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Abstract – We show the existence of a critical endpoint in the phase diagram of unzipping of
an adsorbed double-stranded (ds) polymer like DNA. The competition of base pairing, adsorption
and stretching by an external force leads to the critical end point. From exact results, the location
of the critical end point is determined and its classical nature established.
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A critical end point (CEP) occurs when a continuous
transition line terminates on a first-order transition line.
Its specialty: even though it is surrounded by three phases,
still there is no three phase coexistence, but, instead,
a scale-free critical phase coexists with a noncritical
phase [1,2]. For comparison, a triple point, also surrounded
by three phases, would show three phase coexistence.
A CEP is expected to occur in various mixtures and
ferroelectrics and in vortex lattice [1–3]. We show here that
a different way of locating and studying a CEP is through
single molecular manipulations of an adsorbed DNA.
The melting of DNA is known to be a crucial step

in many biological processes [4]. The double-stranded
DNA(dsDNA) is a bound state of two polymers or strands
held together by hydrogen bonds of base pairs. The
phenomenon of cooperative breaking of the base-pairings
thermally or otherwise is melting. The recognition of force
as a thermodynamic variable for this process has helped
in completing the phase transition picture of dsDNA [5].
Even though the nature of the thermal denaturation of
DNA remains a puzzle, the force induced unzipping tran-
sition is theoretically well-settled [5–18]. In addition, the
force-induced unzipping transition has emerged as a possi-
ble scenario for opening of DNA [19] with the replication
Y-fork as the junction of two-phase coexistence, the zipped
and the unzipped DNA. A thermodynamic description of
DNA would entail two conjugate ensembles of fixed force
and fixed distance. These two ensembles are important in
both theoretical and experimental situations [8,20–22].
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The melting and unzipping of DNA are generally
considered in the free environment of bulk solutions,
but often the presence of interacting surfaces cannot be
ignored. In vivo, during replication, DNA gets attached to
the membrane but otherwise it remains away (“desorbed”)
from the membrane. The protein-induced membrane-DNA
attachment is used in the replication process and cell
division [23]. In gene therapy, targeted delivery is achieved
by taking advantage of adsorption-desorption of DNA
on cationic liposomes [24,25]. That metallic (e.g., gold),
semiconducting (e.g., silicon) or insulating (e.g., mica)
surfaces can also adsorb DNA has opened up the possi-
bility of biosensors for fast and precise detection of DNA
in samples like hair, blood etc. In all these cases, the
surface-DNA interaction depends (and hence tunable) on
the nature of the surface, fluctuation of the surface as for
fluid membranes, ionic concentration of the environment,
nature of hydrophobicity and van der Waals interactions.
A well-studied system in recent years is DNA on gold
where the DNA can be attached to the surface with a
thiol group and a small linker [26–28]. The model setup
we are considering is similar to the case of DNA on a
gold plate and is shown in fig. 1. A force pulls only one
of the two strands of a DNA which can adsorb on an
attractive surface. The DNA as usual has the base pairing
energy. We here treat the surface-DNA interaction as an
additional parameter in the problem. It transpires that
for certain ranges of the attraction with surface there
would be a competition between adsorption, unzipping,
and melting. These three processes can lead to a CEP.
The essential feature that holds the key for the CEP is
that the force-induced unzipping is strictly first order but
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Fig. 1: Schematic diagram of DNA adsorbed on the surface
(shaded region). One end of the DNA is always kept anchored
on the surface at the origin. The free strand (denoted by 1)
can gain energy −ǫw for every contact with the surface
(i.e. x1 = 0). An external force g (shown by arrow) is applied
at the free end of the pulled strand (denoted by 2 and shifted
by a unit distance to make it visible). The bold dotted lines
denote the base pairing (energy −ǫb) between the two strands
of the DNA. For all figures, we take kB = 1 and ǫb = 1.

