PHYSICAL REVIEW B

VOLUME 34, NUMBER 3

1 AUGUST 1986

Assumption of separability of the excluded-volume interaction in polymer physics:
Flory-Huggins theory reviewed

Somendra M. Bhattacharjee
Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003
(Received 13 December 1985)

Rotational isomerism and the excluded-volume interaction are generally considered to be the two
major factors in polymer crystallization, glass transition, etc. The calculations supporting this belief
are based on the assumption that the contribution to the free energy from the excluded-volume in-
teraction is separable from the rest of the interactions. This separability assumption is studied here
by mapping a single-polymer-chain problem to a spin problem with a cluster interaction. Using a
variational principle, which provides an upper bound to the free energy, it is shown that the separa-
bility assumption gives a qualitatively incorrect description of the system in the low-temperature re-
gion. The consequences of this result for general models are also discussed.

I. INTRODUCTION

The Flory-Huggins theory is the starting point! for
many calculations involving polymers if the excluded-
volume interaction plays a crucial role in determining the
behavior of the system. This theory is generally con-
sidered to be the mean-field theory' for polymers. In this
paper, we study the basic assumption of this theory as ap-
plied to semiflexible chains.

The configuration of a large, completely flexible poly-
mer chain of N monomers can be described! by a self-
avoiding walk (SAW) on a lattice where the walker takes
steps to the nearest neighbors with equal probability, with
the restriction that a site once visited cannot be visited
again. (Stepping to any nearest neighbor with equal prob-
ability models the free rotation of a bond in the chain; the
self-avoiding restriction models the excluded-volume (EV)
interaction.) However, for a real polymer chain, because
of steric hindrances, equal probabilities are not expected.
As shown in Fig. 1, the potential energy? of a bond for a
polyethylene (—CH,—CH,—) chain has three minima.
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FIG. 1. Schematic representation of the potential energy of a
C—C bond in a polyethylene chain as a function of the rotation
angle ¢. The energy difference € between the two minima is
generally of the order of 0.5 kcal per mole (Ref. 2).

For simplicity, one replaces the potential by a three-state
model, one with zero energy (the trans state) and two
high-energy gauche states [the number (> 1) of which is
not crucial]. Such a model of a polymer chain where dif-
ferent directions have different energies is called the rota-
tional isomeric model.

On a lattice, the lack of flexibility (and hence the name
semiflexibility) in the rotational isomeric model can be in-
troduced by taking the forward step as the trans state and
all other steps as the gauche states. The ground state of
this model consists of a rodlike configuration where the
chain is in the all-trans state. At any nonzero tempera-
ture, if the excluded volume interaction is ignored, the
size of such a semiflexible chain as measured, say, by the
mean end-to-end distance, in the limit of N — 0, is simi-
lar to that of a free random walk on the lattice.* Howev-
er, nontrivial temperature effects occur* when the ex-
cluded volume interaction is taken into account.

Using the Flory-Huggins approximation** for semiflex-
ible chains with the EV interaction, one finds a first-order
transition (see Sec. II). For a many-chain system, the
high-temperature phase is an isotropic phase where the
chains are in a coiled state, but in the low-temperature
phase they are rodlike in the all-trans state. For a single
chain covering the whole lattice, the low-temperature
phase is an inactive phase where the chain is in its ground
state at all temperatures below the transition temperature
T.. The chain is in a disordered state only at tempera-
tures above T,. This low-temperature phase is identi-
fied*> as the crystalline phase of polymers.

The crucial assumption in the Flory-Huggins approxi-
mation, clearly stated by Flory,’ is the separability of the
excluded-volume contribution to the partition function
from the rotational isomeric contribution (see Sec. II).
This separability assumption was also used by Gibbs and
DiMarzio® to show the existence of a glass transition in a
polymeric system. Thanks to these early successes (and to
the intuitive understanding’ of how rotational isomerism
and the EV interaction can lead to crystallization and/or
a glassy state), a wide variety of problems, including
liquid-crystalline transitions in polymers,® have been stud-
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ied by using this assumption.

