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Abstract. It is shown that a double-stranded DNA can be opened by a force only if the force
exceeds a critical value, and this unzipping is a critical phenomenon. From the results of an
equivalent delocalization in a non-hermitian quantum mechanics problem we show the different
scaling behaviours of unzipping by force and thermal melting. Based on this we make a postulate
on the first step of replication of DNA.

A double-stranded DNA (dsDNA) melts if the pH or temperature of the solution is changed
(‘thermal melting’) but in vivo, during replication, enzymes open it up forming the replication
fork, a Y-shaped structure for a linear molecule or an eye in general [1]. It is only recently that
the unzipping phenomenon is getting attention, in contrast to melting of dsDNA [2]. In several
experiments, the force required to unzip a dsDNA has been measured [3]. Various aspects
of the unzipping of dsDNA seem to be explained by assuming thermal equilibrium [4]. The
results of the force measurements of [3] distinguish the cases of conventional thermal melting
and the unzipping which has been called directional melting†

Our aim in this paper is to investigate quantitatively in a simple mathematically tractable
model the difference between unzipping by force (or directional melting) and thermal or
fluctuation-induced melting of dsDNA. Some of the quantitative questions are the following:
(1) Is there a critical force to open up a double-stranded chain in thermal equilibrium, acting
say at one end only? (2) Is the nature of the transition different from the thermal melting of
the bound pair and is it reflected in the opened region? Based on the results of this, towards
the end of this Letter, we speculate on the biological significance of these issues and make a
postulate on the enzymatic activity.

In order to focus on the effect of the pulling force (see figure 1) on the bound strands,
we take the viewpoint of a simple minimal model that transcends microscopic details but on
which further details can be added for a realistic situation. Our approach differs from the
previous studies [5–7] in the emphasis on the opening of the fork. For simplicity, we consider
homo-nucleotides and treat the DNA as consisting of two flexible interacting elastic strings
tied together at one end. The strands are pulled at the other end by a force g = gêg in the
direction of the unit vector êg . The system is in thermal equilibrium [4]. Other features like
self-avoidance, winding and heterogeneity can be included, but are ignored in this study. Such
a simple model has been found to be useful for many properties of DNA [2, 8] and resembles
the model used in the analysis of the experimental data in [4]. The energy contribution from

† Though directional melting is a better nomenclature than unzipping, we use both the terms interchangeably.

0305-4470/00/450423+06$30.00 © 2000 IOP Publishing Ltd L423



L424 Letter to the Editor

(a) (b)

ξτ th th

ζ = 2

τ

τ = 0

τ = Ν

τ

ξ

ζ = 1

τ th
ξ

2

th

(c)

dm

dm

τdm dmξ

g
g g

Figure 1. (a) Pulling the two strands at one end. (b) A ‘denatured’ bubble due to thermal fluctuation
(‘melting’), (c) an unzipped region slightly below the critical threshold (‘directional melting’). In
(b) and (c), shaded parts denote bound regions.

the force can be expressed in terms of the separation of the two strands each of length N . It is
given by

−g · r(N) = −
∫ N

0
dτ g · ∂r(τ )

∂τ
(1)

where r(τ ) denotes the separation of monomers on the two strands of both monomers at
contour length τ along the strand and r(0) = 0. For a DNA with identical base pairs the
Hamiltonian can be written in the relative coordinate as [9]

H

kBT
=

∫ N

0
dτ

[
ε

2

(
∂r(τ )

∂τ

)2

− g · ∂r(τ )

∂τ
+ V (r(τ ))

]
(2)

where kB is the Boltzmann constant and ε is the appropriate elastic constant. For notational
simplicity, without loss of generality, we choose ε = 1. We take r(τ ) to be d-dimensional,
d = 3 being of primary interest though other values of d are also considered†.

Base pairings at the same position of the two strands translate to the potential energy being
given by

∫
dτ V (r(τ )) with V (r) a short-range potential whose detailed form is not crucial.

We choose V (r) to be of square-well type. Our interest is in the free energy per unit length for
long chains, f = − limN→∞ kBTN−1 ln Z where Z = ∫ DR exp(−H/kBT ) sums over all
the configurations of the chains, and T is the temperature. The use of the continuum version
helps us in obtaining a few exact results. A discrete version with a realistic potential can be
treated numerically.

