
PHYSICAL REVIEW E 86, 041147 (2012)

Efimov effect of triple-stranded DNA: Real-space renormalization group and zeros
of the partition function
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We study the melting of three-stranded DNA by using the real-space renormalization group and exact recursion
relations. The prediction of an unusual Efimov-analog three-chain bound state, that appears at the critical melting
of two-chain DNA, is corroborated by the zeros of the partition function. The distribution of the zeros has been
studied in detail for various situations. We show that the Efimov DNA can occur even if the three-chain (i.e.,
three-monomer) interaction is repulsive in nature. In higher dimensions, a striking result that emerged in this
repulsive zone is a continuous transition from the critical state to the Efimov DNA.
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I. INTRODUCTION

In recent times the formation of triple-helical DNA has
been a topic of considerable importance because of possible
implications in the field of molecular biology. In 1957, it was
discovered that certain sequences of Watson-Crick double-
helical DNA allow a third strand of DNA to bind via Hoogsteen
or reverse Hoogsteen base pairing to form a triple helix
[1–3]. This triple-helix formation has the potentiality to block
transcription and thereby affect gene expression. Following
this discovery, the experimental demonstration of the ability
of a third chain to recognize the base sequences without
the double-helical DNA revealing the base pairs renewed
the interest in triple-helix DNA, especially its therapeutic
applications [4,5]. It is now known that not only DNA but
even RNA [6] and PNA (polypeptide nucleic acid) are capable
of forming a triple helix with duplex DNA [7,8].

Three-stranded DNA has been shown to exhibit an Efimov-
like bound state near or at the critical melting of duplex
DNA [9]. The Efimov effect is the most striking phenomenon
to occur in quantum three-body systems with only two-body
short-range pair interactions [10–13]. An infinite number
of bound states appear at the critical threshold of two-
body binding. There are several theoretical and experimental
investigations using different models and methods that show
this effect [14–17]. The universality of this phenomenon en-
compasses the analogous classical model, namely, the melting
of three-stranded DNA [9]. An analogy is drawn between the
large quantum fluctuations near the zero-energy threshold of
two-body binding and the thermal Gaussian fluctuations at
the melting of duplex DNA. As discussed in Ref. [9], there
is an exact mapping of the partition function of three ideal
polymers with DNA base-pairing-type short-range interaction
to the Green function of three-particle quantum mechanics
under a transformation of the length of polymers to imaginary
time. Furthermore, a scaling argument was used there to justify
the occurrence of the effective two-chain attractive potential 1

r2

as a source of the Efimov effect. Such a long-range interaction
leads to a broad three-strand DNA bound state at or beyond
the melting point of duplex DNA. This is a state where no two
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strands are bound but the three are bound together. We called
this loosely bound state Efimov DNA [18]. This has also been
observed from the renormalization group (RG) flows and exact
numerical calculations for several model systems, in particular
on hierarchical lattices.

Hierarchical lattices, by virtue of their discrete scaling,
allow one to solve many models in statistical mechanics by
exact renormalization group transformations [19–22]. Further-
more, many approximate real-space RGs on real lattices can
be viewed as exact real-space RGs on hierarchical lattices. In
the first study of the Efimov effect for Gaussian polymers,
RG and exact numerics were used [9]. A part of our aim
here is to analyze the Efimov phenomena exhibited by triple-
stranded DNA from the classical phase transition point of view,
especially by looking at the zeros of the partition functions.

Finding the zeros of a partition function in the complex
plane of any physical variable is a mathematical way to
understand and analyze phase transition phenomena. However,
finding those is often possible only for small sizes or soluble
cases and not in general. Yang and Lee first studied the Ising
ferromagnetic system in a complex magnetic field to show
that for a properly chosen variable the zeros lie on a unit
circle, known as the Yang-Lee circle [23,24]. Later the zeros
were studied in the complex temperature plane and other
variables [25]. Since there cannot be any real zero, the zeros
may accumulate and pinch the real axis at a limit point in
the thermodynamic limit. This limit point then identifies a
transition point. This method can provide relevant information
on phase transitions such as the critical field or temperature and
the values of the associated critical exponents. Moreover, the
distribution of zeros may form many complicated structures
other than a circle. These structures are the separatrices of the
two types of flow to the two different stable fixed points of
the RG transformation, and are similar to the Julia sets (see
Appendix B) [26,27].

