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Is small-world network disordered?
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Abstract

Recent renormalization group results predict non self averaging behaviour at criticality for relevant disorder. However, we find st
averaging (SA) behaviour in the critical region of a quenched Ising model on an ensemble of small-world networks, despite the releva
random bonds at the pure critical point.
 2005 Elsevier B.V. All rights reserved.
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1. Self-averaging

Very often in physics one encounters situations wh
quenched disorder plays a prominent role. Any physical p
erty X of such a disordered system, therefore, requires
averaging over all realisations. It would suffice to have a
scription in terms of the average[X]av where [..]av denotes
averaging over realisations (“sample averaging”) provided
relative varianceRX = VX/[X]2av → 0 for large N , where
VX = [X2]av − [X]2av. In such a case a single large system
enough to represent the ensemble. Such a quantity is c
self-averaging. Off criticality, if one builds up a large latti
from smaller blocks, then thanks to the additivity property
an extensive quantity, central limit theorem guarantees
RX ∼ N−1 ensuring self-averaging. In contrast, at a criti
point, because of long range correlations the answer to
question as to whetherX is self-averaging or not becomes no
trivial.

Randomness at a pure critical point is classified as rele
or irrelevant if, following the standard definition of relevanc
it changes the critical behaviour (i.e., the critical exponents
the pure system. Recent renormalization group and nume
studies have shown that if randomness or disorder is rele
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thenself-averaging property is lost [1,2]. In particular,RX at
the critical pointapproaches a constant asN → ∞. Such sys-
tems are called non self-averaging. A serious consequen
this is that unlike the self-averaging case, even if the crit
point is known exactly, statistics in numerical simulations c
not be improved by going over to larger lattices (largeN ).

Let us recollect the definitions of various types of se
averaging with the help of the asymptotic size dependenc
a quantity likeRX . If RX approaches a constant asN → ∞,
the system isnon-self-averaging while if RX decays to zero
with size, it isself-averaging. Self-averaging systems are fu
ther classified as strong and weak. If the decay isRX ∼ N−1 as
suggested by the central limit theorem, mentioned earlier
system is said to bestrongly self-averaging. There is yet an-
other class of systems which shows a slower power law d
RX ∼ N−z with 0 < z < 1. Such cases are known as wea
self-averaging. The exponentz is determined by the known cri
ical exponents of the system.

The prediction of non-self-averaging nature of critical qu
tities is an extremely significant result coming from gene
renormalization group arguments. This basic result of Ref.[1]
and the hypothesis of Ref.[2] can be summarized as follow
According to finite size scaling, when the critical region sets
the size of the system is comparable to the correlation le
ξ that grows as the critical point is approached. The ap
priate scaling variable isN/Nc whereNc = ξd is the corre-
lation volume ind dimensions. At the critical point of a ran
dom system, there is an additional source of fluctuation f
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the variation in the transition temperature itself. Therefore,
stead of the conventional finite size scaling, a sample depen
scaled variable is required. A reduced temperature is define
t̃i = |T − Tc(i,N)|/Tc whereTc(i,N) is a pseudo-critical tem
perature of samplei of N sites withTc as the ensemble avera
of critical temperature in theN → ∞ limit. In terms of this
temperature, a critical quantityX is expected to show a samp
dependent finite size scaling form

(1)Xi(T ,N) = NρQ
(
t̃iN

1/ν̄
)
,

where ρ characterizes the behaviour of[X]av at Tc.1 Thus
ρ = γ /ν̄ where ν̄ = dν when X is the magnetic susceptibi
ity χ . The RG approach seems to validate this hypothesis e
cially the absence of any extra anomalous dimension in po
of N for RX . Incidentally, this hypothesis, Eq.(1), excludes
rare events of large pure type lattices for which pureν̄ should
be used. We are not considering such cases dominated by
rare events (Griffiths’ singularity). With this scaling form, t
relative varianceRX at the critical point or in the critical regio
is given by

(2)RX ∼ [
(δTc)

2]
avN

2/ν̄ ,

where[(δTc)
2]av is the variance of the pseudo-critical temp

ature. A random system can have several temperature s
namely(Tc(N) − Tc) and(T − Tc), in addition to the shift in
the transition temperature itself. It is plausible that for a sys
with relevant disorder all these scales behave in the same
so that typical fluctuations in the pseudo-critical temperatur
set by the correlation volume, yielding,

(3)
[
(δTc)

2]
av ∼ N−2/ν̄ .

An immediate consequence of this is thatRX of Eq. (2) ap-
proaches a constant asN → ∞ indicating complete absence
self-averaging at the critical point in a random system. Th
predictions have been verified for various types of relevant
irrelevant disorders and also with canonical (ensemble of fi
concentration of disorder) and grand canonical disorder a
random critical point[2–5].