The Hamiltonian written in the above form can be thought of as a directed polymer in
d + 1 dimensions about which many results are known [10, 11] for g = 0. If we treat τ as a
time-like coordinate, then the same Hamiltonian represents, in the path integral formulation,
a quantum particle in imaginary time. The quantum Hamiltonian is

Hq(g) = 1

2
(p + ig)2 + V (r) (3)

in units of h̄(≡ kBT ) = 1 and mass ε = 1, with p as momentum. The ground-state energy of
equation (3) determines the free energy per unit length of the DNA. This quantum particle with

† Our interest is in d = 3, but d = 1 and d = 2 provide interesting insights and results as examples of low-dimensional
biology.
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g �= 0 then corresponds to the imaginary vector potential problem much discussed in recent
times [12]. We make use of both these pictures in this Letter.

For d = 1, the quantum problem with V (x) = −v0δ(x), is exactly solvable and is
done in [12] as a single-impurity problem. It was shown that there is a critical gc below
which the imaginary vector potential does not affect the bound-state energy, i.e. the quantum
particle remains localized near the potential well, while for g > gc the particle delocalizes.
In the polymer picture, this means that in low dimensions, a force beyond a critical strength
separates the two strands. It should be pointed out here that the force is applied at one end
only, but it is not a boundary or edge effect mainly because of the connectivity of the polymer
chain as expressed by equation (1).

Details of the phase transition behaviour of the Hamiltonian of equation (2) for g = 0
are known from exact renormalization group (RG) calculations [10, 11]. With g = 0, it
is known [10, 11] that there is a critical strength vc ( = 0 for d < 2) of the parameter
v = ∫

dr V (r)/kBT such that there is a bound state of the quantum particle only for v < vc.
This transition corresponds to the thermal melting or unbinding of dsDNA because v can be
changed by changing pH or T . Renormalization group arguments [11] show that other details
of V (r) are irrelevant, and such arguments also justify [9] the use of the elastic energy term in
equation (2) for N → ∞ even if a polymer is better represented by stiff or worm-like chains.

The important length scales for this critical point, from the bound-state side, come from
the typical size of the denatured bubbles of length τm along the chain and ξm in the spatial
extent (figure 1(b)). Close to the critical point these length scales diverge as

ξm ∼| �u |−νm and τm ∼| �u |−ντ,m∼ ξ ζm
m (4)

where �u is the deviation from the critical point, and νm, ντ,m and ζm are the important
exponents [10]

νm = ντ,m/ζm = 1/ | d − 2 | and ζm = 2. (5)

It is this ζ (the dynamic exponent of the quantum problem) that will distinguish the new
phenomenon we are trying to understand.

For g �= 0, we choose a d-dimensional square-well potential V (r) = −V0 for r < r0,
and 0 otherwise. The well is chosen to be shallow enough to have only one bound state for
the g = 0 case with energy E0 < 0. The non-hermitian Hamiltonian equation (3) can be
connected to the hermitian Hamiltonian at g = 0 by

U−1Hq(g)U = Hq(g = 0) where U = exp(g · r). (6)

The wavefunctions are also related by this U -transformation so that if the transformed bound
(i.e. localized) state wavefunction remains normalizable, the bound-state energy will not
change. The continuum part of the spectrum will have the minimum energy E = −g2/2
(the state with wavevector k = 0). For the localized state at g = 0, the wavefunction for
r > r0 is ψ0(r) ∼ exp(−κr) where κ = 2

√| E0 |. The right eigenvector for Hq(g) is then
ψR(r) ∼ exp(g · r − κr), obtained via the U -transformation. The wavefunction remains
normalizable if g < κ , so that the binding energy stays the same as the g = 0 value until
g = gc ≡ κ . The generic form of the spectrum is shown in figure 2(a), which indicates a
delocalization transition by tuning g. This is the unzipping transition of DNA at

gc = 2
√
E0 ∼ |v − vc|1/|2−d| (7)

where we used the v-dependences [11] of E0 close to vc(g = 0), for general d. This agrees
with the exact solution of the one-impurity problem [12] (attractive δ-function potential) in
d = 1. If one can measure gc for varieties of double-stranded polymers, then equation (7) can
be explicitly verified, with v−vc as the temperature deviation from the melting transition. The
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Figure 2. (a)The energy spectrum for g �= 0 for the Hamiltonian in equation (3). (b) The phase
diagram in the v–g plane. Thermal melting takes place along the g = 0 line at v = vc. The hatched
line indicates the unzipping transition or directional melting. The opening of DNA or initiation is
hypothesized to occur in a slight sub-critical region indicated by the grey region.

