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Abstract.  The presence of a thermodynamic phase of a three-stranded 
DNA, namely, a mixed phase of bubbles of two bound strands and a single 
one, is established for large dimensions (d � 5) by using exact real space 
renormalization group transformations and exact computations of specific heat 
for finite length chains. Similar exact computations for the fractal Sierpinski 
gasket of dimension d  <  2 establish the stability of the phase in the presence of 
a repulsive three chain interaction. Although, for d  <  2, cooperativity factors 
for bubbles or noncrossing conditions are needed for the melting transition, 
the mixed phase may exist even in absence of those. In contrast to the Efimov 
DNA, where three strands are bound though no two are bound, the mixed 
phase appears at temperatures less than the two chain melting temperature. 
Both the Efimov-DNA and the mixed phase are formed essentially due to the 
strand exchange mechanism.
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1.  Introduction

DNA serves as a primary unit of heredity and contains all the information necessary 
for the living systems. This complex object is made of two complementary strands via 
Watson–Crick base pairing. One important milestone of modern biology was the dis-
covery of DNA double-helical structure [1]. The subsequent discovery of the triple helix 
has attracted great attention in medical sciences in view of its possible use in mapping 
chromosomes [2], inhibition of gene expressions [3, 4], gene therapy and gene targeting 
[5], inducing site-specific mutations (targeted mutagenesis) [6], interfering with DNA 
replication [7, 8] and other applications [9–11]. Triple helix is formed by a duplex bind-
ing with a single strand DNA, or RNA, or PNA, via Hoogsteen or reverse Hoogsteen 
hydrogen bonding for DNA [12, 13], or even by three RNA’s [14, 15].

Recent theoretical studies identified two dierent types of triple-stranded DNA 
(tsDNA) states near the duplex melting point. We may recall that melting of DNA is 
the phenomenon of the temperature induced separation of double-stranded DNA into 
single strands. One of the two states of tsDNA is a loosely bound state of three strands 
when no two are bound [16–21], and the other one is a phase of bubbles of pairwise 
bound and a single strand below the melting point. Both the states are stabilized by 
strand exchange of a single strand, and, in a sense, produced by the bubble fluctuations 
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near the duplex melting point. The former one, occurring at or above the duplex melting 
point on the unbound side, resembles the well-known Efimov eect [22, 23] in quantum 
mechanics, and is called the Efimov-DNA. It is not a pure phase, but a continuation of 
the three chain bound state. In contrast, the other phase, which we may call a bubble-
bound or a mixed phase, occurs on the bound side of a duplex, at temperatures below 
the duplex melting point. It was found as a genuine phase in low dimensional models 
with specially tuned interactions, and it diers from the Efimov-DNA as the chains are 
locally pairwise bound, but without any direct three chain contact.

Our aim in this paper is to explore the possibility of the bubble-bound phase, also 
called a mixed phase, in triple-stranded DNA in a wider context. We would call this 
a bubble-bound state as a single strand is always accompanied by a bubble of duplex 
DNA. This paper establishes the existence of the mixed phase for large dimensions, 
with d  =  5 as an example. As already mentioned, this phase was predicted from fractal 
lattice studies with d  <  2 [18]. We also study the role of three chain repulsion in these 
low dimensional system.

The Efimov eect originates from quantum fluctuations at the zero energy bound 
states of two attracting nonrelativistic particles. In a three particle system with pair-
wise critical potential, an eective long range 1/r2 attraction appears between two 
particles at distance r due to the wide excursions of the third particle in the classically 
forbidden regions [22–24]. Consequently, there are an infinite number of bound states. 
The original continuous scale invariance in the two particle problem changes to a dis-
crete scale invariance characterizing the bound states. Recent experiments have more 
or less established the quantum Efimov eect in ultracold atoms, though the existence 
of the infinite number of states at the threshold is yet to be established [25–27]5. The 
triplex bound state of DNA at the melting point of duplex DNA is the thermal ana-
logue of the Efimov physics where the denatured bubbles play the role of classically 
forbidden paths in quantum mechanics. A polymer scaling analysis, using hyperscaling 
at the dsDNA melting point, recovers the inverse-square interaction very naturally. 
Such arguments show the importance of the fluctuations of bubbles near the melting 
point and the polymer correlations along the single strands of the bubbles [16]. Since 
then, the Efimov physics has been explored in various other systems, like Efimov-
driven transition in many body systems [28], in quantum magnets [29], and in one 
dimensional systems under long range interactions [30]. Several studies have probed 
the importance of dimer-atom states near Efimov resonance [31], and possible topologi-
cal origins of the Efimov physics [32]. In this scenario, triple-stranded DNA appears 
as a classical testing ground for Efimov physics, which can also be enriched by other 
thermal eects and relevant interactions. In fact, the polymer scaling analysis [16] is 
one of the simplest ways to see the emergence of the long range interaction at the heart 
of the Efimov physics. The bubble-bound phase we study in this paper is an analogue 
of the atom-dimer phase in the quantum problem. In the polymer context, such states 
appear as a stable thermodynamic phase.