2. Small-world network

Over the last few years, small-world networks (SWN) ha
emerged as a new class of graphs with characteristic stati
properties defined over the ensemble of networks. Starting
an Euclidean lattice, one may obtain an SWN by rewiring
original lattice or by the addition of random long range bon
even with a sufficiently small probabilityp [6–8]. The network
is so named because any two points far away on the und
ing lattice can be bridged, on the average, by a finite numb
connections. It has been observed that for an Ising mode
fined on such an ensemble of graphs, this set of random b

1 Conventional notations of critical exponents are used:C ∼ t−α , χ ∼ t−γ ,
ξ ∼ t−ν whereC, χ and ξ denote the specific heat, magnetic susceptib
and correlation length of the system.t is the temperature-like variable with th
critical point att = 0.
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changes the critical behaviour to the mean field type in all
models studied so far[9–13]. This, then, by definition, make
this set of random bonds, added to the underlying “pure” latt
a “relevant” variable. There is albeit a debate on the cross
exponent forp at the pure critical point, in the limitp → 0
[11,12]. Since quenched averaging is important, replica t
has been resorted to[9,10]. Overlaps and other quantities
interest for general quenched random systems have also
studied[14].

The aforementioned result of non-self-averaging would
ply a strong influence of the network, i.e., a network to netw
variation of an extensive quantity at the shifted critical po
This aspect of disorder of the small-world networks is the
mary motivation of the study reported here.

With this background we set to check the behaviour ofRX

for variousX for SWN. Some of the major differences wi
respect to the previous studies of random systems may be
tioned here. By construction, the random bonds in SWN
troduce long-range interactions unlike the short range mo
studied so far.The self-averaging behaviour of long range cases
is of importance [4,5] because of the specialties known, e.g., for
disorder with long range correlations [15]. We would also like
to note that compared to many other random systems, the
values of the changed exponents are known in the SWN ca
is well established that the shifted critical behaviour hasα = 0
and thereforēν = 2.

3. The Ising model on a small-world network

Let us think of the ferromagnetic Ising model with spinssi =
±1 at each sitei of a network based on an Euclidean lattice
N points similar to Refs.[9–14,16]. Its Hamiltonian is taken a

(4)H
({S}) = −J

∑

〈ij〉
sisj − J

∑

(ij)

sisj ,

where 〈ij 〉 are the nearest-neighbours on the lattice,(ij) are
the long distance neighbours along the random bonds of{S}
added for the network andJ > 0. The Hamiltonian, being de
pendent on the set{S}, is random for a given configuration o
the spins{si}. Any physical propertyX of the model, therefore
requires an overall averaging over the ensemble of netwo
For our studies we need the shifted critical point and the s
ple to sample fluctuations of various quantities at this crit
point. Since the random bonds are known to be relevant, fo
d � 4, there is no loss of generality if the SWN is built from
one-dimensional lattice.

We start with the Ising model on a SWN in 1D. In our mod
each site on the lattice with an Ising spin has random li
to two distant spins such that no two spins are connecte
more than one link. All links of equal strength. Thus we ha
a “canonical” scenario since the number of links at each si
fixed. Hence no extra normalisation factor is needed in the
range part of the Hamiltonian of Eq.(4). In the present work we
choseJ/kB = 1 wherekB is the Boltzmann constant.
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Fig. 1. Plot of the data-collapse of the binder cumulant versus scaled tem
ture for variousN .

4. Simulation details

Data were taken atT = 2.85 (close to the estimated cri
ical temperature) andχ , C and the Binder cumulantUm =
[〈m4〉/〈m2〉2]av − 3 were calculated, using the single h
togram reweighting technique[17]. We examined lattice size
N = 100,500,1000,2000,3000 in our Monte Carlo simula
tions. We studied 1535 samples forN = 100 to 517 sample
for N = 3000 using 103 equilibration and 106 MC steps for
eachN . Data were taken at intervals of 103 MC steps.

A data-collapse ofUm with finite size scaling variable
N1/ν̄ (T −Tc)/Tc would giveTc (the infinite lattice critical tem-
perature) and̄ν. By using the data-collapse method of Ref.[18]
we obtainedTc = 2.83(2) and 1/ν̄ = 0.50(1).

The value ofν̄ is consistent with previous results[13]. The
resulting collapse is shown inFig. 1. We also investigated sim
ilar plots forχ andC after averaging over many realisations
disorder (not shown here), with same results.

Further proof of the mean-field nature of the transit
comes from the comparison of the data with the mean-fi
form of Um. To evaluate the mean field form ofUm we use
the mean-field form of the magnetisation per spin m probab
distribution in the critical region[19]

(5)PN(m) ∝ exp
[−N

(
a1tNm2 + a2m

4)]

with tN being the critical temperature of a lattice of sizeN and
a1, a2 being constants. By replacinĝm = (a2N)1/4m, we find
Um where the averages are obtained by integratingm̂ from −∞
to +∞ with the weight

(6)PN(m̂) ∝ exp
[−b1(x − b2)m̂

2 − m̂4],

whereb1 = a1/a2
1/2, x is the finite size scaling variable[(T −

Tc)/Tc]N1/ν̄ with b1b2 taking care of the finite size shift of th
critical temperature. The solid curve inFig. 1 is obtained with
b1 = 1.7, b2 = 0.72.