phase diagram is shown schematically in figure 2(b). In the quantum picture, there is a gap in
the spectrum (figure 2(a)) for g < gc and the gap vanishes continuously as | g2−κ2 |∼| g−gc |
as g → gc−. Since time in the quantum version corresponds to the contour-length variable,
the characteristic length for the unzipping transition is

τdm(g) ∼| gc − g |−ντ with ντ = 1. (8)

The spatial length scale of the localized state is determined by the width of the wavefunction
and, for g = 0, it is set by κ−1. For g �= 0, the right wavefunction,ψR, has a different length
scale and this length scale diverges as the wavefunction becomes non-normalizable. The width
of ψR gives this scale as

ξdm(g) ∼| gc − g |−νdm with νdm = 1 (9)

for g → gc−. ( This needs to be distinguished from the stretching of a polymer by an external
force where, for small force, the end-to-end distance of the polymer scales linearly with the
force. There is neither a critical strength nor any diverging scale.) We see that, at the unzipping
transition, τdm ∼ ξdm, and therefore

ζdm ≡ ντ,dm

νdm
= 1. (10)

The significance of τdm can be understood if we study the separation of the two chains, i.e.
〈r〉τ , at a distance τ along the chain below the pulled end. This can be evaluated by using the
standard rules of quantum mechanics [12]. For infinitely long chains in the sub-critical region,
only the bound and the first excited states are sufficient for the computation. One finds, along
the pulled direction,

〈r〉τ ∼ exp[−τ/τdm(g)] (11)

where τdm(g) is given by equation (8). In other words, τdm(g) and ξdm(g) describe the unzipped
part of the two chains near the pulled end (figure 1(c)). These length scales diverge with
ζdm = 1 as the critical force is reached from below. (One can also define similar length scales
for g → gc+ where the lengths would describe the bound regions.) The exponential fall-off,
equation (11), of the separation from the pulled end immediately gives the picture of a Y-fork
as shown in figure 1(c). If we make the assumption that the action of the enzyme in opening
of a dsDNA is equivalent to an exertion of a force, one might connect the Y-fork of figure 1 to
the replication fork [13].
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Let us study the behaviour of the free energy. Since the partition function for the
Hamiltonian of equation (2) obeys a diffusion-like equation [9], the free energy F =
F/kBT − g2τ/2 satisfies the equation

∂F
∂τ

= 1

2
∇2F − 1

2
(∇F)2 − g · ∇F − v0δ((r). (12)

The left-hand side represents the free energy per unit length of the chains. Under a scale
transformation x → bx, and τ → bζ τ , the total free energy remains invariant so that the
above equation takes the form

∂F
∂τ

= 1

2
bζ−2∇2F − 1

2
bζ−2(∇F)2 − bζ−1g · ∇F − bζ−dv0δ((r). (13)

For g = 0, equation (13) tells us that ζ = 2 and d = 2 are special for the melting transition as
we see in equation (5). For the choice ζ = 1, the g-dependent term dominates and all other
terms become irrelevant for large length scale b. It is this feature that shows up in the Y-fork
of the unzipped chain. The robustness of equations (8)–(11) also follows from this. With
the dependence on the potential strength entering only through gc, these are valid along the
hatched line of figure 2(b), and could be oblivious to the details of the nature of the melting
transition.

From the phase diagram of figure 2, we see that for g �= 0 a transition can be induced
either by a force or for a given force by tuning v (i.e. temperature or pH). Our results show that
the scaling remains the same as given by equations (8)–(10), except that the scaling variable is
v − vc(g) with vc(g) determined by equation (7). The thermal melting (figure 1) occurs only
in the g = 0 case characterized by anisotropic scaling, equation (5), of the denatured bubbles.
In our simple model, the melting point appears as a multi-critical point in the phase diagram
of figure 2(b).

The scaling behaviour near the critical force for unzipping of a homo-DNA (or other
simpler double-stranded polymers) needs to be studied experimentally, either by varying the
force or at a fixed force by changing the temperature or pH. It would also be important to study
experimentally the nature and dynamics of activities of DNA polymerase and RNA polymerase
after a mechanical unzipping of dsDNA, as a function of the force, especially in the critical
region of the unzipping transition.

Although we considered only the equilibrium situation, a criticality ensures a divergent
time scale in the dynamics also†. Therefore, in the critical region there will be long-range
correlations not only in space but also in time. Heterogeneity of the base pairs can be
incorporated by taking the interaction to be random [15] with a specific distribution. Such
a random case [15] shows a different type of melting behaviour. Self-avoidance and winding
can be added to this model by adding a random imaginary scalar potential [16], and a real
vector potential [9], respectively, though such general non-hermitian Hamiltonians are little
understood at present.