5 There are two aspects of the Efimov eect, the formation of the three particle bound state in the regime where 
two should not be bound, and the Efimov tower at the two-particle threshold. Of these, the tower is a consequence  
of the inverse-square interaction, but a bound state would be possible even for r−p interactions with p  <  2. We 
may add that in the context of DNA, Coulomb electrostatic repulsion is not important as it is screened out in 
ionic solvents.

https://doi.org/10.1088/1742-5468/aa75dc
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To study the DNA problem in various dimensions, we adopt the model of three-
stranded DNA on diamond hierarchical lattices and Sierpinski gaskets. These lattices 
are constructed in an algorithmic way by iterative replacement of bonds by a basic 
motif at each level. The discrete scaling symmetry makes these lattices aordable, in 
contrast to the regular lattices, for exact calculations or for renormalization group 
studies of dierent models [33–42]. Beside the understanding of complex physical sys-
tem, hierarchical lattices also exhibit a lot of interesting mathematics. The method 
of construction of the chosen lattices allows one to express the partition functions as 
recursion relations which either can further be iterated for physical properties in the 
large lattice limit, or can be used to decimate for renormalization group (RG) flows 
and fixed points (fp). RG is considered a valuable tool to understand the emergent 
behavior of systems with diverging length scales. By integrating out the small length 
scale fluctuations and rescaling, the same system is regenerated but with renormalized 
parameters. The consequent RG transformations lead to fixed points and separatrices. 
The fixed points represent states of the system where it shows scale invariance under 
rescaling of lengths. A given system need not be at the fixed points but from the flow 
patterns of the parameters, one identifies the transitions and the phases of the system. 
Moreover, the transitions can be corroborated by finite size scaling analysis of finite 
length thermodynamic properties, like specific heat or energy, which can be computed 
exactly in a recursive manner.

In low dimensions, DNA melting does not occur unless a bubble weight factor σ 
is introduced or noncrossing conditions are imposed [18, 21]. With such weight fac-
tors σ, called cooperativity factors, assigned at junctions of bound and unbound states 
(Y-fork), the Efimov state and the mixed phase were studied in dierent classes of DNA 
models on the Sierpinski Gasket of dimension df = ln 3/ ln 2. A detailed study of the 
Efimov state, using the fixed size transfer matrix approach, was done in [21] for 1  +  1 
dimensional Euclidean lattice without any three chain interaction. Here also the coop-
erativity factor was needed for a melting transition, but the occurrence of the Efimov 
state turned out to be sensitive to how the weights are assigned in a three chain system. 
A model of three noncrossing chains in 1  +  1 dimensions, without any cooperativity 
factor but with a three chain interaction, was solved exactly in [43]. The phase dia-
grams obtained in [43] resemble partly the phase diagrams reported here, but without 
any mixed phase. In this paper we focus on the mixed phase which occurs on the bound 
side of the two chain melting. As a continuation of the higher dimensional studies to 
d  <  2, we explored the possibilities of the existence of the bubble bound mixed phase in 
presence of a three chain repulsion for DNA models defined on the Sierpinski Gasket. 
Unlike d  >  2 cases, here, thanks to σ, a quantitative criterion for the Efimov-DNA can 
be constructed. This is one of the important results of this section.

The paper is organized as follows. In section 2 we consider a few simplified polymer 
models to study the Efimov state and mixed phase of DNA in a lattice of dimension 
d  >  2 using the renormalization group approach. The existence of a phase transition 
from the bubble-bound phase to the triple bound state is also shown by exact specific 
heat computations. In section 3 we discuss the model on a Sierpinski gasket of dimen-
sion d  <  2 by the method of exact calculation. Here we extend the analysis of [18] by 
including a three body interaction. In section 4 we conclude that the mixed phase is 
well established from both the lattice models.

https://doi.org/10.1088/1742-5468/aa75dc
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2. Model: d  >  2

The native base pairing interaction of a DNA is best expressed as directed polymers on 
a lattice. Each monomer of the strands represents a collection of bases interacting with 
the monomer of same sequence index of the other strand as per the Poland–Scherega 
scheme.