the adsorption-desorption transition of a polymer from a
surface is continuous [29–31].
Previous studies of DNA unzipping showed that the

lattice model preserves, even in two dimensions, the basic
results of DNA unzipping including the first-order nature
of the phase transition and the existence of a re-entrant
region [7]. The generic arguments of these studies also
showed that the choice of the lattice is not crucial. For
the problem at hand, we have also done Monte Carlo
simulations in 2+1 dimensions (on a cubic lattice) and
find that the force-distance isotherms are qualitatively
similar to the isotherms obtained in 1+1 dimensions
(see below). Consequently we focus mostly on the results
obtained from analysis of exact results in 1+1 dimensions.
We model the DNA by two directed self-avoiding walks

on a (D= 1+1)-dimensional square lattice. See fig. 1.
The walks, labeled 1 and 2, starting from the origin, are
directed along the diagonal of the square (z-direction).
The walks are not allowed to cross each other but when-
ever they meet (i.e. x1(z) = x2(z)) there is a gain in energy
−ǫb(ǫb > 0) for every contact. This is the base pairing.
At the diagonal (x= 0) there is an impenetrable attrac-
tive surface, with an energy −ǫw(ǫw > 0), which favours
the adsorption of the DNA. In 1+1 dimensions, the
surface is a line passing through the diagonal of a square
lattice, and only one of the strands can get adsorbed on it
(i.e. x1 = 0), since the two strands of the DNA cannot
cross each other. One end of the DNA is always kept
anchored at the origin. We apply an external force g, along
the transverse direction (x-direction) on the free end of one
of the strands of the DNA. The other strand is left free.
Henceforth, the strand which is left free is called the “free
strand” and the strand, on which the external force acts is
called the “pulled strand”. The endpoint positions xi(N) is
to be shortened to xi. In 2+1 dimensions, the surface is a
plane passing through the diagonal of a cubic lattice [31].
Unlike the (1+1)-dimensional case, both the strands of
the DNA can get adsorbed on the surface and still satisfy
the non-crossing constraint on the plane (y-direction).

The two energies independently give us two special
temperatures: i) Tw the temperature for desorption
of the DNA from the surface, and ii) Tm the melting
temperature of dsDNA. In the absence of a surface, the
melting temperature is given by kBTm = ǫb/ln (4/3) [7–9].
For ssDNA, kBTw = ǫw/ln 2 [29]. Thermal fluctuations
create bubbles in the dsDNA changing its effective
elastic behaviour with concomitant rise in the desorption
temperature. We consider energies such that TW <Tm and
for numerical results we choose units so that kB = 1, and
ǫb = 1. This convention is also adopted in the following
discussion, unless we want to show a general formula or
show the dependence on ǫb.
There are four distinct phases differentiated by 〈xi〉

for i= 1, 2 as N →∞, (〈. . .〉 denotes thermal averag-
ing). i) Za: zipped DNA adsorbed on the surface with
〈xi〉/N → 0 for i= 1, 2. ii) Zd: zipped DNA desorbed
from the surface with 〈xi〉/N =O(1), for i= 1, 2. iii) Uad:
unzipped DNA with the free strand adsorbed on the
surface and the pulled strand is stretched in the direction
of the force. This phase is characterized by 〈x1〉/N → 0
but 〈x2〉/N =O(1). iv) Udd: unzipped DNA with both the
strands desorbed from the surface1 with 〈x2〉/N =O(1)
and 〈x1〉/

√
N =O(1). The adsorbed or the zipped phases

may also be characterized by the fraction of monomers in
contact, e.g., Φw the fraction of polymers in contact with
the wall and Φb the fraction of bound base pairs. In a
zipped phase Φb �= 0 while for the adsorbed phase Φw �= 0.
One can do a zero-temperature (T = 0) analysis of the

problem, keeping ǫb constant. The energies of the three
phases, namely Za, Zd, and Uad are, respectively, given
by EZa =−N(ǫw/2+ ǫb), EZd =−N(g+ ǫb), and EUad =
−N(ǫw/2+ g). For ǫb < ǫw < 2ǫb, the phase Uad is always
unstable (i.e. it has higher energy). The transition from
phase Za to phase Zd occurs at g= ǫw/2. On the other
hand, for ǫw = 2ǫb, there is a degeneracy for Zd and Uad
which occurs at g= ǫw/2. But, for ǫw > 2ǫb, the Zd-phase
is no longer favourable. The change in stability of phases
Zd and Uad as ǫw is tuned is an indication that these
phases could be stabilized by entropy at intermediate
temperatures under appropriate conditions. For ǫw = 0,
we can only have Zd and Udd, while, for ǫw > 0, as the
T = 0 analysis shows, phase Za must exist. For very high
temperatures T ≫ Tw, Tm, the stable phase is Udd. When
ǫw =∞, the free strand, which remains adsorbed on the
surface at all temperatures, acts like a zig-zag hard-wall.
In this case, only phases Za and Uad survive in the phase
diagram. Consequently, there is a continuous evolution of
the phase diagram for DNA as ǫw is changed. These phases
can therefore be represented in a 3-dimensional g-T -ǫw
phase diagram. We show the cross-sections (g-T plane) of
this phase diagram for various ǫw in fig. 2.
We like to point out the generic nature of the results,