In Ref. [9] the RG flows were studied in the unbound region
of the two- and the three-chain states. By looking at the flows
in the unbound region of duplex DNA, where the chains are
supposed to be free, an effective three-chain bound state was
predicted. In this paper we study the partition function of
the three-chain system by combining the recursion relations
and the RG transformations, and then finding the zeros. We
also extend the model to the three-chain repulsive interaction
regime. In addition, we discuss several other features of the
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zeros in the complex plane, for instance the detailed structure,
and the connection to the Julia set.

This paper is organized as follows. In Sec. II, the three-
polymer problem on a hierarchical lattice is introduced. In
Sec. III, the recursion relations from RG decimation and those
for exact iterations are written. The method of finding the zeros
of the partition function is discussed, and we find the limit point
of the zeros to locate the phase transition. Section IV contains
the results and discussions on the two- and the three-chain
systems under different situations. In particular we estimate
the transition point for Efimov DNA. Section V extends the
problem to three-chain repulsive interactions. The existence of
a transition between the Efimov DNA and the critical repulsive
state in higher dimensions is established there. Appendices B
and C describe the Julia set and the limit cycle.

II. MODEL

Let us consider the diamond hierarchical lattice as shown in
Fig. 1. The lattice is generated iteratively by the replacement
of each bond at the (n − 1)th generation by a motif of λb

bonds to get the nth generation, where λ and b represent the
bond scaling factor and the branching factor, respectively. The
thermodynamic limit is obtained as n → ∞ and in that limit
the effective dimensionality of the lattice is

d = ln λb

ln λ
. (1)

In this paper we shall choose λ = 2.
One major feature about hierarchical lattices is their

unusual scale invariance property. They have a discrete scaling
symmetry. That is why an exact implementation of the real-
space RG technique is possible. The decimation of the nth
generation to arrive at the (n − 1)th generation is precisely
what is needed in a RG transformation. Once the partition
function is known, it is possible to calculate the free energy
and the other thermodynamic quantities. One may even write
down recursion relations for them.

We consider three directed polymers on a diamond hi-
erarchical lattice. Three chains on the diamond hierarchical
lattice are stretched from bottom to top, but they can wander
at intermediate points. The contact energies are defined at the
bonds only. The polymers are assigned attractive potentials −ε

and −ε123 (ε,ε123 > 0) if a single bond is shared by two and
three polymers, respectively (see Fig. 2). At each generation,
the length of each polymer increases by a factor λ = 2 so that
the length of polymers at the nth generation is

Ln = 2n. (2)

0n= n= n= 21

(a) (b)

FIG. 1. (Color online) (a) The recursive construction of the
hierarchical lattice with b = 2 for n = 0,1,2, . . . generations. The
right arrows represent the direction of iteration towards larger lattices.
The left arrows represent the direction of decimation used in the RG.
(b) A motif of 2b bonds, where b = 4.

(b) (c)(a)

FIG. 2. (Color online) Examples of three-chain configurations on
a diamond motif for b = 4. (a) The polymers do not share any single
bond. The number of such configurations is b(b − 1)(b − 2). (b) Two
polymers share a bond. The energy here is −2ε and the number of such
configurations is b(b − 1). (c) Three polymers share the same bond.
The energy is 2(−3ε − ε123). The number of such configurations is b.

For the Efimov effect, just pairwise interaction is enough.
However, in a RG procedure it is imperative to define the model
with both ε and ε123, because the three-chain interaction gets
generated on a longer scale.

III. METHOD

A. Renormalization group

In this section we summarize the RG transformations and
the exact recursion relations for the partition functions. The
two ways of handling the problem are just two different
ways to look at it. In the RG case, we start from a large
lattice and remove short scale fluctuations by renormalizing
the parameters, effectively reducing the size of the lattice. In
contrast to this idea of thinning out the degrees of freedom, in
the second method the lattice is built generation by generation
so that one may study the behavior of any quantity of interest
as a function of the length of the polymers. This is useful in
studying phase transitions because finite size scaling can then
be used to explore the nature of the transition.

We introduce the Boltzmann factors

y = exp(βε) and w = exp(βε123), (3)

where β = 1/kBT , kB being the Boltzmann constant and T

the temperature. The RG transformations of the two-chain and
the three-chain Boltzmann factors are given by

y ′ = (b − 1) + y2

b
, (4)

w′ = (b − 1)(b − 2) + 3(b − 1)y2 + y6w2

b2y ′3 , (5)

where the primed variables y ′ and w′ on the left-hand side
represent the renormalized values of the Boltzmann factors.
For details see Appendix A. These recursion relations show
that the three-body term is generated even though we start with
ε123 = 0, i.e., w = 1. As expected the three-chain interaction
does not affect (i.e., renormalize) the two-chain interaction.