The validity of the Flory-Huggins theory has been ques-
tioned®='2 in the past. Nagle’s criticism’ was based on
the results of a few exactly solvable models of statistical
mechanics. Although some of these models do exhibit a
frozen low-temperature behavior, the one which is the
best analog of polymers, the F model, shows a completely
different type of phase transition (an “infinite-order”
transition; the free energy has a natural boundary at the

critical point, and there is no frozen behavior'?). A more

direct way of questioning the validity of this theory was
the construction of an upper bound'®!! for the free energy
of the polymer chain. On a finite lattice, in the close-
packed limit, certain configurations with a known density
of gauche states are constructed. Since these states do not
include all the allowed configurations, one gets a lower
bound for the entropy and an upper bound for the free en-
ergy. For a frozen state, the free energy is zero and lies
above this bound. Such an analysis argues against a low-
temperature frozen phase but cannot rule out the possibil-
ity of a phase transition. This is yet to be done.

The Flory-Huggins theory, as already mentioned, is
considered*~7 to be the mean-field theory for polymeric
systems. The mean-field theory in critical phenomena is
well understood in the sense that there are models for
which it is exact.’® In contrast, no polymeric model is
known for which the Flory-Huggins theory can be con-
sidered to be exact. In such a situation, we would like to
know why this theory can be wrong. We wish to study a
problem that can be handled rigorously, even in the ther-
modynamic limit, 16 and that is also easy enough for intui-
tive understanding. We emphasize that we are proposing
neither a model nor a method for studying the ordering
transition of polymer chains.

In this paper, the simplest problem of a smgle semiflex-
ible polymer chain on an infinite lattice is considered and
it i$ shown that the separability assumption leads to in-
consistencies. This is done by mapping the polymer prob-
lem into a spin problem in Sec. III. In Sec. IV, we study
the spin Hamiltonian by usmg the separablhty assump-
tion. A variational principle!’ is used in Sec. V to obtain
an upper bound for the free energy. The results are sum-
marized and discussed in Sec. VI. For completeness, the
Flory-Huggins approximation is discussed in Sec. II,
where the separability assumption is also explained.

II. CLASSICAL FLORY-HUGGINS
APPROXIMATION

The classical Flory-Huggins approximation* can be
used to study the many-chain problem on a lattice. For
simplicity, we consider the case of a single chain covering
the whole lattice. The chain visits every site of the lattice
and no site is visited more than once. This is the Hamil-
ton walk problem of graph theory.!®

The partition function one wants to calculate is given
by

Z =7y exp(—npe),

where f=(kzT)~!, kp is Boltzmann’s constant, ¢ is the
energy of a gauche state, and »n is the number of gauche

2.1
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" states in a particular configuration. The sum in (2.1) is

over all Hamilton walks. The separability assumption can
be stated as’

Z=ZgyZ, 2.2)
or, equivalently
F=Fgy+F , 2.3)

where the free energy F is related to the partition function
via the relation F=—kzTInZ. In (2.2) and (2.3), Zgy
and Fgy refer to the EV interaction, and Z,, and Fy,
refer to rotational isomerism. This is not a simple-
minded factorization of the partition function; such a fac-
torization would involve a double counting of states. As
explained below, Zgy contains only the part responsible
for the changes in the behavior of the system when the

- excluded-volume interaction is turned on.

For a chain of N steps, the partition function for the
rotational isomeric part is given by

Z o =(14+pe= PN 2.4)

because the steps, in the absence of the EV interaction, are
independent of each other. Here, p is the number of
gauche states available to the chain at each step.

To obtain Zgy or Fgy in (2.2) or (2.3), note that on a
lattice the EV interaction involves no energy; rather its in-
clusion reduces the number of configurations available to
the chain. In other words, Fgy is purely entropic in char-
acter. If Frw is the free energy of an N-step random
walk and Fyw is that of the corresponding Ham11ton
walk, then F. ev is taken as

FvaF;{w—FRw . (2.5)

The subtraction in (2.5) is necessary because Fyy in (2.4)
already contains the random-walk part as the T—> oo lim-
it. Since the entropy of a Hamilton walk is necessarily
less than that of a random walk,

Fgy>0. (2.6)

Unfortunately, Fgy cannot be calculated exactly. Since
Fgy is purely entropic in nature, we can write it as

FEV =NkB Tc ) (27)

with ¢ as a positive constant. Various approximate values
of ¢ are known.>*!1:1° The simple-minded Flory approxi-
mation gives ¢ =1 for any lattice whereas the improved
Huggins approximation gives

c=+(g —2)n[q /(g —2)]

for a lattice of coordination number g. For a square lat-
tice, rlgorous bounds for the entropy of a Hamilton walk
are known,!! and the improved Huggins approximation
lies within those bounds. This just shows that the approx-
imations made to obtain the above values are not the root
of the problems mentioned in the Introduction.

