part in the RG equation. We skip
the algebraic details.

The flow of the disorder is described in terms of the
dimensionless couplingU5Kdl

2D/(2g3), where Kd
5(2p)2dSd , Sd being the surface area of the unit
d-dimensional sphere, and can be found in Ref. 5. We have
verified that this single chain equation is recovered from Eq.
~6!, and is independent ofm. Let us recapitulate that at
d52, U is marginally relevant. This leads to a new critical
point for d.2. For d521e, the unstable fixed point
U*52e corresponds to the spin-glass transition point, with
n52/(d22) as the length scale exponent.34

We concentrate on the renormalization of the coupling
vm . For the long wavelength, long time limit, the external
wavevectors and frequency are small or zero. In this limit,
for arbitrarym, the effective coupling constant to one-loop
order ~see Fig. 1! is given by ~suppressing the zero wave
vectors!

vmR5vm18Sm2 D S 2
l

2D 2~2vmD!

3E
p,V

p4G0~p,V!@G0~2p,2V!#2G0~p,2p,0!.

~7!

The recursion relation forvm follows from Eq.~7! as

dvm
dl

5Fz2x2~m21!d1Sm2 DU Gvm . ~8!

Since our interest is in the crossover exponent forvm at
vm50, this first order~in vm), one-loop equation is sufficient
for us. Higher loops will generate higher order terms inU
~and hencee).

Using the one-loop fixed point valueU*52e for the tran-
sition point, we findhm52m(m21)e, which from Eq.~5!
gives

bm5nzc@2~m21!2~m21!2e1O~e2!#, ~9!

wherezc51/zc is the size exponent at the transition point.
We now see that the linear relation betweenbm andm at the
Gaussian level is not respected in the first order. In other
words the exponentsbm are not linearly dependent on each
other, and higher order terms are expected to make the inter-
dependence more complicated. Hence the need for an infinite
number of exponents at the transition point.

From the nature of the perturbation series, we see that the
change in exponent to first order ine is due to the effective
two-body interaction induced by the disorder. The loop in
Fig. 1 and in Eq.~7! comes when disorder couples two dif-
ferent chains. Withd-correlated noise, this means that the
two chains are going through the same point in space. The
purpose of overlap is to count these. It is well known that
two-body interaction changes the reunion behavior ofm
chains, and eachm requires a new exponent for reunion.35,36

This is the situation here.
Let us now try to connect this result to a replica analysis.

We taken chains in the random medium and average the
resulting partition function, or equivalently, get the effective
Hamiltonian for thenth moment of the partition function.
The effect of the disorder is to couple these chains through a
two-body interaction.37 Them overlap, then corresponds to
the reunion ofm chains out of thesem, in the limit n→0
~the replica trick!. At the critical point, taking the chains to
be Gaussian~sincezc51/zc51/2),18,6 the reunion of a subset
of interacting random walkers can be studied following Ref.
36. The only difference with Ref. 36 is that the relevant fixed
point is the unstable one, and then→0 limit can be taken
@see, e.g., Ref. 36~b!# to get the anomalous part of Eq.~9!.
This is essentially correct but it still needs to be established
that the chains are actually Gaussian~not just zc51/2).
These problems are not present in the differential equation
approach used in this paper.

What do all of these mean for the spin-glass transition in
finite dimensions? One expects to write down~in the n→0
limit ! a Landau-Ginzburg type free-energy functional with
the overlaps as the order parameters. There can be two pos-
sibilities. ~i! One is that the simple minded description
through the overlap of two copies is not sufficient, and one
has to worry about the higher overlaps, and in fact an infinite
number of them. Even if one starts with the Gaussian distri-
bution, renormalization effects will generate the higher over-
laps~arbitrary distributions generate then in any case!. In this
situation, the conventional replica approach may not be use-
ful. The problem here again may be the interchange of the
two limits, viz, n→0 and the thermodynamic limit.~ii ! The
other option is that the two copy overlap is good enough in
the sense that higherm overlaps are irrelevant. Naively
speaking, at the transition point withz52, x50, vm is irrel-
evant atd52 for m.2. However, this does not necessarily
imply irrelevance of them overlaps in the single-chain prob-
lem. Remember, thatvm is a coupling introduced by hand in
the many chain Hamiltonian in Eq.~3! to calculate the over-
laps anddoes notappear in the description of the single-
chain problem. This opens up the possibility where under
special conditions higher order overlaps can become impor-
tant as in multicritical cases or polymers with higher order
composite operators becoming relevant. Proper choice of pa-
rameters can then lead to multicritical analogs of spin
glasses. These are not the random version of pure multicriti-
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cal models but are of inherently different type. In both cases,
if the m overlaps are important at the transition, they are
expected to be so in the spin-glass phase also. We hope that
this will motivate further detailed numerical work to settle
this issue. We conclude that, like multifractals, a spin-glass
transition in finite dimensions subsumes an infinite number

of independent exponents. This indicates either a failure of
the simple replica picture in finite dimensions or the possi-
bility of highly complex spin-glass phases.
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