especially the existence of the phases and the nature of

1There is a fifth phase Uaa in 2+1 dimensions where DNA melts
but both strands remain adsorbed on the surface. See, e.g., [32] for
experiments on such melting of adsorbed oligomers on gold.
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Fig. 2: g vs. T phase diagrams (a) for ǫw = 1 and (b) for
ǫw = 1.8. Ce represents the critical end point. The re-entrance
on the phase boundary separating phases Za and Zd is shown
in the inset. The points are from the transfer matrix and lines
are eqs. (4) and (5).

the phase transitions. Similarly, the choice of a straight
wall is not a restriction; a zig-zag wall with all monomers
getting absorbed also shows similar behaviour [33]. For
an experimental realization, DNA tethered to a gold or
mica surface looks promising. For example, mica-DNA
interaction can be fine-tuned by NaCl and MgCl2 over a
broad range of 0.02 ev per bp to 0.35 ev per bp [28]. For
gold 1 kbp DNA adsorption has also been studied [26].
Unzipping force measurements in single-molecule experi-
ments, like atomic force microscopy, for finite chains with
proper finite size analysis [12] could verify the theoretical
results presented here.
Let Dn(x1, x2) be the partition function (temperature

dependence not shown explicitly) of a dsDNA in the fixed
distance ensemble where n-th monomers of the strands
are at positions x1 (free strand) and x2(x2 � x1) (pulled
strand), respectively, from the wall. Dn(x1, x2) satisfies
the recursion relation (x2 � x1 � 0)

Dn+1(x1, x2) =
∑

i,j=±1

Dn(x1+ i, x2+ j)

× [1+Wδx1,0] [1+Bδx1,x2 ] , (1a)

where,

W = (eβǫw − 1), B= (eβǫb − 1), and β = 1/kBT. (1b)
The initial condition D0(x1, x2) = δx1,0δx2,0. The canoni-
cal partition function with an external force g at the end
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Fig. 3: (a) The nature of data collapse of the extensibility at
T = 1.5 for N = 1000, 2000 and 3000 at transition Sz. (b) Tu
vs. ǫw curve from data collapse (points) and the exact curve
(solid line) from eq. (6).

of the pulled strand is then obtained by summing over all
the allowed configurations of the DNA of length N on the
lattice:

ZN (β, g) =
∑

x2�x1�0

DN (x1, x2) e
βgx2 . (2)

From the partition function we calculate the endpoint
averages 〈x1〉 and 〈x2〉. The appropriate response function
is the isothermal extensibility, which can be expressed in
terms of fluctuations of the position of the end monomer

χ=
∂〈x2〉
∂g

∣

∣

∣

∣

T

=
1

kBT

[

〈x22〉− 〈x2〉
2
]

. (3)

The N (length) dependence and finite size scaling of these
quantities would be utilized to identify the phases and the
phase transitions with the help of the Bhattacharjee-Seno
data collapse program [34]. (See fig. 3(a) as an example of
the data collapse of χ(g, T ).) The nature of the transition
(first or second order) is inferred from the values of the
relevant exponents [12]. The phase diagrams are obtained
by the repeated use of finite size scaling.
In fig. 4(a), we have shown the force-distance isotherms

for ǫw = 1.8 at two different temperatures T = 0.5 and 1.5
for the chain of length N = 1000. In both cases, we start
from the ground state at g= 0, an adsorbed DNA on the
surface. The phases can be identified by the extensivity
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Fig. 4: The 〈xi〉/N vs. g (i= 1, 2) isotherms for N = 1000
(a) for the (1+1)-dimensional case at temperatures, T = 0.5
and 1.5 for ǫw = 1.8; (b) for the (2+1)-dimensional case. In
both (a) and (b), the big squares (for x1) and circles (for x2)
show the averages obtained by Monte Carlo simulations and
the upper and the lower triangles are the estimates given by
the multiple histogram technique at various g. (c) 〈x1,2〉/N
vs. T for the DNA of length N = 3000 at g= 0.925. The solid
(dashed) line represents the free (pulled) strand. The inset
shows 〈x1〉/

