VOLUME 70, NUMBER 1

PHYSICAL REVIEW LETTERS

4 JANUARY 1993

Directed Polymers with Random Interaction: Marginal Relevance and Novel Criticality
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We show by an exact renormalization-group approach that a random two-chain interaction for
(d +1)-dimensional directed polymers is marginally relevant at d =1. There is a critical point for d > 1
separating the weak and strong disorder phases, and the length scale exponent is v=[2(d—1)] ! for
d > 1. For the mth-order multicritical case involving random m-chain interactions, the disorder is mar-
ginally relevant at di, =1/(m—1). Here also the disorder induces a critical point for d > dp,, with an ex-
ponent vm =[2d(m —1) —2] 7!, An essential singularity occurs for the length scale right at d =d,.

PACS numbers: 64.60.Cn, 05.70.Jk, 36.20.—r, 64.60.Ak

The problem of a (d +1)-dimensional directed polymer
(DP) in a random medium represents one of the simplest
examples that captures most of the complexities of disor-
dered systems [1-3]. In recent years, various attempts
have been made to study this system, and thereby, gain
an understanding of disordered systems in general [1-5].
Apart from the interest on its own as a simple disordered
system, this particular model appears directly or in dis-
guise in various situations, like commensurate-incom-
mensurate transitions [1], surface growth [2,6], vertex
models [7-9], flux lattice melting in high-T. supercon-
ductors [10,11], wetting transition [12], etc. Several ex-
act results are known for a single DP in random medium
in 1+1 dimension, but detailed understanding and settled
results in higher dimensions are rather few.

The problem of pure interacting DPs, on the contrary,
enjoys the status of almost complete solvability through
renormalization group (RG) and appropriate ¢ expansion
[7,13]. Even the multicritical case involving many-body
interactions can also be handled exactly [9,14]. Prompt-
ed by this success, we study a model of interacting DPs
with disorder that has the simplicity of the pure problem
and yet has enough richness of a disordered system. We
emphasize the paradigmatic nature of this particular
model for disordered systems in view of its exact solvabil-
ity through an ¢ expansion. We are not aware of any
such example.

The model we suggest is a simple random version of
the pure problem of two DPs coupled through a short-
range interaction [13]. This present problem of two DPs,
each directed along, say, the z axis but fluctuating in the
transverse d-dimensional space, is described by the fol-
lowing Hamiltonian [10,13]:
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where r(,r; are the transverse d-dimensional spatial coor-
dinates of the two chains, each of length N, i;(z)
=9r;(z)/9z, and r3(z) =r;(z) —r2(z). Here the in-

teraction is at the same z coordinate for the two chains,
and V(r) is a given interaction potential. We keep V for
generality but soon will consider only &-function-type
short-range interaction. The quenched randomness is in-
troduced through the coupling constant (CC) vyl
+b(z)] with vo>0. The interaction contains a pure
repulsive part with CC vg as well as a random part with
CC vob(z). Note that the disorder is only in the z direc-
tion, independent of the transverse coordinates. We con-
sider only uncorrelated, normally distributed randomness
with

(b(z)) =0, (b(z)b(z3))=A6(z;—z,). )
Our aim is to see the effect of disorder on the thermo-
dynamics of DPs and whether disorder induces any new
phenomenon not seen in the pure case, such as any new
critical behavior as seen for a single DP in a random
medium [6,12].

A lattice version of the above model in Eq. (1), in 1+1
dimension, in the relative coordinate, is similar to the
wetting transition model investigated by Forgacs et al.
[15], and Derrida, Hakim, and Vannimenus [12]. The
latter authors, using a first-order perturbation in b(z)
and a type of real-space RG, have shown that the disor-
der is marginally relevant in one dimension. In this pa-
per, using the dimensional regularization scheme, we
show exactly the marginal relevance of disorder in 1+1
dimension, and discuss the novel critical behavior that
emerges for d > 1. We further generalize this random
problem to multicritical cases and obtain the relevance of
disorder and the necessary exponents exactly.

The usual approach for studying disordered systems is
to calculate different moments of the partition function
Z, such as (Z), (Z?) —(Z)%. These moments distinguish
the quenched and annealed averages, defined by (InZ)
and In{(Z), respectively. We avoid the replica analysis
and restrict ourselves to {Z) and (Z?) only. These are
sufficient to give us the necessary results.