For a given y and w, the flows from successive use of
Eqs. (4) and (5) would give us the phases and the nature of
the transitions. One needs the fixed points for this analysis.
For the two-chain system, the fixed points of y are (i)
y∗ = 1, a stable infinite temperature fixed point representing
an unbound state, and (ii) y∗ = (b − 1), an unstable fixed point
representing the two-chain melting or critical point. In addi-
tion, (iii) y∗ = ∞ (zero temperature, representing a bound
duplex state) is an obvious stable fixed point, which does
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not come from the RG relation but from the RG flow. For
a pure three-chain interaction (y = 1) the fixed points of
w correspond to (i) 1, infinite temperature, (ii) (b2 − 1),
an unstable, three-chain critical point, and (iii) ∞ (zero
temperature), a stable fixed point, which comes from the RG
flow. The two-chain melting is critical with a diverging length
scale with exponent [19]

ν = ln λ

ln
(

dy ′
dy

∣∣
y→yc

) (6)

and the specific heat exponent

α = 2 − ν. (7)

At the two-chain critical point yc = b − 1, the fixed points of
w are found to be

w± = b2 ± √
4 − 24b + 32b2 − 12b3 + b4

2(b − 1)3
. (8)

For b = 4, w± = 8
27 ± i

√
23

27 are complex numbers. In the range
2.303 < b < 8.596 no real roots are found from the three-
chain RG relation [Eq. (5)] for y = yc. These complex roots
lead to a limit cycle behavior, which is intimately related to
the Efimov effect (see Appendix C).

B. Exact recursion relations

With the trace over all configurations the nth generation
partition functions for single- (Cn), double- (Zn), and triple-
(Qn) chain systems obey the recursion relations

Cn = bC2
n−1, (9)

Zn = b(b − 1)C4
n−1 + bZ2

n−1, (10)

Qn = b(b − 1)(b − 2)C6
n−1

+ 3b(b − 1)C2
n−1Z

2
n−1 + bQ2

n−1. (11)

The initial conditions are taken as

C0 = 1, Z0 = y, Q0 = y3w. (12)

The average energy and the specific heat are defined as

En = ∂ ln Qn

∂x
and Cn = ∂En

∂x
, (13)

where x is the appropriate variable (y or w as the case may
be). Although these definitions are different from the actual
definitions, the proportionality factors are not crucial here.

For given y and w, Eqs. (9)–(11) give the partition functions
for different Ln. The average energy and the specific heat can
be determined for different Ln by writing down the recursion
relations for derivatives of Eqs. (9)–(11).

C. Zeros of the partition functions Zn and Qn

If we take w = 1, i.e., no three-body interaction, then the
partition functions are polynomials in y. In general, Zn is a
polynomial in y of order Ln while Qn is a multinomial in y and
w. These partition functions are then completely described by
the zeros which are necessarily complex. A phase transition is
signaled by a real limit point of the zeros. However, the rapid
growth of the order of the polynomials makes it difficult to

implement this program directly. A different representation is
used to get the zeros [27].

By using the RG transformations of y and w, the recursion
relations from Eqs. (9)–(11) can be reduced exactly to the
forms

Zn(y) = bLnZn−1(y ′), (14)

Qn(y,w) = (bLn)3/2Qn−1(y ′,w′), (15)

with y ′ and w′ given by Eqs. (4) and (5). These relations can be
verified by direct substitution and, if necessary, by the method
of induction.

Since the zeros determine a polynomial completely, the
two-chain partition functions can be written as

Zn(y) = bLn−1
Ln∏
l=1

(y − ql), (16)

Zn−1(y) = bLn−1−1
Ln−1∏
j=1

(y − q̃j ), (17)

where the ql’s and q̃j ’s are the zeros of the partition functions
Zn(y) and Zn−1(y), respectively. These zeros appear in
complex-conjugate pairs. With the substitution of Eqs. (16)
and (17), Eq. (14) becomes

bLn−1
Ln∏
l=1

(y − ql) = bLnbLn−1−1
Ln−1∏
j=1

(y ′ − q̃j ). (18)

Then the use of Eq. (4), the relation between y ′ and y, gives
two roots from each factor on the right-hand side, so that the
ql’s are the solutions of

(b − 1) + y2

b
= q̃j , (19)

i.e.,

q = ±√
bq̃j − (b − 1). (20)

The subscript of q is omitted. This clearly shows that if we
know the 2n−1 zeros q̃j of Zn−1(y), we will be able to know
the 2n zeros ql of Zn(y). One may start with the roots of Z1

and generate successively the roots of each generation, by just
solving a quadratic equation.