√
N vs. T for various chain lengths.

of 〈x1〉 and/or 〈x2〉. At T = 0.5, there is a critical force,
gs, at which the DNA gets unzipped from the surface but
remains double stranded. We call this as “transition Sz”.
But at T = 1.5, we see the sequence Za⇐⇒ Zd⇐⇒Uad,
an additional transition (to be called “transition Uz”)
at g= gu. The isotherms are obtained at T = 1.5 by
two different methods with results comparing nicely.
The lines are from the exact transfer matrix based on
eq. (1a), whereas the bigger symbols (squares and circles)

are obtained by performing Monte Carlo simulations for
longer chains using the multiple histogram technique [35].
The details of Monte Carlo simulation will be discussed
elsewhere. The estimates, so obtained, are shown by the
upper and the lower triangles for the free and the pulled
strand respectively in fig. 4(a). An isotherm for a 2+1
dimensional case is also shown in the fig. 4(b) and is
similar to the 2-dimensional case, as already mentioned.
Figure 2(a) shows the phase diagram for ǫw = 1 as a

representative in 0< ǫw � ǫb = 1. It contains three phases,
namely Za, Zd and Udd. The phase boundary separating
phase Za from phase Zd is shown by circles. The minimum
temperature, Tu, above which the unzipping of the dsDNA
to two single strands takes place is at Tu = ǫb/ln 2 same as
for ǫw = 0 case. For low values of g, the pulled strand is
not necessarily straight. If we ignore the effect of the wall
the phase boundary can be calculated exactly from the
above recursion relation as

gu(T ) =
kBT

2
ln

(

2e−βǫb − 2
1− 2e−βǫb

)

. (4)

Below Tu, the DNA remains double stranded for any value
of force g. That the effect of the wall is negligible is borne
out by the excellent agreement [33] of the phase boundary
for ǫw � 1 (fig. 2(a)).
The situation of interest is 1< ǫw < 2. In this case, we

have all the four phases in the phase diagram, including
the T = 0 unstable phase Uad. With ǫw > ǫb = 1, pair
breaking, as opposed to desorption, would play an
important role at low temperatures. As a result, the
phase boundary separating phase Za from phase Zd, loses
its monotonicity seen in the ǫw = 1 case and a thin slice
of re-entrance starts appearing in the phase diagram
at intermediate temperatures. Such an intermediate
re-entrance was also found in ref. [8], in a different
context of a dsDNA with a force at an interior point. We
have shown the phase diagram for ǫw = 1.8 in fig. 2(b), as
a representative of this regime with the re-entrance shown
in the inset. Apart from this feature, there is a region in
the phase diagram which involves three phases, namely
Za, Zd and Uad. The transitions from phase Zd to phases
Uad, and Udd are of first order, whereas, the transition
from phase Uad to phase Udd is second order. The critical
line is at Te = ǫw/ln 2 for all g. This is the temperature at
which the adsorbed free strand in phase Uad desorbs from
the surface. If we ignore the effect of attraction of the
wall on phase Zd, the first-order phase boundary can be
obtained by equating the free energies of the two phases
obtained from eq. (1a). For the Zd-to-Uad transition we
then get

gℓ(T ) =
kBT

2
ln

[

(

e−βǫw − e−2βǫw
)1/2

eβǫb − (e−βǫw − e−2βǫw)1/2
− 1
]

, (5)

while the Zd-to-Udd transition is still given by eq. (4). Of
course eq. (5) will not be appropriate in the temperature
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region where there is re-entrance in the desorption bound-
ary. This is seen when compared with the numerical
results (fig. 2(b)). However, the large force asymptote
is given correctly, especially the dependence of Tu on
ǫw as

ǫw = kBTu ln

[

2

1−
√

1− 4 exp (−ǫb/kBTu)

]

. (6)