Let us start with (Z). A straightforward averaging
over b(z) shows that (Z) can be equivalently written as
the partition function of a pure two-chain problem with a
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FIG. 1. (a) Diagrams up to one loop for {(Z) for vo (dotted
lines) and vob(z) (wiggly lines) type interactions. (b) Dia-
grams involving only vob(z) type interaction for (Z%. (c)
Same as (b) but after disorder averaging. Thick lines indicate
pairs; dots, two-chain interactions (#p); and wavy lines, the
four-chain interaction (r¢). The second diagram with dots only
does not contribute in {Z?).. (d) Diagrams for {Z?). {Eq. (D].
(e) An example of a dressed diagram. (See text.)

so that (Z)=fDre ~H, Dr representing the-functional
integral measure for the two chains. The effect of disor-
der is to induce an attraction between the two chains.

The role of disorder in changing the interaction can
also be seen from the perturbation expansion of the con-
nected part of {Z). as shown in Fig. 1(a). It is easy to
see that only the diagrams with even number of consecu-
tive wiggly lines survive after disorder averaging (DA).
The nonzero contribution of the first-order diagram
comes only from the one with a single dotted line, and it
is N

_U(]CV‘I:) dzfdr Vir(z)),

where YV is the transverse d-dimensional volume. Among
the one loop diagrams, the only surviving disorder dia-
gram is the one with two wiggly lines. After DA, its con-
tribution becomes
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FIG. 2. (a) Flow diagrams for u. The nontrivial fixed point is
at u*=2—d. (b) Flow diagrams for rm (=r for m=2). *
represents the nontrivial fixed point.

+ vdA WLNdzfdr Vir(z)).
DA forces the two interaction points to merge together so
that this diagram ultimately looks like a pure type dia-
gram of first order but with an opposite sign. Such a
reduction of order after DA takes place for every loop in
higher order and can be checked explicitly—the com-
binatorics is always on our side. Since only even order
disorder terms survive, they simulate an attractive in-
teraction in the effective Hamiltonian, as seen in Eq. (3).
If we restrict V to a short-range interaction, then under
renormalization, it is expected to map onto a & function.
With this in mind, we set both the repulsive and attrac-
tive potentials in Eq. (3) by a & function so that the
effective Hamiltonian, to be used for evaluating (Z), is

ﬂ2=%j;~dz{h2(z)+i'22(z)}+EO‘J;Nd28(r|2(z)). ()

For simplicity, we take o= 0, but note that strong disor-
der can make g <0 as well.

Since the evaluation of (Z) with 7, is identical to a
pure problem results can be borrowed in toto from Refs.
{7,13]. The flow dlagram for the dimensionless CC u
(bare CC being ug=5oL =) is shown in Fig. 2(a).

We now consider {(Z?2). A direct averaging, as in Eq.
(3) would give an effective Hamiltonian involving four
chains. Restricting ourselves, as before, to the short-
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where 7o -U&A : -
The special feature of Eq. (5) is the four-chain mterac-
tion introduced by DA. The system lowers ‘“energy”
when the two chains in each pair meet each other at the
same chain length z. This is not the standard attraction
between the four chains as, say, in multicritical cases (see
below) but is of a distinct nature. The effect of this term
generated through DA, as we will see, is to create a new
divergence at d =1 in the perturbation expansion of {(Z2).
That d =1 is special follows from dimensional analysis
which shows that the upper critical dimension (UCD) for
Fo=uvgA is d =1, though it is d =2 for .

range potential, we get the effective Hamiltonian

(5)