' Usmg (2.4) and (2.7) in (2.3), the free energy per mono-
mer is obtained as

f;%:kBT[c—ln(l-l—pe ~fe)] | (2.8
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That there exists at least one ground state with zero ener-
gy implies

f<0.

However, since ¢ >0 [see Eq. (2.7)], the free energy in
(2.8) becomes positive for T < T, where T, is determined
by

(2.9

c=In (2.10)

1+pexp

£
kpT,
In other words, below T, the ground state is thermo-
dynamically the stable phase. The polymer chain is in a
disordered, coiled state at high temperatures but is frozen
in the ground state at all temperatures below the transi-
tion temperature T.

This result has been interpreted™’ as a consequence of
the packing problem. Below a certain density of gauche
states (the density at T =T,), the number of ways of
packing the chain is not large enough to contribute signi-
ficantly to the thermodynamics of the system (i.e., the
number grows less rapidly than exponentially as N — o0 ).

III. THE MODEL

Let us consider a long polymer chain represented by a
random walk on a simple-cubic lattice. The steps of the
walker correspond to the bonds of the polymer chain. If
the bonds of the chain are represented by the vectors S;,
as in Fig. 2(a), then the rotational isomeric energy can be
represented by

E-—aS,"S,-_H ’ (3.1)
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FIG. 2. (a) Model of the polymer chain. The bonds are of
unit length and can point in six possible directions on a simple-
cubic lattice. Rotational isomerism is considered by taking a po-
tential energy of the form e—eS;-8, ,; for two successive bonds

+ 8; and S;,;. This interaction favors a rodlike configuration
over a random one, the latter being the favorable arrangement
from the entropic point of view. The position of the ith mono-
mer is represented by R; from an arbitrarily chosen origin. (b)
Spin representation of the model in (a). The spins are the bond
vectors S;. The excluded-volume interaction, in the strict sense,
would forbid a configuration shown here because of the overlap
of the i and / +4 monomers. For the spin model, the magneti-

- zation of the cluster, set off by the dotted line, is zero. The
strict excluded-volume interaction is replaced by a softer one
which penalizes such configurations over the ordered ones but
still does not exclude them.
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where each S; can have six possible orientations
(+x,%y,+z). For simplicity, we shall take |S; | =1. For
a trans configuration, two successive bonds (S; and S; )
have to be in the same direction and, by (3.1), the energy
will be zero. For a gauche state, S; and S; | are mutually
perpendicular to each other and so the energy is ¢, as de-
fined in the Introduction. One should note here that the
form of energy in (3.1) allows immediate reversal of a
bond when §; is antiparallel to §;,;. As will be seen
below, this minor change of the model of Sec. II is of no
significance.® The total energy for N +1 bonds is ob-
tained by summing over all bonds as

[v
H=Ne—e 3 S;'S; .

i=1

(3.2

Note that the energy of the ground state is zero.

The form of the Hamiltonian in (3.2) permits a random
configuration of the chain in which a lattice site can be
visited more than once by the walker. The excluded
volume interaction can be incorporated by excluding those
configurations which involve multiple occupancy. How-
ever, to make the analysis tractable, we choose a softer
form?! of the EV interaction for which the configurations
with multiple occupancy are penalized but not excluded.
This is done by adding to (3.2) an energy term of the type
+ mw where m is the number of contacts for a particular
configuration and w is the energy per contact (w >0). If
R; and R; are the absolute positions of the walker at the
ith and jth steps, respectively, then an overlap occurs
when

R,—R;=0, (3.3)

or, in terms of the bond vectors S,,

ji=1
> S,=0. (3.4)
pP=i

To obtain (3.4) from (3.3) one should note that
R;=R;+3/7'S, because of the connectivity of the
chain. Using (3.4), the “excluded-volume” part of the en-
ergy can be written as

j=1 "
Hy=w S, 8 [2 S,,0 3.5
« 0| &

LY
(i<j)

where 8(a,b) is the Kronecker 8, defined as

1 ifa=b,

0 if astbh . (3.6)

8(a,b)=’

The total Hamiltonian is given by
H=H+H,

N
=Ne—e 3 8;'S; | +w 2 )

i=1

. 397D

j=1
>.8,,0
i

bhj
(i<
For w =0, (3.7) reduces to H,, which corresponds to a
weighted random walk. For w—s w0, the partition func-
tion has contributions only from those configurations for
which there is no overlap; this is the SAW limit.