We find good data collapse by using̃t = T − Tc even
though finite size scaling is supposedly better with the us
t̃ = T − Tc(N) after finding out theTc(N) for every sample
a-

d

f

Fig. 2. Plot of the distribution of pseudocritical inverse temperaturesβC(i,N)

for variousN .

size [20]. This is because our system, as we show, is s
averaging and this method should be more pertinent for n
or weakly self-averaging systems. To investigate the distr
tion of pseudo-critical temperature,βc(i,N) (the temperature
at which the specific heat of samplei of sizeN is a maximum),
data were taken atT = 2.85 andβc(i,N) for variousN were
calculated using the histogram method[17]. The distribution of
βc(i,N) for N = 10,50,100 is constructed.We studied 32
lattice samples forN = 10, 1645 lattice samples forN = 50
and 1535 lattice samples forN = 100. We find that the invers
critical temperatureβc(i,N), scales as

(7)
[(

βc(i,N) − βc(N)
)2]

av ∼ N−2/ν̄ ,

which is consistent with Eq.(3), but one also needs a scale fa
tor N−1/2 for the probability distributionP(βc(i,N)). Fig. 2
shows the data collapse of this distribution. The data-colla
is best achieved with̄ν = 2.00(3) which is consistent with the
value of ν̄ obtained in the data collapse shown inFig. 1. We
then studiedRm, Rχ andVC at T ∞

c for the above lattice sizes
About 56 440 lattice samples forN = 10 to 1000 lattice sam
ples forN = 3000 were studied. For each sample we used3

equilibration and 105 MC steps. Data were taken at interva
of 103 MC steps. The data is fitted to the formRX = AXNρX

whereRX is the relative variance form andχ . The values ob-
tained areρm = −0.96(9), andρχ = −0.94(8). Thusχ andm

are strongly self-averaging. The singular part of energy can
not be filtered out and hence the behaviour ofVE cannot be
predicted decisively. We see inFig. 3 that VC is a constant as
expected and hence C is alsostrongly self-averaging.

5. Discussion

The fact that the peak scales inversely as the width sh
that despite the fluctuation in pseudo-critical temperatures
distribution approaches aδ-function. As a result the critica
temperature of a largeN network can be thought of as the ave
age of pseudo-critical temperatures of the small sub-netwo
This averaging out is tantamount to self-averaging. This i
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-

Fig. 3. (a)Rm, Rχ versusN at TC and (b)VC versusN at TC .The straight
lines show straight line fits toRm andRχ .

Fig. 4. Data collapse ofC andχ on considering a single realisation of ran
domness.
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1.

00)
marked contrast to the other cases of random systems stud
far [2–5]. It is tempting to conclude that in addition to releva
randomness, a broad distribution of pseudo-critical tempera
is a requirement for non-self-averaging.

Whilst in the present work we have used a “canonical”
semble with a fixed number of bonds, small scale simulat
of the Ising model on a SWN in a “grand canonical” ense
ble, where the number of bonds can vary, also indicated
averaging as found here.

In case of a strongly self-averaging system, a typical sam
should be a representative of the average. We observe goo
collapse with even a single realisation of disorder (as show
Fig. 4). Thus, in the light of the present work, in such situatio
an annealed averaging as done in Ref.[10] should work well.
Consequently no extra order parameter like approach shou
needed for networks.

It is not clear if this feature of strong self-averaging is a c
sequence ofα = 0, in which case it could be true for all releva
disorder problems with mean-field behaviour. An extension
the RG argument[1] to encompass situations with sharp lim
of Tc distribution and long range interactions, may shed li
on this. Whether this result on the disorder aspect of a netw
is important in other real life situations like the railway netwo
[21] needs further study.

To conclude, we investigated the self-averaging behav
of the Ising model on a small world network. The distributi
of βc(i,N) is found to become sharper asN → ∞ with the
fluctuation decaying as[(δβc(i,N))2]av ∼ N−2/ν̄ . The data col-
lapse of various physical quantities both for a single realisa
of disorder and after averaging over many disorder realisat
showed no significant difference. AtT ∞

c , the relative fluctua-
tionsRm, Rχ for magnetization and susceptibility are found
so
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behave asRm,Rχ ∼ N−1 while the varianceVC for the spe-
cific heat approaches a constant for largeN . Hence the system
is strongly self-averaging in the critical region in spite of re
vant randomness. Our results have the following implicatio
From the small-world networks perspective, the random or
tistical features of the network do not play a role in the lo
range behaviour at the critical point so that one may replace
ensemble of small-world networks by a single average netw
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