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Abstract

Recent renormalization group results predict non self averaging behaviour at criticality for relevant disorder. However, we find strong st
averaging (SA) behaviour in the critical region of a quenched Ising model on an ensemble of small-world networks, despite the relevance of
random bonds at the pure critical point.

0 2005 Elsevier B.V. All rights reserved.

1. Self-averaging thenself-averaging property is lost [1,2]. In particular,Rx at
the critical pointapproaches a constant asN — oco. Such sys-
tems are called non self-averaging. A serious consequence of

Very often in physics one gncounters sﬂuaﬂoqs Wher'?his is that unlike the self-averaging case, even if the critical
guenched disorder plays a prominent role. Any physical prop-

ertv X of such a disordered svstem. therefore. requires aROim is known exactly, statistics in numerical simulations can-
y Y ' » €4 not be improved by going over to larger lattices (large

averaging over all realisations. It would suffice to have a de- Let us recollect the definitions of various types of self-

scription in terms of the avciraQIé(]av where_[..]?\, denotes averaging with the help of the asymptotic size dependence of
averaging over realisations (“sample averaging”) provided the

. . 5 a quantity likeRy. If Ry approaches a constant &s— oo,
;/elaEanX\Z/? rla_n([:)e(I]ezx =In ‘gﬁ{:[ﬁ(;a‘égeoaf;rn I?;gleré \S/vhset;em isthe system igon-self-averaging while if Rx decays to zero
X = av av: 9 ge sys with size, it isself-averaging. Self-averaging systems are fur-
enough to represent the ensemble. Such a quantity is calk? er classified as strong and weak. If the decagiis~ N~ as

self-averaging. Off criticality, if one builds up a large lattice o " .
from smaller blocks, then thanks to the additivity property ofsuggested by the central limit theorem, mentioned earlier, the

. : o ystem is said to betrongly self-averaging. There is yet an-
an extensive quantity, central limit theorem guarantees tha )
1 : : .. other class of systems which shows a slower power law decay
Rx ~ N~ ensuring self-averaging. In contrast, at a critical

' . Rx ~ N~% with 1. h re known as weakl
point, because of long range correlations the answer to the X N th 0.<z < 1. Such cases are known as weakly

. . . If-averaging. The expon termin the known crit-
question as to whethef is self-averaging or not becomes non- seli-averaging. T he expo enis dete ed by the known ¢
trivial. ical exponents of the system.

- o e The prediction of non-self-averaging nature of critical quan-
Randomness at a pure critical point is classified as relevartnti P ging N

or irrelevant if, following the standard definition of relevance, fties is an extremely significant result coming from general

) " . ) . enormalization group arguments. This basic result of Réf.
it changes the critical behaviour (i.e., the critical exponents) OFa]nd the hypothesis of Re2] can be summarized as follows.

tSTS dl?:srehzzl/ztesrr?c;vtznefﬁ:tt iﬁg?\ggi:';:g:r;?;?;fr;:rdisnl;:rs\/r;c%\ccording to finite size scaling, when the critical region sets in,
%e size of the system is comparable to the correlation length

& that grows as the critical point is approached. The appro-
mpondmg author. prigte scaling yariaple i:N./NC where N, = £ is .the corre-
E-mail addresses: sroy@iopb.res.ifS. Roy),somen@iopb.res.in lation volume ind dimensions. At the critical point of a ran-
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the variation in the transition temperature itself. Therefore, inchanges the critical behaviour to the mean field type in all the
stead of the conventional finite size scaling, a sample dependemtodels studied so fg@—-13]. This, then, by definition, makes
scaled variable is required. A reduced temperature is defined dsis set of random bonds, added to the underlying “pure” lattice,
;i =|T —T.(i, N)|/ T, whereT.(i, N) is a pseudo-critical tem- a “relevant” variable. There is albeit a debate on the crossover
perature of sampleof N sites withT, as the ensemble average exponent forp at the pure critical point, in the limip — 0

of critical temperature in th&/ — oo limit. In terms of this  [11,12] Since quenched averaging is important, replica trick
temperature, a critical quantity is expected to show a sample has been resorted {8,10]. Overlaps and other quantities of

dependent finite size scaling form interest for general quenched random systems have also been
(7 Al studied[14].
Xi(T,N)=N"Q(i;N""), 1) The aforementioned result of non-self-averaging would im-

where p characterizes the behaviour pkJay at 7.1 Thus ply a strong influence of the network, i.e., a network to network
p = y/v wherei = dv when X is the magnetic susceptibil- variation of an extensive quantity at the shifted critical point.