This expression has the correct limits and matches with
the numerics as shown in fig. 3(b), justifying a posteriori
the neglect of the effect of the attractive wall in these
conditions.
The free-strand desorption critical line terminates on

the first-order boundary for phase Zd separating it from
phases Uad and Udd. This point of intersection is the
CEP. Note that gℓ(T ) and gu(T ) meet at Te = ǫw/ln 2 with
same slope as they should for a CEP. This point is shown
in fig. 2(b), by Ce (filled square). For ǫw = 1.8, Ce is at
ge = 0.742618 . . ., Te = 2.59685 . . . (with ǫb = 1). The CEP
appears in the phase diagram only for ǫw > 1, and shifts
towards the melting point as ǫw is increased. That the two
curves meet at CEP with the same slope is a confirmation
of its nature. At a triple point the angle between any two
phase boundaries is strictly less than 2π.
The phase diagram for ǫw = 2 has a new feature that

Zd just becomes unstable at T = 0. For ǫw > 2, a triple
point appears in the phase diagram where Za, Zd and Uad
coexist. The CEP still persists but Zd is now stabilized
by entropy. With the increase of ǫw beyond 2, the region
representing phase Zd shrinks rapidly and both the triple
point and the CEP shift towards higher temperatures and
disappear independently from the phase diagram. The
crossing of the thermal desorption and thermal melting
temperature introduce new complications. These will be
discussed elsewhere.
In fig. 4(c), we have plotted the scaled distances
〈x1,2〉/N , of the end monomers of both the strands from
the surface as a function of temperature T at an external
applied force g= 0.925. This particular value of the force
lies in a small region which allows us to see all the possible
phases, including the re-entrance between the phase Za
and the phase Zd (see fig. 2(b)). Just by increasing the
temperature, the DNA can be made to go through the
sequence

Zd⇐⇒ Za⇐⇒ Zd⇐⇒Uad⇐⇒Udd.

In the last phase, the free strand of the DNA desorbs
from the surface and stays at a distance of

√
N from the

surface (not visible in this scale). To make it visible, we
have plotted, in the inset, the scaled separation, 〈x1〉/

√
N ,

of the end monomer of free strand from the surface as
a function of T for DNA of various lengths. The plot
confirms the existence of such a transition.
The adsorption-desorption transition in the model is

a classical second-order transition. One therefore expects
a Landau-type theory to be applicable for the CEP.

0

0.4

0.8

1.2

2 2.5  3 3.5

g

T

Fig. 5: Phase diagram in the neighbourhood of Ce to show
the difference in curvature of the two phase boundaries. The
lines are the fits of eq. (7) and the points are from the transfer
matrix calculations.

A CEP is described by an eighth-order Landau function
F = tφ2+φ4+wφ6+φ8 in terms of a suitable order
parameter [1]. The first-order transition takes place
between two ordered phases (φ �= 0) with w> 0, t < 0 or
between an ordered phase (φ �= 0) and a disordered phase
for w< 0, t > 0. A second-order transition takes place
between the other ordered phase and the disordered phase
at t= 0. The CEP is at t= 0, w=−3/

√
2. The first-order

line develops a singularity associated with the behaviour
of the specific heat across the critical line. Even though
the first-order lines are continuous with the same slope,
the curvatures are different because the specific heat has
a jump discontinuity across the critical line.
By fitting the first-order boundaries near the CEP at

(Te, ge) (for ǫw = 1.8), we find

gℓ,u(T ) = a(T −Te)+ bℓ,u(T −Te)2+ . . . , (7)

with a=−0.87± 0.01, bℓ =−0.49± 0.03, bu = 0.024±
0.019, where the subscript u is for T > Te and ℓ for
T < Te. This jump in the second-order is consistent with
the prediction of the Landau theory. Figure 5 shows the
fits near the critical end point.
To summarize, we established the possibility of four

different phases in a set up to unzip an adsorbed dsDNA
by pulling a single strand. We find that depending upon
the relative strengths of the binding on the surface ǫw and
the pairing energy ǫb, either all the four phases or a few of
them, are present in the phase diagram. For a wide range
of ǫw/ǫb, we find that a critical end point is present in the
phase diagram. Furthermore, for a narrow range of ǫw, we
also have a triple point in the phase diagram. It seems
that the unzipping of an adsorbed dsDNA by pulling a
single strand can be a potential candidate to explore the
critical end point and this will open up a new vista for
single molecular spectroscopy.
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Note Added in Proofs : In a recent paper Marenduzzo
et al. [36] also obtained eq. (4) in a different context of
melting of a stretched DNA.
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