Instead of generating all the roots, a random generation is
more easily implementable. With an initial value y0 chosen
randomly from the two roots of Z1, the new roots are
determined by Eq. (20). If one of them is chosen at random
and substituted as q̃j , the roots for the next generation can be
found. Thus, after the nth iteration, the set obtained is basically
the zeros in the complex y plane. These roots are nothing but
the zeros of the partition function found from different sizes
of the lattice, which in this problem would be equivalent to
different lengths of polymers. The zeros quickly converge and
as n → ∞ we look for the limit point on the real axis. Apart
from that, the distribution in the complex y plane itself is of
interest. This method has been generalized for the three-chain
system.
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(a) (b)
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FIG. 3. Plot of zeros of Zn(y) in the complex y plane for b = 4
from (a) the exact recursion relation for n = 6 and (b) the RG relation.
The closest point to the Re(y) axis approaches yc = 3, the two-chain
melting point in the limit n → ∞, the unstable fixed point of Eq. (4).
The selected region shown by a box is zoomed in Fig. 4(a).

IV. BEHAVIOR OF ZEROS: TWO-CHAIN
AND THREE-CHAIN SYSTEMS

A. Two-chain system: b = 4

For different branching factors, fractal-like structures are
obtained from the zeros of the partition functions of the two-
and the three-chain systems. We considered only b = 4 as a
representative of the range where there is no real fixed point
along the two-chain critical line.

For b = 4 the structure shown in Fig. 3(a) is obtained
in the complex y plane from the exact recursion relation
Eq. (14). Exact solutions are possible only up to the n = 6
generation because of computational hardware limitations.
This is insufficient, as the thermodynamic limit (n → ∞) is
needed to observe a phase transition. Finding zeros at random
from the RG relations [Eqs. (4) and (5)] overcomes such
difficulties and hence large lengths can be reached. The zeros
obtained from Eq. (19) give the fractal-like structure shown in
Fig. 3(b). The accessed zero nearest to the real axis approaches
the two-chain transition point yc = 3 for large n.

Apart from the limit point, the distribution of the zeros
in the complex y plane is also nontrivial. The first feature
to note is that the zeros do not seem to lie on a smooth
differentiable curve. A zoomed picture of a small cross section
of the structure for the two-chain system [from Fig. 3(b)] is
shown in Fig. 4(a). Further, the selected regions have been
zoomed successively and are shown in Figs. 4(b) and 4(c). The
self-similarity of the structure is visible. This is an indication of
the fractal nature of the distribution. Further analysis required
for a quantitative description is not done here.

These fractal-like structures obtained above are nothing but
the separatrices of the set of RG flows in the complex plane
to the appropriate stable fixed points. These separatrices for
iterations of any function in the complex plane are known as
the Julia set (see Appendix B). The sets are obtained after

(b)(a)
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FIG. 5. (Color online) (a) Plot of zeros of Zn(y) in the complex
y plane. Two types of RG flow are shown. The dotted red curve starts
from a point of the inner region and flows to y = 1. The dashed blue
curve starts from a point of the outer region and flows to ∞. (b) The
triangles are the zeros and approach the limit point yc = 3 at large n.
The solid red line, given by Eq. (23), makes an angle φ with the real
axis with ν of Eq. (6) and c = yc.

an infinite number of iterations of a recursive formula by
identifying the points that do not flow to the stable fixed points.
Our method of finding the zeros by using the RG relations is in
fact equivalent to an inverse iteration method, which is more
efficient in producing such structures.

In Fig. 5(a) the RG flows are shown in the complex y

plane for a two-chain system. The dotted line (red curve)
shows the flow towards the stable fixed point y = 1, i.e., the
high temperature region, when we start with a value from the
inner region of the fractal-like structure. On the other hand,
a point from the outskirts of the line of zeros flows to the
stable fixed point y = ∞, which is the bound state with zero
temperature. The critical point, being an unstable fixed point,
does not actually belong to the set but, as discussed, is a limit
point—in a sense a boundary of the set.