ity x. The RG approach seems to validate this hypothesis espg-his aspect of disorder of the small-world networks is the pri-

cially the absence of any extra anomalous dimension in power&i&ry motivation of the study reported here. _
of N for Ry. Incidentally, this hypothesis, Eql), excludes With this background we set to check the behaviouRgf

rare events of large pure type lattices for which parshould for various X for SWN. Some of the major differences with

be used. We are not considering such cases dominated by thd§SPECt to the previous studies of random systems may be men-

rare events (Griffiths’ singularity). With this scaling form, the tioned here. By construction, the random bonds in SWN in-
relative varianceRy at the critical point or in the critical region r0duce long-range interactions unlike the short range models
is given by studied so farThe self-averaging behaviour of long range cases

is of importance[4,5] because of the specialties known, e.g., for
Rx ~[(T)? N, (2)  disorder with long range correlations [15]. We would also like
_ ) N to note that compared to many other random systems, the exact
where[(57;)?]av is the variance of the pseudo-critical temper- 4| es of the changed exponents are known in the SWN case. It

ature. A random system can have several temperature scalgsyel| established that the shifted critical behaviour fias 0
namely(7.(N) — T.) and(T — T,), in addition to the shiftin 54 therefore = 2.

the transition temperature itself. It is plausible that for a system

with relevant disorder all these scales behave in the same way

so that typical fluctuations in the pseudo-critical temperature i$. Thelsing model on a small-worId network
set by the correlation volume, yielding,

[((STC)Z]av ~ N2V (3) Letus thin!< of the ferromagnetic Ising modellwith Spjﬂ%
41 at each sité of a network based on an Euclidean lattice of

An immediate consequence of this is thag of Eq. (2) ap-  n points similar to Refs[9-14,16] Its Hamiltonian is taken as
proaches a constant &— oo indicating complete absence of

self-averaging at the critical point in a random system. These

predictions have been verified for various types of relevant anaH({S}) =—J ZSI‘S]' —J ZSZ‘S]‘, 4)
irrelevant disorders and also with canonical (ensemble of fixed (ij) (i)

concentration of disorder) and grand canonical disorder at the

random critical poinf2—-5]. where (ij) are the nearest-neighbours on the lattigg) are
the long distance neighbours along the random bondsS pf
2. Small-world network added for the network and > 0. The Hamiltonian, being de-

pendent on the sdtS}, is random for a given configuration of
Over the last few years, small-world networks (SWN) havethe spings; }. Any physical propertyX of the model, therefore,
emerged as a new class of graphs with characteristic statisticedquires an overall averaging over the ensemble of networks.
properties defined over the ensemble of networks. Starting frorRor our studies we need the shifted critical point and the sam-
an Euclidean lattice, one may obtain an SWN by rewiring theple to sample fluctuations of various quantities at this critical
original lattice or by the addition of random long range bonds point. Since the random bonds are known to be relevant, for all
even with a sufficiently small probability [6—8]. The network  d < 4, there is no loss of generality if the SWN is built from a
is so named because any two points far away on the underlpne-dimensional lattice.
ing lattice can be bridged, on the average, by a finite number of We start with the Ising model on a SWN in 1D. In our model
connections. It has been observed that for an Ising model deach site on the lattice with an Ising spin has random links
fined on such an ensemble of graphs, this set of random bonds two distant spins such that no two spins are connected by
more than one link. All links of equal strength. Thus we have
P ) . o 3 a “canonical” scenario since the number of links at each site is
Conventional notations of critical exponents are used: ==, x ~ 17, fixed. Hence no extra normalisation factor is needed in the long
& ~1t7Y whereC, x and¢ denote the specific heat, magnetic susceptibility :

and correlation length of the systenis the temperature-like variable with the  fange part of the Ham"tonian of E@). In the present work we
critical point atr = 0. chose/J/kp = 1 wherekp is the Boltzmann constant.
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Fig. 1. Plot of the data-collapse of the binder cumulant versus scaled temperé#ig. 2. Plot of the distribution of pseudocritical inverse temperatggeg, N)
ture for variousv. for variousN.
4. Simulation details size [20]. This is because our system, as we show, is self-