In order to see the origin of the special four-chain in-
teraction and the divergence at d =1, we go back to the
original Hamiltonian equation (1) with a & function po-
tential. This two-chain & function interaction generates
the 7o term in Eq. (5). A perturbation expansion for
(ZV,.=(Z% —(Z)? involves only the connected dia-
grams. A few such diagrams formed purely out of ran-
dom part of the short-range interaction are shown in Fig.
1(b). The contribution from Fig. 1(b)1 is V2v$[{dz,
xb(z,)[§'dz,b(z;) which after DA using Eq. (2) be-
| comes V2p¢NA. Similarly, Fig. 1(b)3 would correspond

to the following expression:

v f dzlf dzzb(z|)b(zz)fdnfdrzG&(n—rzlz,-—zz) .
x [zt [T dzsbGDbEH [ faRGE R ~Ralzi—23),
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where Go(r|z) =(27z) 4/ 2exp(—r2/2z), is the distribu-
tion function for a single polymer. DA leads to two
different pairings of z’s for this diagram, one of which
produces a disconnected diagram [Fig. 1(c)2] that does
not contribute to (Z2),. The other one [Fig. 1(c)3] that
pairs up (zy,z{) and (z,,z3) gives, after integration over
the spatial coordinates,
FBV? N p(1—4) ©
@) 1+ —=d) Thi+U-d)1 -
This vividly exhibits the divergence at d=1. The dia-
gram Fig. 1(b)2 vanishes after DA.

It is important to note that in the above averaging pro-
cess the two pairs of chains become connected purely by
the random part of the interaction. The loops formed
thereby give the divergence at d =1, and these are the
loops one gets from the last term of the effective Hamil-
tonian equation (5). The two-chain interaction for each
pair does not produce any divergence at d =1,

A systematic way of evaluating (Z2), is to do a double
expansion in 7o and 7o with a few diagrams shown in
Figs. 1(d) and 1(e). The whole series for (Z2). to all or-
ders in 7p corresponding to the diagrams of Fig. 1(d) is
given by

2y - NW@r)dy? o 1| N | e
2% L% ro+n§lr6 LY TR+nel |’

7
where ro=FoL2¢(47) "9 e=1—d, and L is an arbitrary
length scale introduced to make 7o and N dimensionless.
This series in Eq. (7) actually corresponds to the 7o=0
case. In fact, it is also possible to write down the whole
series taking into account all orders in 0p. Since the
leading-order divergence after dressing the solid lines
with dots [Fig. 1(e)] remains the same as that obtained
from Eq. (7), we do not go into any further details which
will be discussed elsewhere.

The renormalization of the above Mittag-Leffler type
series is well known [7,13]. Defining the renormalized in-
teraction » through

ro=r(l1+air+ay?+ay3+---),
the coefficients can be determined order by order as

ap=(—€) 77 [13]. The B function is, therefore, known
exactly and is given by

ﬂ(ﬂng—Z =2(er+r2). )

The nontrivial fixed point is unphysical for d < 1 because
r is strictly positive. It, however, moves to the physical
domain for d > 1. See Fig. 2(b). Exactly at d =1, ¢=0,
r grows with length L as

N n N m—1
#= J, 22 i@+, dz en[1+b@1 T 8G55p1(2))

r=r(0) ©)

-1
L
1+2r(0)1nT°l ,

r(0) being the coupling at length L. Hence, the disorder
is marginally relevant, in agreement with Ref. [12].

For d> 1, there exists an unstable nontrivial fixed
point at r=|e| which separates two distinct regimes of
disorders. If we start with a strong enough disorder, on
the right side of the fixed point, it increases with length
scale, going beyond the perturbative regime. This is the
strong-disorder phase. On the other hand, the left side of
the fixed point is the weak-disorder regime, since r flows
to zero (the stable fixed point). The unstable fixed point,
therefore, represents a critical point-—a novel phase tran-
sition induced by the disorder.

One way of achieving the above-mentioned critical be-
havior is to change the strength of the disorder by con-
trolling the temperature. The “strong-disorder” phase
({InZ)=1n{Z)) would correspond to the low-temperature
phase while the “weak-disorder” phase ({InZ)=In{Z)) is
the high-temperature one. The details of the critical be-
havior can be obtained by integrating the B function,

r=|el[1———t"°)“'f [L Mr.