The second feature to note is the 3-like shape near the real-
axis limit point. It is not arbitrary. The angle at the limit point
in the complex plane is related to the specific heat exponent
by [28]

tan (φν) = − tan (πα) + A−
A+

csc(πα), (21)

where φ is the angle between the tangent of zeros at the limit
point and the real axis of y, and A± are the amplitudes of the
specific heat on the low and the high y side of the transition.
Just like the exponents, A−/A+ is a universal number for a
universality class of transition. For the two-chain problem, we
know that A−/A+ → ∞ as A+ = 0. Therefore the angle φ is
given by

φ = π

2ν
. (22)

(b) (c)(a)
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FIG. 4. Zeros of Zn(y): The inner rectangular box is zoomed successively. A self-similar structure becomes apparent. Note that the zeros
are known with high accuracy.
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FIG. 6. (Color online) (a) Plot of the zeros of Qn(1,w) in the
complex w plane for b = 4. The closest point to the real axis
approaches wc = 15 for large n. There is self-similarity in the
distribution of zeros. (b) The triangles are the zeros. The solid red
line given by Eq. (23) passes through them with ν of Eq. (28) and
c = wc. (c) and (d) The inner rectangular box [from (a)] is zoomed
successively.

The zeros obtained by the successive iterations of the one
close to the real axis are shown in Fig. 5(b) by the triangles.
They approach the real axis in a linear fashion with an angle
φ, given by the straight line

Im z = (Re z − c) tan
π

2ν
(23)

in the generic complex z plane with ν from Eq. (6). Here c

represents the limit point of the zeros on the real axis. The
zeros occur in complex-conjugate pairs. Therefore if we take
the mirror image of the distribution of zeros about the real axis
in Fig. 5(b), the beak of the 3-like shape can be obtained.

B. Three-chain system: b = 4

We have calculated the zeros of Qn(1,w) for a three-chain
system with a pure three-chain interaction. By considering
y = 1 in Eq. (5), we get

w′ = (b2 − 1) + w2

b2
. (24)

The zeros come from the equation

ql = ±
√

b2q̃j − (b2 − 1),

where the ql’s and q̃j ’s are the zeros of Qn(1,w) and
Qn−1(1,w), respectively. The distribution of zeros is the Julia
set which has a fractal-like structure shown in Figs. 6(a), 6(c),
and 6(d). By choosing the zero near to the limit point wc,
the nature of the distribution can be determined, as shown
in Fig. 6(b) by the straight line given by Eq. (23) with ν of
Eq. (28) and c = wc.

C. Efimov DNA: b = 4

The idea is to show the Efimov transition point of DNA by
finding the limit point of zeros on the real y axis. Although we
consider w = 1, the effective three-chain interaction develops
by renormalization. As a result the zeros found from Eqs. (9)–
(11) seem to pinch the Re(y) axis at a point where no pair of
chains is bound. The exact solutions are shown in Fig. 7(a) for
n = 6. On a finer scale the zeros are shown in Fig. 7(b). For
such small lattices the limit point is not accessible; hence an
extrapolation scheme may be used. The zeros nearest to the
Re(y) axis, obtained in different generations (n = 2, . . . ,6)
are shown in Fig. 7(c) by black dots. A straight line nicely fits
these zeros and is shown by the solid red curve.

The straight line intersects the real axis at y = 2.321.
This value is the large n extrapolation and can be taken as
an estimate of the Efimov transition. We may compare this
extrapolated value with the previous RG-based estimate of
yE = 2.324 02. Finding the zeros for the two-chain system is
easier than for the three-chain system. Since the three-chain
equation holds both the variables y and w, finding zeros from
the three-chain RG relation is tantamount to generating the full
relation for Qn. This is because one needs to keep w at all the
intermediate values of n and then, at the desired value of n, w is
to be set to 1. One sees the difficulty of the Efimov physics even
though w = 1. It is tempting to simplify the recursion relation
at the cost of some approximation. We set w = w′ = 1 to get
a renormalized y ′ that describes the three-chain system. Such
a relation follows from Eq. (5), as

y ′3 = (b − 1)(b − 2) + 3(b − 1)y2 + y6

b2
. (25)

The zeros obtained from Eq. (25) spread out in a “Milky Way”
over a region in the complex plane of y. The spread makes it
difficult to make an estimate of the real-axis limit point, but
one may use the width to put a bound on the Efimov transition
point [see Fig. 7(c)].

(c)(a) (b)
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FIG. 7. (Color online) Plot of zeros in the complex y plane for b = 4. (a) Zeros of Qn(y,1), when n = 6, (b) a finer scale of (a) near the real
axis, and (c) combined plot of zeros. The bigger black circles are the zeros closest to the real axis (i.e., with smallest imaginary part) obtained
from Qn(y,1) for n = 2, . . . ,6 and the solid (red) straight line is a fit to these. The “Milky-Way”-like region shows the distribution of zeros
from Eq. (25) on which we superpose the positive quadrant of (a) shown by the small black dots.
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FIG. 8. (Color online) (a) Zeros of Qn(yc,w) in the complex w

plane for b = 9. The stable fixed point w = ws is shown by a black
circle. (b) The solid red line is given by Eq. (23) and passes through
the zeros shown by the triangles, with ν from Eq. (29) and c = wE .