The Hamiltonian in (3.7) can be interpreted as the
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Hamiltonian for a one-dimensional spin system as shown
in Fig. 2(b). This means that the thermodynamics of the
polymer chain on a hypercubic lattice in d dimensions is
formally equivalent to that of a d-component spin system
arranged in a one-dimensional array. Each spin, because
of the choice of the cubic lattice, can only point in 24 al-
lowed directions (i.e., along the Cartesian axes). These
spins S; interact via the usual’® nearest-neighbor fer-
romagnetic interaction (H,, apart from a constant term).
In addition, there is a cluster interaction which contri-
butes only if the cluster is disordered (3, S, =0, ie, no
magnetization). Summing over all the clusters in (3.5)
means penalizing the states which are disordered at all
length scales. For Hy, the ground state consists of well-
ordered spins and has zero energy. Since for this state
there is no overlap, the ground state of the total Hamil-
tonian in (3.7) also has zero energy. One can also see that
an ordering transition for the polymer chain implies a
magnetic transition in the spin system. This equivalence
is shown below.

For a polymer, one generally calculates! the end-to- end

distance -
R= 3, S, . - (3.8

If, for large N, the exponent v describes the mean end-to-
end distance as

(R)H12_NY 3.9)

then, it is known! that

'V=% , (3.103)
for a random walk, but
3
~— - (3.10b
v 712 ( 3 )

for a SAW or for H.,, of (3.5) in d dimensions (d <4).%
In the spin language, (R?)!2 is the total mag,netlzatlon
so that, in the limit of N — o, the magnetization per spin
is

m = lim (3.11)

N—>ow

<R12\Zm ]=O ,

because, from (3.10), v<1. However, if the polymer is
rodlike, as in the low-temperature phase in the Flory-
Huggins approximation, then (R?)!/2~N? and v=1. In
such a case, there will be a net magnetization in the sys-_
tem with a nonzero average of each spin §;.

It is well known!® that with just H., there cannot be a
phase transition in the spin system because the interaction
is short ranged. This is just a restatement of the already
mentioned fact® that the size of a semiflexible chain has
the same scaling behavior [e.g., Eq. (3.9)] as a completely
flexible chain. The question one then asks is this: When
H,, is added to H, as in (3.7), can there be a transition
to a well-ordered state in the low-temperature region?

IV. SEPARABILITY APPROXIMATION

To study the Hamiltonian in (3.7) using the separability
assumption of Sec. II, we need to evaluate (1) F,,; from
H.,: in (3.2), and (2) Fgy from H.. These are done
separately below.

A. Evaluation of F,,

The partition function for H,, can be obtained by the
transfer matrix!’ method. The free energy in the limit of
large N is given by

F N
frotEA}i ;t =-—kpgTIn[14(q —2)e Py,

— 0

4.1)
Equations (4.1) and (2.4) differ by the term e ~2%. This
term arises from the backward steps which are allowed in
(3.2). These steps cost an energy 2e.

B. Evaluation of Fgy

The free energy due to H,, in (3.6) is not known in a
closed form. As will be seen below, an explicit form of
Fgy is not necessary for the conclusion we will draw. We
therefore do not attempt to get a closed form for Fgy.

For any finite chain with N bonds, the partition func-
tion for H,, is given by

Zy(x)=2, Cymx™, (4.2)

where x =e ~P¥ and Cy,, is the number of N-step ran-
dom walks with m contacts. Since we are interested in
the range 0 <w < 0, x lies between

O<x<l. 4.3)

One recovers the random-walk result for x =1 and the
SAW result for x =0. For a random walk on a lattice of
coordination number g,

Zy()=g", (4.4)

for any N. In the SAW limit, for N— oo, it is known!*
that

Zy(0)=CudN7, (4.5)

where C is a constant independent of N, u is the effective
coordination number (ug<g), and ¥ is a universal ex-
ponent depending only on the dimensionality of the lat-
tice.

