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By formulating the problem of a single polymer chain in a steady extensional flow as a zero-
component field theory, the scaling exponent for the flow rate is obtained exactly in terms of known

static and linear dynamic exponents.

I. INTRODUCTION

The renormalization-group approach to study the
universal behavior of polymer chains has, thus far, taken
two different routes, one using the path-integral formula-
tion,"? and the other employing the n-component field
theory in the n—0 limit.>* Both approaches yield iden-
tical results for critical exponents and for static proper-
ties that are not sensitive to the polydispersity inherent in
the latter method. For dynamic properties, the path-
integral method is presently the only available technique.

The problem of a polymer chain in a steady extensional
- flow is one of the dynamic problems that have been stud-
ied by using the path-integral method by Yamazaki and
Ohta’ (subsequently referred to as YO) and Puri, Schaub,
and Oono.®
as an n—0 field theory, and using the renormalization-
group equation, the scaling exponent for the flow rate can
be determined exactly. This exponent has been obtained
to O(e) by YO where e=4—d, d being the dimensionali-
ty. )

The two-dimensional extensional flow of interest is de-
scribed by a velocity field,

v=(8x,—Sy,0),

Since the field in Eq. (1.1) can be derived from a poten-
tial,

U=—1S(x2—y?),

such that v=—VU, the steady-state behavior of a poly
mer can be described by an effective Hamiltonian that
contains U as an external potential. This simplicity in
the path-integral formulation was utilized by YO to study
the scaling behavior of various single chain properties in
good solvents.’ It has also been used to study the effect
of flow on phase separation—a many chain problem in
poor solvents.” We emphasize that this quasiequilibrium
description is possible only if hydrodynamic interactions
among monomers are neglected.

We will consider only small flow rates for stability, as
has been done in the previous studies.’™” For large flow
rates, there is a coil-stretch transition in polymers that

We show that by reformulating the problem

(L

in Cartesian coordinates, with S denoting the flow rate. 7

—-and

cannot be studied in the present framework (see Ref. 6
references therein). The flow rate, in the
renormalization-group language, is a relevant variable
near the excluded volume fixed point and the crossover is
described by the scaling exponent we want to calculate.

The flow rate S is an externally applied quantity and,
therefore, in a renormalization-group treatment should
not require any renormalization. However, it couples to
the internal degrees of freedom of the polymer through
the friction coefficient £ of the monomers in the solvent,
which not being an observable, gets renormalized. Since
the aforementioned Hamiltonian involves the combina-
tion variable ¥ =s{, the renormalization of { introduces
an exponent o (to be determined) such that the physical
properties (e.g., radius of gyration) depend on the scaling
variable

y=yN?, (1.3)

_where N is the polymer length.

One way of guessing o is to go through a heuristic ar-

" gument, following YO, that S has the engineering dimen-

sion of frequency and, therefore, need be nondimensional-
ized by a characteristic time scale. Such a time scale is
- the characteristic relaxation time of the polymer (no flow)

_1~£&% where z is the dynamic exponent, and the length

scale £ is proportional to the end to end distance,
&£~ (R?*)'2, The scaling variable is thus SN*" giving

(1.4)

O=2ZV .

(1 2)" ,

The dynamlc exponent z, in the absence of any hydro-

dynamlc interaction, satisfies the equality®
z=24v" (1.5)

exactly. YO showed that Eq. (1.4) for the exponent w is

correct to O(e). We prove that Eq. (1.4) with Eq. (1.5) is
correct to all orders of €.

The proof is carried out in three parts. First, the n-
vector Hamiltonian is obtained from the path-integral
formulation of YO, following the method of Emery.’
Next, the renormalization of a general vertex function'®
in the presence of the flow is discussed. Finally, the
renormalization-group equation is used to obtain the scal-
ing exponent.
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A. The Model

The path-integral formulation, following YO with
changes in notation, gives the effective Hamiltonian in
the steady-state limit as

2
(ke T)"'H=1 fo“’ -gf] ds —1Ly foNds(x2—y2)

+ar [ ds [Vassro -, @
where r(s) is the position vector of a point on the chain at
an arc length s from one end point, and u (> 0) is the ex-
cluded volume interaction parameter. The three terms in
the Hamiltonian in Eq. (2.1) represent, respectively, the
elastic energy, the extra “potential energy” due to the
flow, and the excluded volume interaction. The Hamil-
tonian is valid for al d =2, the flow affecting only two
directions.

For a field theory with global O(n) symmetry, the ¢*
term describes the interaction equivalent to the excluded
volume term in Eq. (2.1) in the limit n —0.*° With this
in mind, we concentrate on the flow term and see how it
can be incorporated in an O(n) symmetric theory.