D. Efimov DNA at yc = b − 1: b = 9

A study along the critical threshold of the two-chain melting
is quite interesting. No real fixed point for w exists for Eq. (5)
when b is in the range 2.303 � b � 8.596 along the y = yc

line. For y = yc, the single parameter RG relation is

w′ = (b − 2) + 3(b − 1)2 + (b − 1)5w2

b2(b − 1)2
. (26)

The two fixed points for this case are given by Eq. (8). For
b = 9, these are

w = ws = 0.065 534 7 . . . (stable), (27a)

w = wE = 0.092 668 4 . . . (unstable). (27b)

The unstable fixed point, as the phase transition point,
determines the limit point of the zeros of the partition function
on the real axis. Hence it can be predicted that at the
two-chain melting point, by tuning w, a transition occurs
at w = wE , from the Efimov DNA to the critical state of
polymer pairs. Figure 8(a) shows the distribution of zeros of
Qn(yc,w) in the complex w plane. The set of these zeros
is a Julia set, separating the flows to the stable fixed points.
The stable fixed point in the inner region of the set is given
by Eq. (27a). The zeros near the real axis approach w = wE

linearly, following Eq. (23) with c = wE and ν of Eq. (29) as
shown in Fig. 8(b). A detailed discussion is given in the next
section.

V. EFIMOV DNA: RG FLOW AND
NUMERICAL EVIDENCE

To explore the robustness of the Efimov effect, we now
include a three-chain repulsive interaction along with the
pairwise attractive one. The three-chain interaction is attrac-
tive when w > 1 and repulsive for 0 � w < 1. For w = 0,
representing the hard core three-chain repulsive interaction,
three chains can never be on the same bond in this model.

A. b = 4

For b = 4 the RG phase diagram is shown in Fig. 9(a). The
solid red line is the separatrix connecting the pure three-chain
transition point (1,wc) to an Efimov transition point for w = 0.
Each point on the solid line represents an Efimov transition
point. In other words keeping w fixed, by changing y, we can
see a melting of a loosely bound Efimov DNA with no pairwise
binding.
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FIG. 9. (Color online) RG phase diagram in the y-w plane.
The arrows are to show the flow of the renormalized parameter
schematically. (a) For b = 4. The solid red curve and the dashed
curve represent the separatrices, where w flows to two different fixed
points on either side of the separatrix. The zoomed area near yc = 3
is shown in the inset. For w = 1, yE = 2.324 02 is the Efimov DNA
transition point. The filled circles are the Efimov transition points for
w = 0.5, w = 0.2, and w = 0 respectively, obtained from Fig. 10(a).
(b) For b = 9. Along yc = 8, there are two real fixed points given
by Eq. (27a). The solid (red) and dashed lines are the separatrices.
The filled circles are the Efimov transition points for w = 0.15 and
w = 0.12, respectively, obtained from Fig. 10(b).

The region enclosed between this separatrix (solid red line)
and the yc = 3 line is the Efimov region and (y,w) flows to
(1,∞). Below the solid red line is the high temperature zone
of denatured DNA, where RG flows are to (1,1). The region
to the right of the yc = 3 line is the two-chain bound state.
The area below the dashed curve, where the RG flow takes w

to zero when two-chain pairs are strongly bound, represents
a different state where one finds a three-chain bound state
but with no three-chain contact. The dashed line is then a
crossover line. It remains to be seen if under some conditions
this crossover line becomes a true phase transition line.

B. b = 9, yc = b − 1

The RG phase diagram is shown in Fig. 9(b) for b = 9.
In the diagram two separatrices (the solid red line and the
dashed line) meet at an unstable fixed point. The two fixed
points w = ws and w = wE are shown in Fig. 9(b). The
presence of any unstable fixed point reflects a continuous
transition along the two-chain critical line. Hence we can say
that by tuning the three-chain repulsive interaction parameter
or temperature in the repulsive zone a transition can be induced
in the Efimov DNA at the critical threshold of duplex binding.
The transition is from the Efimov state to the critical state
of pairs dominated by the three-chain repulsion. The Efimov
region is now restricted by a separatrix connecting the two
unstable fixed points (1,wc) and (yc,wE) and the critical line
yc = b − 1.