Using (4.3) and the positivity of the summand in (4.2),
one has the basic inequality

Ti? InZy(0) < anN(x) < anN( )=lng. (4.6
In the limit of N — o, we have, from (4.5),
Inpto < fim %anN(x)glnq . 4.7)
Assuming that the limit exists, we define u(x) by
. 1
1 = ] —InZ .
Inu(x) im n(x), (4.8)
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where u(x)=po for x =0 and plx)=q for x=1. In
terms of this function, the free energy is given by

Sfex=—kpT Inu(x) . (4.9)
Therefore, the excluded volume part of the free energy per
monomer, as explained in Sec. II, is given by

fev=ksTIn—I— (4.10)

wix) -~

C. Total free energy

The free energy per monomer for the Hamiltonian of
(3.7) under the separability assumption is obtained by add-
ing (4.10) and (4.11) as

F=ksT |In—L——In[1+(q—2e~Fte—25]| . (411

uix)

In the SAW limit with w— oo, we see that the free energy
becomes positive at a temperature T,, which is given by
- 2
—q—=1+(q —2)e ﬁce—{-e Pet .
Ko

(4.12)

For a_ simple-cubic lattice,! for example, ¢=6 and
o=4.68. The corresponding free energy is shown in Fig.
‘3. For a finite w, g /u(x)> 1, and u(x) is a monotonically
decreasing function of temperature. In such a case, f be-
comes positive at a temperature T,{w) given by

—4 1 4(g—2)e T (4.13)

uixe)

We therefore find that there exists a w-dependent critical
temperature T.(w) below which the ground state is ther-
modynamically the stable phase, just as we found for the
Hamilton walk problem in Sec. II.

.........

f/e

FIG. 3. Free energy for a simple-cubic lattice, obtained by
using the separability assumption, is shown as a function of
temperature (kpT /€), by the thick line. The dotted line is the
extension of the high-temperature phase to T < T,=0.375s/kp.
This part is unstable because of the existence of the ground state
with lower free energy. The dashed line is a schematic drawing
of the upper bound obtained in Sec. V.

V. UPPER BOUND FOR THE FREE ENERGY
USING A VARIATIONAL PRINCIPLE

The variational principle!” in statistical mechanics
states that for any trial Hamiltonian H, one has

F<F+(H-H),, (5.1)

where F is the free energy for Hand (---) P is the aver-

age taken with the Hamiltonian H An upper bound for
F can then be obtained by minimizing the right-hand side
of (5.1) with respect to a parameter in the trial Hamiltoni-
an.
We choose an independent spin Hamiltonian of the

form

~ N+1

H=h' E Si > (52)

i=1

with h in the z direction. For this ﬁ, we have, in d di-
mensijons,

h

2(d —1)+2cosh Ty T

F=—(N+1)kzTln (5.3)

and

(ﬁ)ﬁ=——(N+l)hJi, (5.4)

where # ={S;;) P is the net magnetization per spin in the
z direction; it is given by
_ sinh(h /k3T) .
" (d —1)+cosh(h /kzT)

(5.5

A. Evaluation of (H >§

To evaluate the average of H with respect to ﬁ, we
consider H,, and H,, separately. Since the spins in the
trial Hamiltonian are independent, we have

(Hmt)ﬁ=N£——N£.,/{2. (5.6)

For (Hq) P let us consider one particular cluster of size
r and find the average of 8( 3, $,,0). By definition,

S8( sp,o]e—éﬁ

(5 [z $,,0 ]>ﬁ_ pro , (5.7)
where
Z=2(d —1)+2cosh(h /kzT) , (5.8)

is the single-spin partition function for the trial Hamil-
tonian. When summed over different configurations,
there is a contribution to the sum in (5.7) only when the
magnetization of the cluster is zero. If P, denotes the
number of ways a random walker, which starts from an
arbitrarily chosen point on the underlying lattice of the
polymer chain, comes back to that point in r steps, then
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<8 [zsp,o]>ﬁ=;’r : S (59)

Using (5.9) and also taking ad\}antage of the translational
invariance, we have

Jim - (He) = g lz:; ; 60
If we define the generating function for P, by
Px)=3 Bx’, (5.11)
we have '
lim (Hex)A—-wP Z-Y. (5.12)

Now N

For a 51mple-cublc lattice, the generating functlon P(x)is
given by?> .