Following Emery,® we note that, in the usual bra-ket
notation,

Gy=(x;l exp{ —~N[— 4P+ P (")}l ,

2
_ r(N)=rj N or

—Nfr(0)=r‘- Drexp |—1 fo ds 3;]
— [ vxtsnds

) (2.2)

where N is a suitable normalization constant, Dr is the
integration measure for the path integral, and V() is the
potential. Taking the Laplace transform of the left-hand
side with respect to &N, we find

y= fe_”N/zG,-jdn
={r;[(—=1V2+iu+V)7 ;) . (2.3)

This propagator §; is the two-point correlation function
for the Hamiltonian

ey T) 7 'Ho= [ dr{H(VeP+1pd*+ V(D] . (2.4)

By restoring the ¢* term, representing the excluded
volume interaction, the resultant Hamiltonian is
H _ Hy
kgT kgT

+o- [drg?, (2.5)
where now ¢*=3,;6?=n, and n —0 is implied. For more
details, the reader is referred to Emery.” The important
point to mnote is that the ‘“external potential”
V' =2Ly(y?—x?) in the path-integral Hamiltonian multi-
plies ¢? in the field-theory formulation [Eq. (2.4)] unlike a
magnetic problem where external fields generally couple
with the field. This is because ¢* is interpreted as the
monomer concentration in the n —0 model.*
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B. Renormalization

For a renormalization-group analysis, we start with the
engineering dimensions of the various quantities appear-
ing in the Hamiltonian, Egs. (2.4) and (2.5):

[¢]-_—L(2—d)/2, [‘u]=L-—2,
[y1=L7% [u]=L%"*,

where L has the dimension of length. Introducing an ar-
bitrary cutoff length scale a, we define a dimensionless
coupling constant

(2.6)

go=ua*"?.
To remove the primitive divergences that occur at four
dimensions, one needs to renormalize the various parame-
ters, 1210

Let us take I'?, the vertex function of N ¢ operators
as an example. We choose the “massless” or the “critical
point” remormalization (u=0). Expanding about this
massless point, we have (see Sec. 7.7 of Ref. 10)

FLN)(ri’?’:go’a)
< 1
=3 g7v [y o)
L=1&*

XFE:N’L)(ri,yi’O’go’a) s (2.8)

where M%) is the composite vertex function for N ¢-

type and L ¢-type operators, the subscript ¢ denotes the
critical point, and v (#)=V (r)/y. Both the right- and the
left-hand sides are at the critical point, but more impor-
tantly the vertex functions on the right-hand side are
evaluated in the no flow situation. The renormalization
of ML) in the absence of flow is well known:!°

I‘(RIY’CL)(r,»,yj,O,g,A)=Zf2’/2222I"(CN'L)(ri,yj,O,go,a) , (2.9

where Z P and Z , are the renormalization factors to re-

move the divergences that remain after renormalizing g,
to g. The cutoff length scale a is replaced by A in the

process. Using Eq. (2.9), I"(RIY;L) can be renormalized as
follows:
P%Yc)‘('.'i’YR’g:A)

-« 1
=3 7k [ & dbn o)

XTR(r,y;,0,8,A) (2.10)

where y g =2Z ;21 v is the renormalized flow variable. This

shows that no new renormalization constant is needed to
treat the flow variable.
Since the bare vertex functions are independent of A,
the renormalization-group equation for I'*% at y =0 is
(N,L)
dT, _

A——F—=0

aA (2.11)

or
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9 9 _ NL=
A5X+B(g) INY48)— Ly¢z(g) 'z » =0
(2.12)
where _
dlnZ dInZ3
—& = _._...._¢ e $
B@)=Agps Vy=A—— Yp=A—r (2.13)

By direct substitution, one can verify that the equation
satisfied by I'¢"2(r;,¥ z,8 A) is

9 9 S| T
AaA+B(g)ag sN748)— 'yR7¢2(g) e

@. 14)

At the fixed point g =g*, where B(g)=0, we obtam, by
the method of characteristics,

ANBﬂf(N)

(r,y¥A),  (2.15)

where B =y ,4(g*), C=y ¢2(g and £ is a function of

only two variables. From dlmensmnal analys;s, we can
also write for an arbitrary scale transformation A,
suppressing g * in the argument,

I-‘R c(rnYR’g* A)=

(N)(rz:YR vA)u BNF(N)

A
At =
VR ’A.ﬁ

}“, o (2.16)

where 8, is the canonical or engineering dimension of
™, the explicit value of which is of no importance in
this paper. Combining Egs. (2.15) and (2.16) for A=1,
we find, at g =g ¥, ' S,

51v NB/2 ﬁuv) li_’},}z/cxvc—,l

17
X 2.17)

F%’Yi(rnn)—
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An identical analysis with ¥ =0 and u5<0 would give

r;

P(Rﬁf{r,-,y) A.BN NB/2 F(N) [A’ [_LI/CA,Z/C 1 (2.18)

where nf stands for no flow. A comparison of Egs. (2.17)
and (2.18) shows that the scaling variable involving p and

Yr is

?R =YR”'—-(_4—C)/(Z_C) , (2.19)
and for distance, it is
- P=rpttC (2.20)
which identifies

y=ate @.21)

The result, Eq. (2.19), and the Laplace conjugate relation
u~N"1 (for which n—0 is needed) give for the scaling
exponent o [cf. Eq. (1.3)]

a—c_ | .1
2+ 2.22
o= ,_,C ( )

This proves Eq. (1.4) when Eq. (1.5) is invoked.
II1. SUMMARY

_To summarize, we have developed the n—0 polymer-
magnet analogy for studying the properties of a polymer
in an extensional flow and obtained the scaling exponent
for the flow rate exactly in terms of the length scale ex-

_ponent v. The mathematical reason behind this is that no

" ~“new renormalization constant is required to treat the flow.
~—The method developed here is quite general, and can, in

fact, be applied to any exter .1 potential problem. Using
this for potentlals that, for example, lead to a collapse
transition, 1 is an interesting problem for further study.
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