averaging and this method should be more pertinent for non-
Data were taken al' = 2.85 (close to the estimated crit- or weakly self-averaging systems. To investigate the distribu-
ical temperature) angt, C and the Binder cumulant,, =  tion of pseudo-critical temperaturg, (i, N) (the temperature
[(m4)/(m2)2]av — 3 were calculated, using the single his- at which the specific heat of samplef size N is a maximum),
togram reweighting techniqué7]. We examined lattice sizes data were taken g = 2.85 andp.(i, N) for variousN were
N = 100 500, 100Q 200Q 3000 in our Monte Carlo simula- calculated using the histogram metHad]. The distribution of
tions. We studied 1535 samples fr= 100 to 517 samples Bc(i, N) for N = 10,50,100 is constructed.We studied 3291
for N =3000 using 18 equilibration and 19 MC steps for lattice samples forv = 10, 1645 lattice samples fav = 50
eachN. Data were taken at intervals of AMC steps. and 1535 lattice samples fof = 100. We find that the inverse
A data-collapse ofU,, with finite size scaling variable critical temperaturgs. (i, N), scales as
NYP(T —T.)/ T, would giveT, (the infinite lattice critical tem- 5 oy
perature) and@. By using the data-collapse method of RéB] [(ﬂc("a N) = ﬁc(N)) ]avN N7 (7)
we obtainedl. = 2.83(2) and I/v = 0.50(). which is consistent with Eq3), but one also needs a scale fac-
Thg value ofv is conS|sten_t with previous resu_[tlss]. Thg tor N~Y/2 for the probability distribution? (8. (i, N)). Fig. 2
resulting collapse is shown Ifig. 1. We also investigated sim- ghqys the data collapse of this distribution. The data-collapse
llar plots fory andC after averaging over many realisations of j hest achieved with = 2.00(3) which is consistent with the
dlslgrd:ehr (not Sh?""? ftﬁre), with ?alr]c]e retsults. ¢ the transit value of v obtained in the data collapse shownFigy. 1 We
urther proof of the mean-field nature of the transition ; % o o
comes from the comparison of the data with the mean-fiel(i‘k?:u?t;gffg"iétﬁéeaggr‘ga:ga f;)rltg etzoai)ggg Igtttliii ssléems
form of Uy,. To evaluate the mean field form &f,, we use pjes for ;' = 3000 were studied. For each sample we used 10
the mean-field form of the magnetisation per spin m probabilityaqyjlipration and 19 MC steps. Data were taken at intervals
distribution in the critical regiofi9] of 10° MC steps. The data is fitted to the forRy = Ax N°X
(5) whereRy is the relative variance forn and x. The values ob-
tained argo,, = —0.96(9), andp, = —0.94(8). Thusx andm
with ¢y being the critical temperature of a lattice of si¥eand  are strongly self-averaging. The singular part of energy can-
a1, az being constants. By replacing = (a2N)Y/%m, we find  not be filtered out and hence the behaviourVgf cannot be
Un where the averages are obtained by integrafifgom —oco  predicted decisively. We see Fig. 3that V¢ is a constant as
to +oo with the weight expected and hence C is altoongly self-averaging.

Py(m) eXp[—N(altNm2 + a2m4)]

Py () ocexp by (x — bp)yin? —1i?], ©) 5 Discussion

whereb, = a1/a>Y?, x is the finite size scaling variableT —

T,.)/ T.INY? with b1b; taking care of the finite size shift of the The fact that the peak scales inversely as the width shows

critical temperature. The solid curve lig. 1is obtained with  that despite the fluctuation in pseudo-critical temperatures, the

b1=17,bp=0.72. distribution approaches &function. As a result the critical
We find good data collapse by using= T — T. even temperature of a largh¥ network can be thought of as the aver-

though finite size scaling is supposedly better with the use ofige of pseudo-critical temperatures of the small sub-networks.

f=T — T.(N) after finding out theT.(N) for every sample This averaging out is tantamount to self-averaging. This is in
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g " x Fig. 4. Data collapse of and x on considering a single realisation of ran-

domness.