On the critical line at both the fixed points w = ws and
w = wE , y is a relevant variable (unstable in the y direction).
But y does not couple to w in the RG equation [Eq. (4)]. The
melting for w < wE would be similar to the pure two-chain
melting described by Eqs. (6) and (7). In the y-w plane, (yc,wE)
is a multicritical point where the line of first-order transitions
goes over to a line of critical points.
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FIG. 10. (Color online) The three-chain average energy per
monomer with y from direct computation. (a) For b = 4, the average
energy curves (marked 1, 2, and 3) with the fixed values w = 0.5,
w = 0.2, and w = 0 show first-order transitions. (b) For b = 9,
the average energy curves (marked 1 and 2) with the fixed values
w = 0.15 and w = 0.12 show first-order transitions. Curves (marked
3, 4, and 5) with the constant values w = 0.09, w = 0.065, and w = 0
show a continuous transition at yc = 8.

C. Data collapse

We now provide numerical evidence for the above RG-
based inferences. Exact numerical calculations of the average
energy and the specific heat are done by iterating the partition
functions and their higher derivatives for lattices of various
sizes for different fixed values of w. Figure 10(a) for b = 4
shows that at w = 0.5, w = 0.2, and w = 0, there are first-
order transitions. The transition points estimated from the point
of discontinuity are shown by the filled circles in Fig. 9(a).
They are on the separatrix and are the Efimov transition points
for the corresponding values of w.

The energy curves in Fig. 10(b) for b = 9 with w = 0.15
and w = 0.12 show first-order transitions. These transition
points are shown by the filled circles in Fig. 9(b). In contrast,
the energy curves (marked 3, 4, and 5) show continuous
transitions for w = 0.09, w = 0.065, and w = 0, respectively,
at yc = 8. This is consistent with the RG prediction of Fig. 9(b).

The energy and the specific heat curves are shown in
Figs. 11(a) and 11(b) for b = 9, y = 1 and in Figs. 12(a)
and 12(b) for b = 9, yc = b − 1. Also the corresponding finite
size scaling is shown in Figs. 11(c) and 11(d) for b = 9, y = 1
and in Figs. 12(c) and 12(d) for b = 9, yc = b − 1. The finite
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FIG. 11. (Color online) For b = 4. (a) The three-chain average
energy per monomer versus the corresponding Boltzmann factor for
chain length up to 226 when y = 1. The average energy shows a
continuous transition at w = wc. (b) The three-chain specific heat
(Cn) per monomer with the corresponding Boltzmann factor. (c) Data
collapse of energy. (d) Data collapse of specific heat.
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FIG. 12. (Color online) For b = 9. (a) The three-chain average
energy per monomer versus the corresponding Boltzmann factor for
chain length up to 226 when yc = b − 1. The average energy shows
a continuous transition at w = wE . (b) The three-chain specific heat
(Cn) per monomer with the corresponding Boltzmann factor. The
length dependence is shown in the inset. (c) Data collapse of energy.
(d) Data collapse of specific heat.

size scaling behavior of different thermodynamic quantities
is described by the length scale exponents. In analogy with
Eq. (6), the exponents to describe the three-chain transition
for y = 1 and yc = b − 1 at appropriate critical points are
given by

ν = ln 2

ln 2(b2−1)
b2

, (28)

ν = ln 2

ln

(
∂w′
∂w

∣∣
yc = b − 1
w → wE

) . (29)

Around a critical point one should see a finite size scaling.
Therefore the average energy and the specific heat obeying the
finite size scaling can be written in the forms

E ∼ L1/νf (L1/ν |w − w∗|), (30)

C ∼ L2/νf (L1/ν |w − w∗|), (31)

with appropriate ν and w∗.
In Figs. 11(c) and 11(d) we see that the average energy and

the specific heat scale as EnL
−1/ν
n and CnL

−2/ν
n , respectively,

when plotted versus |(w − w∗)|L1/ν
n with the ν of Eq. (28) and

w∗ = wc for y = 1, all the data collapse onto a single curve
for different lengths of polymers, where n = 6,7, . . . ,26.

Figures 12(c) and 12(d) show similar plots for the critical
line (yc = b − 1) with ν of Eq. (29) and w∗ = wE . Since the
specific heat diverges with increasing length, data collapse
is good for the case y = 1. The data collapse for the case
yc = b − 1 is not so good due to a smoother behavior of the
specific heat at the critical point. These establish the weak
criticality at w = wE .