P(x)= [ d*k[1—xAK)] ",

with A(k)=2(cosk, +cosk, +-cosk,).
(5.4), (5.5), and (5.10), we obtain

f*= lim FF-I-(H H)

(5.13)
Combining (5.3),

N—ow
=f—ed’+wP(Z "V )+ht+e. (5.14)
Minimizing f* with respect to %, one obtains
= 5.15)
=g (Bh)=2eM +w.M a(Bh) 2 Py (

The last term on the right-hand side of (5 15) is an extra
term to the usual mean-field solution!> of the nearest-
neighbor spin model (H,,) from the excluded-volume
part of the Hamiltonian in (3.7).
The solution of (5.15), when substituted in (5.14), gives
the upper bound for the free energy for the Hamiltonian
n (3.7). The solution is given by the intersection of
y=kBTx with y =g(x), where x =Bh. One can very
easily see that g(x)—2e as x— . For T—0, the inter-
section is obviously at large values of x (ignoring the trivi-

al solution at x =0) so that a first-order iterative solution |

is
2e/kgT

h =2e+Q2wP,—4¢e)e , (5.16)

for a sifnple—cubic lattice. Substituting this 4 in (5.14),
one has, asymptotically close to T' =0,

f*m—dkyTe 8T

Equation (5.15) can, in fact, be solved numerically to ob-
tain the bound for all temperatures. However, Eq. (5.17)
is good for our conclusion. It shows that, sufficiently
close to T =0, the free energy is negative and nonzero.
This rules out the possibility of a frozen state in the low-
temperature region.

(5.17)

VI. DISCUSSION

We have shown that the result based on the assumption
of the separability of the rotational isomeric part and the
excluded-volume interaction, as explamed in Sec. II, is in-
correct in the low-temperature reglon Although the limit
o— oo in Egs. (5.14) or (5.15) is not a sensible one, the
bound in Eq. (5.17) is independent of w. This means that
for any w, however large it may be, one can always find a
range around T =0 where (5.17) will be valid, thereby rul-
ing out the possibility of a frozen phase. One way of see-
ing this is to start from the ground state where the chain
is in the all-trans state. Local fluctuations, such as kinks,
do not involve any overlap of the chain in this single-
chain system and are, therefore, important for the low-
temperature behavior of the chain. In other words, low-
lying excitations of H,, are also the low-lying excitations
of the total Hamiltonian H in (3.7), and these states will
always be excited at low temperatures. This is true even
for the SAW limit (w— ), because the self-avoiding -
constraint is not violated. This gives a justification for
taking (5.17) as valid for the SAW limit. The variational
principle alleviates the problem of taking the thermo-

- dynamic limit!® of N—s o because the bound for the free.

energy is found to be proportional to the number of
monomers—as it should be if a thermodynamic limit of
the free energy exists.

- We have not studied the possibility of a phase transition
for Hamiltonian (3.7); it is not apparent that the mean-
field solution of Sec. V can be trusted to address this ques-
tion. Even if there is a phase transition, it is more gradual
than that predicted by the separability assumption and the
underlying mechanism has to be of different type than the
instability of the high-temperature phase. Since the free

" energy in (4.11) has the same form as the Flory-Huggins

result of Sec. II, which has been derived under the same
assumption, any interpretation given to Eq. (2.8), for the
Hamilton walk problem, should be applicable to Eq.
4.11). ThlS questions the credibility of the usual interpre-
tation>’ of (2.8) as a packmg problem.  Our result sug-
gests that the problem lies in the construction of the free
energy. In fact, one may expect to see a first-order transi-
tion in almost all cases, even if it is not there, because of
the two competing terms one obtains by using the separa-
bility assumption. The conclusion, therefore, is that the
separability assumption cannot be given the status of a
mean-field theory and that any prediction based on such a
theory is likely to be incorrect.
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