Let us now consider the real biological situation. A fundamental hypothesis of biology
is that all activities are mediated by enzymes. The replication (and transcription) starts with
the opening of the DNA at certain ‘origins’ (by one or more enzymes), and after that the
polymerization starts at the resulting Y-fork [1]. The actual process is more involved, requiring
several proteins or enzymes at various stages, and all of these work at different points in space
and time and in right order. A question naturally arises: what produces the correlation in
space and time? We make the hypothesis that the physical effect of the enzyme at the origin is
to pull the strands by a slightly subcritical force (g close to gc) so that a Y-fork (see equation
(11)) opens-up. See figure 2. (An eye can be thought of as two connected Y’s.) A coupling of

† In a recent preprint, Sebastian [14] has shown a diverging time scale for this problem.
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the subsequent processes (untwisting, polymerization, etc) to the correlated critical dynamics
of unzipping could be a source of the correlations we see during replication and transcription.
The details of such a coupled dynamics will be discussed elsewhere [17].

To conclude, we have shown that a double-stranded DNA can be opened up by a force
only if the force exceeds a critical value. This unzipping or directional melting is a genuine
critical phenomenon with critical exponents different from thermal melting at zero force in
the same model. Exact exponents are obtained. We suggest that experiments be done on
synthetic DNA of identical base pairs ( or other double-stranded homopolymers) at various
forces (in a fixed force ensemble) to study the unzipping phase transition (directional melting)
and get the phase diagram of figure 2. It would then be interesting to think of a mechanical
unzipping with a sub-critical force and study the replication of DNA (or transcription) by the
enzymatic processes in the opened fork; this would identify the correlation between unzipping
and replication or transcription.

I thank ICTP, where a major part of this work was done, for warm hospitality (September–
October 1999). Mere acknowledgments will probably belittle the influence of a discussion
with Mathula Thangarajh that shaped the final form of this work.

References

[1] Kornberg A and Baker T 1992 DNA Replication 3rd edn (New York: Freeman)
[2] Wartell R M and Benight A S 1985 Phys. Rep. 126 67
[3] Essevaz-Roulet B, Bockelmann U and Heslot F 1997 Proc. Natl. Acad. Sci. USA 94 11935
[4] Bockelmann U, Essevaz-Roulet B and Heslot F 1998 Phys. Rev. E 58 2386
[5] Viovy J L et al 1994 C. R. Acad. Sci. 317 795

Thompson R E and Siggia E D 1995 Europhys. Lett. 31 335
Bustamante C et al 1994 Science 265 1599
Vologodskii A 1994 Macromolecule 27 5623
Marko J F and Siggia E D 1995 Macromolecule 28 8759

[6] Haijun Z, Yang Z and Zhong-can O-Y Phys. Rev. Lett. 82 4560
[7] Cocco S and Monasson R 1999 Preprint cond-mat/9904277
[8] Peyard M and Bishop A R 1989 Phys. Rev. Lett. 62 2755

Cule D and Hwa T 1997 Phys. Rev. Lett. 79 2375
Campa A and Giansanti A 1998 Phys. Rev. E 58 3585
Bonnet G, Krichevsky O and Libchaber A 1998Proc. Natl. Acad. Sci. USA 95 8602

[9] Doi M and Edwards S F 1986 The Theory of Polymer Dynamics (Oxford: Clarendon Press)
[10] Rajasekaran J J and Bhattacharjee S M 1991 J. Phys. A: Math. Gen. 24 L1217

Bhattacharjee S M 1992 Physica A 186 183
[11] Kolomeisky E B and Straley J P 1992 Phys. Rev. B 46 12664
[12] Hatano N and Nelson D R 1996 Phys. Rev. Lett. 77 570

Hatano N and Nelson D R 1997 Phys. Rev. B 56 8651
Hatano N and Nelson D R 1998 Phys. Rev. B 58 1998

[13] Bhattacharjee S M 1999 Preprint cond-mat/9912279
[14] Sebastian K L 2000 Preprint cond-mat/0004384
[15] Mukherji S and Bhattacharjee S M 1993 Phys. Rev. Lett. 70 49

Mukherji S and Bhattacharjee S M 1993 70 3359 (erratum)
Mukherji S and Bhattacharjee S M 1993 Phys. Rev. E 48 3483

[16] See, e.g., Izyumov A V and Simons B D 1999 Europhys. Lett. 45 290
[17] Bhattacharjee S M 2000 unpublished