VI. SUMMARY

To summarize, the RG relations and exact recursion
relations are used to study the three-chain system on a diamond
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hierarchical lattice. Our emphasis is on the Efimov-like state
exhibited by the three-chain system at or beyond the two-chain
melting, where no two chains are bound, and the nature of the
transitions. Fractal-like structures are obtained for the zeros of
the partition functions. These zeros, when they pinch the real
axis, determine the phase transition points. We find that all
the transition points obtained from RG flows, are in good
agreement with the zeros of the partition function on the
real axis. The Efimov transition point thus found strengthens
the prediction of Efimov-like phenomena for the three-chain
system. We have shown that the Efimov effect is exhibited by
a three-chain system even if there is a repulsive three-chain
interaction. A transition can be induced in higher dimensions
from the Efimov state to the three-chain critical repulsive state
at the melting of duplex DNA. The transition to this three-chain
critical repulsive state is continuous and obeys a finite size
scaling law with exponents obtained from the RG. In the (y,w)
phase diagram, (yc,wE) is a multicritical point.

Although the model studied in this paper is simplistic,
mainly to get exact results, still the denaturation transition
induced by bubble formation accompanied by diverging length
scales is the generic scenario for more realistic polymeric
models. The qualitative picture is therefore expected to be
valid for those models too. We await experimental evidence
for the existence of the Efimov DNA or the Efimov transition.
Again, the existence of such a state remains a challenge for
molecular dynamics and Monte Carlo simulations.
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APPENDIX A: RG RELATIONS

The configurations of the two-chain system on a motif of a
hierarchical lattice can be classified as two independent chains
or inherently two-chain configurations as shown in Fig. 2(c).
By summing over all configurations the partition functions
for n = 0 and n = 1 generation lattices for general b can be
written as [9,19]

Z0(y) = y, (A1)

Z1(y) = b(b − 1) + by2. (A2)

In RG decimation, 2b bonds of the n = 1 generation are
replaced by a single bond at the n = 0 generation. Then RG
demands

Z0(y ′) ∝ Z1(y), (A3)

where y ′ is the renormalized Boltzmann factor. With the free
chain boundary conditions (i.e., y = 1 implies y ′ = 1), the
proportionality constant of Eq. (A3) can be determined. The
RG transformation for the two-chain Boltzmann factor then
becomes

y ′ = b(b − 1) + by2

b2
. (A4)

The RG relation for the three-chain case can also be written
in the same spirit as in the two-chain case. The free chain

condition is that y = w = 1 implies y ′ = w′ = 1. It is also
to be noted that when three chains share the same bond the
contribution is y3w. The RG transformation for w is then

y ′3w′ = b(b − 1)(b − 2) + 3b(b − 1)y2 + by6w2

b3
, (A5)

where w′ is the renormalized value of w.

APPENDIX B: JULIA SET

The standard definition of a Julia set is the set of points on
the complex plane which flow to a fixed point (no divergence)
after a function, e.g.,

zn = z2
n−1 + c, (B1)

is repeatedly applied, where c is any arbitrary constant and
could be real or complex. Let us choose c = 0. The fixed
point solutions for c = 0 are z = 0,1,∞, where z = 1 is the
unstable fixed point. Here, for n → ∞, zn+1 → 0 when we
start with |z0| < 1 and zn+1 → ∞ when we start with |z0| > 1.
Therefore the unit circle |z| = 1 is the boundary between the
two stable fixed points z = 0,∞. The unstable point lies on
this boundary.

APPENDIX C: LIMIT CYCLE

For two successive generations Eqs. (5) will be

wn − wn+1 = f (wn+1) − wn+1. (C1)

But if the continuum limit is taken, Eq. (C1) can be written as

l
dw

dl
= −(w − w+)(w − w−) (C2)

at the critical line yc = b − 1, where l = ln L and L = 2n. For
complex w± = α ± iβ, the solution of Eq. (C2) is then

w = α − β tan β(ln l + θ ), (C3)

where θ is the integration constant. The above equation reflects
the periodicity of w in ln l with the property

w(l) = w(lλ) where ln λ = π

β
. (C4)

Here as l increases w approaches ±∞. This behavior can be
mapped into a limit cycle in the complex plane with a phase
factor defined by the equation

eiφ = w − w+
w − w−

. (C5)

With the help of Eq. (C2) and its derivative, φ will be

φ = β

α
ln l + φ0, (C6)

where φ0 is the integration constant.
Our model on the hierarchical lattice is a discrete model.

Certainly a limit cycle is obtainable from the RG relations in
the continuum limit, but it is not straightforward to do so in
the discrete case.
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