marked contrast to the other cases of random systems studiedisehave aR,,, R, ~ N~1 while the varianceV¢ for the spe-
far [2-5]. It is tempting to conclude that in addition to relevant cific heat approaches a constant for largeHence the system
randomness, a broad distribution of pseudo-critical temperaturis strongly self-averaging in the critical region in spite of rele-
is a requirement for non-self-averaging. vant randomness. Our results have the following implications.
Whilst in the present work we have used a “canonical” enFrom the small-world networks perspective, the random or sta-
semble with a fixed number of bonds, small scale simulation#istical features of the network do not play a role in the long
of the Ising model on a SWN in a “grand canonical” ensem-range behaviour at the critical point so that one may replace the
ble, where the number of bonds can vary, also indicated selensemble of small-world networks by a single average network.
averaging as found here.
In case of a strongly self-averaging system, a typical Samp'?{eferencs
should be a representative of the average. We observe good data
collapse with even a single realisation of disorder (as shown inj} o' Anarony, A.B. Harris, Phys. Rev. Lett. 77 (1996) 3700.
Fig. 4). Thus, in the light of the present work, in such situations, [2] S. wiseman, E. Domany, Phys. Rev. E 52 (1995) 34609;
an annealed averaging as done in R&@] should work well. S. Wiseman, E. Domany, Phys. Rev. E 58 (1998) 2938.

Consequently no extra order parameter like approach should b{% 3-|D'i\'/'lma””' V‘S JAarg‘e’ K-IB";’her’ JéStat-E'Zgy(Sz-OE’()%gll‘?ggf) 57.
needed for networks. - Varques, J.A. -50nzalo, Fhys. Rev. ;

. ey L. [5] M.I. Marques, J.A. Gonzalo, Phys. Rev. E 65 (2003) 057104.
Itis not clear if this feature of strong self-averaging is a con- (6] p. watts, S.H. Strogatz, Nature 393 (1998) 440.

sequence af = 0, in which case it could be true for all relevant [7] R. Albert, A.L. Barabasi, Rev. Mod. Phys. 74 (2002) 47.
disorder problems with mean-field behaviour. An extension of [8] E. Aimaas, R.V. Kulkari, D. Stroud, Phys. Rev. Lett. 88 (2002) 098101.
the RG argumenitl] to encompass situations with sharp limit [8] A Barrat, M. Weigt, Eur. Phys. J. B 13 (2000) 547.
of 7. distribution and long range interactions, may shed ligh ﬁ} m:;':jeeggsg's’Jl'j';;'f@v?igfg?(g%g) 008701,
on this. Whether this result on the disorder aspect of a networli,; ¢ p. Herrero, Phys. Rev. E 65 (2002) 066110.
is important in other real life situations like the railway network [13] H. Hong, B.J. Kim, M.Y. Choi, Phys. Rev. E 66 (2002) 018101.
[21] needs further study. [14] T. Nikoletopoulos, et al., J. Phys. A 37 (2004) 6455.
To conclude, we investigated the self-averaging behaviouﬁg} JA-\‘;:;‘?:;& Be-'s- He?';er:;‘r'] F’Shny-e\'?eE"-? 2 (2270(01‘?)803% ;‘11132-
of thellsmg'model on a small world network. The d!StI’IbUtIOI’] [17] v Falcioni‘pet él., PH;/S. E/e{t. B 108 (1982) 331 :
of B.(i, N) is found to become sharper A — 00 with the A.M. Ferrenberg, R.H. Swensden, Phys. Rev. Lett. 61 (1988) 2635.
fluctuation decaying a5 (i, N))?lay ~ N~%/7. The data col-  [18] S.M. Bhattacharjee, F. Seno, J. Phys. A 34 (2001) 6375.
lapse of various physical quantities both for a single realisatiofit9] K. Binder, etal., Phys. Rev. B 31 (1985) 1498.
of disorder and after averaging over many disorder realisationg®l K. Bernardet, F. Pazmandi, G.G. Batrouni, Phys. Rev. Lett. 84 (2000)
showed no significant difference. A1, the relative fluctua- o

. . - [21] P. Se.n, etal., Phys. Rev. E 67 (2003) 036106.
tions R, R, for magnetization and susceptibility are found to
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