I‘(O) Lo
For a small starting deviation AT=T — T, =r(0) — €|,
there is a length scale L~ (AT) ~'/2l¢l at which r in Eq.
(10) diverges. This we can identify as a length scale & as-
sociated with the critical point with the length scale ex-
ponent

v=0|¢e]) . an

The divergence at ¢=0 is consistent with the essential
singularity that follows from Eq. (8),

E~expll/QAT)]. (12)

It is interesting to note that higher moments such as
(Z)AZ%,... do not require any new interaction and
therefore lead to the same critical dimensional d =1. The
beta function is identical to the case for {Z?2). Hence all
the exponents, etc., remain unchanged. We might add
that, in the replica approach, one needs (Z") with n— 0.
Since no new interaction is generated, d =1 will remain
the critical dimension even in the replica analysis.
Multicritical case.— Higher-order interactions in poly-
mers lead to multicritical phenomena, and for direct-
ed polymers a whole hierarchy of multicritical points
(MCP) can be studied exactly [9,14], The corresponding
random mth-order multicritical case would involve the
following Hamiltonian for m chains interacting through a
random m-chain interaction at the same z coordinate:

(10)

(13)

with v, >0, and b(z) obeying the same distribution as in Eq. (2).
So far as the averaged m-chain partition function (Z,,) is concerned, we follow the same procedure as for two chains.
The sole effect of disorder at this level is to produce an m-chain attraction so that the system can be described as well by
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a pure m-chain Hamiltonian with an effective coupling constant &,,. As for two chains, here also, the disorder can make
vm negative. For simplicity, we consider only &, = 0. Deviations from the pure case become transparent when we study
fluctuations through (Z2).=(Z2)—(Z,,)% An averaging over disorder would yield, as in Eq. (5), an effective Hamil-

tonian

1 N Zm.2 5 N m—1 B N 2m=—1
7{,,,',,,--2—1; dz X if (z)+vmj; der_IlE(rpp+|(Z))+vmj; dzq‘l;lﬂé(rqqﬂ(z))

i=1

’mA dz I I 6 I +1\Z I I 6 T +1\Z .

Note that this Hamiltonian is different from the corre-
sponding 2m-chain pure Hamiltonian of the type in Eq.
(13)—it involves one less & function. There is no & func-
tion connecting the two sets.

Dimensional analysis shows that F,o=v2A is dimen-
sionless at d=1/(m—1) but b, is dimensionless at d
=2/(m—1), the UCD for the pure MCP.

The usual perturbation expansion in r,q, taking for
simplicity o, =0, yields a series for {Z2). identical to Eq.
(7) except for the replacements of the factor (47)¢ by
Q)" 'm]? € by eu=1—d(m—1), and r¢ by rmo
=Fmol *[(27)™ " 'm] . The divergence now occurs at
d=1/(m—1). The B function for ry, is still identical to
Eq. (8) with (ep,rm) replacing (e,r). This proves the
marginal relevance of the disorder at dimension d,,
=1/(m—1). It immediately follows that all the results
obtained for the two-chain case would, indeed, be valid
with the replacement of UCD by d,, and € by €.

It is instructive to compare the present problem with
that of a single DP in a random medium. The recursion
relation has remarkable similarity with the one derived in
Ref. [6] for the growth of disorder at the one-loop level.
The phase transition expected for a single DP in a ran-
dom medium is, therefore, the analog of the phase transi-
tion discussed here [3]. The notable difference is in the
single-chain behavior. In the former problem, even a sin-
gle chain needs anomalous exponents but nothing special
happens at the single-chain level in our case.

To summarize, we have introduced a simple disordered
system involving directed polymers with random interac-
tion. The disorder is shown to be marginal at d =1 for
the two-chain problem. A novel critical behavior is pre-
dicted for d > 1 with a transition between a fluctuation
dominated strong disorder (low-temperature) phase to a
high-temperature phase where disorder is irrelevant. The
critical point has v=(2|¢|) ~!, where e=1—d. We have
also generalized this random problem to a hierarchy of
multicritical points where the mth-order MCP involves
an m-chain interaction. The upper critical dimension is
reduced from the pure value 2/(m—1) to d;y =1/(m—1).
As for the two-chain case, a similar weak-disorder to
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strong-disorder phase transition occurs for the mth MCP
for d>d,. The corresponding exponent is v,
=2]en]) 7" with en=1—d(m—1)<0. At e,=0,
there is an essential singularity for the length scale.
These results are obtained in the dimensional regulariza-
tion scheme to all orders, and are, therefore, exact.
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