The melting of thee-stranded DNA has been studied by real space renormalization 
group which can be implemented exactly on hierarchical lattices of dimensions d  >  2 
[16, 17, 38, 39, 44]. The procedure to construct the lattice is to start with a single 
bond, at generation n  =  0, and then replace the bond by a diamond motif at n  =  1 (see 
figure 1).

The dimension of the lattice is defined by d = ln (λb)/lnλ, where λ is the length 
scale factor and b is the branching factor connecting the bottom and the top of the 
lattice as in figure 1. Parameter b can be tuned to change the dimension of the lattice. 
In our models, λ = 2.

Let us consider three directed polymers being laid from the bottom to the top of 
the lattice with no restriction on intersections and crossings. See figure 2. Two weight 
factors are needed for the DNA problem, viz., y(= eβε) associated with two polymers 
sharing the same bond with energy −ε and w(= e−βη), associated with three polymers 
sharing the same bond with an additional triplet energy η. The triplet interaction 
between monomers is attractive if η < 0, i.e. w  >  1 or repulsive if η > 0, i.e. w  <  1. Here 
β = 1/T  is the inverse temperature (with the Boltzmann constant kB = 1), and all the 
pairwise interactions are taken to be the same.

Since temperature T is absorbed in y and w, for given interaction energies among 
the chains we get a temperature curve in the y-w plane, parameterized by T. As a result 
the T dependence of a given set of chains, i.e. for fixed ε, η, can be obtained from the 
intersection of such a curve with the phase transition lines in the y-w plane. In view of 
this, we keep y and w to be independent variables. A combination variable X  =  wy2 is 
also found to be useful, as explained below.

2.1. Renormalization group equations

The RG recursion relations for the weights of the DNA are given by [16, 17] (see 
appendix)

y′ =
b− 1 + y2

b
,� (1a)

w′ =
(b− 1)(b− 2) + 3(b− 1)y2 + w2y6

b2y′3
.� (1b)

These are the RG relations with w′, y′ denoting the renormalized values. The important 
point is that the renormalization of the two chain interaction is not aected by the 
three chain interaction.

The melting point of a duplex DNA is described by the unstable fixed point (fp) of 
equation (1a) at yc  =  b  −  1 while the high temperature unbound phase is given by the 
stable fixed point at y = 1(T = ∞). These two chain fp’s lead to dierent possibilities 
for w as

https://doi.org/10.1088/1742-5468/aa75dc
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w∗ =

{
1, b2 − 1,∞ for y = 1

w−, w+,∞ for y = yc ≡ b− 1,� (2a)

with

w± =
b2 ±

√
4− 24b+ 32b2 − 12b3 + b4

2(b− 1)3
,� (2b)

being real for b  >  bc  =  8.56.... The dimension corresponding to this special bc is 
dc = ln(2bc)/ ln 2. Of these, the fp at wc = b2 − 1 for y  =  1 is the three chain melting 
point due to a pure three body interaction. These fixed points for w were discussed 
previously in connection with the Efimov-DNA. We focus here on a new set of fp’s that 
are found for low temperatures.

2.2. Zero temperature fixed points: a dilemma

In addition to the above-mentioned fp’s, there is a stable fp at y = ∞ that describes 
the bound state of the duplex at zero temperature. In this limit, the RG equation, 
equation (1b), for w leads to a dichotomy, depending on how the zero temperature is 

Figure 1.  Schematic diagram of an hierarchical lattice. At each stage a bond is 
replaced by a basic motif (shown for n  =  1). The left arrow denotes the direction 
of decimation of RG.

Figure 2.  Dierent configurations of a triple-stranded DNA are shown by the 
wavy lines on a d dimensional lattice for general b. (a) Polymers are separate 
on the path and the total number of configurations is b(b  −  1)(b  −  2). (b) Two 
polymers among three are together and the total number is 3b(b  −  1). (c) Three 
polymers are together and the total number is b.

https://doi.org/10.1088/1742-5468/aa75dc
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reached. For a straightforward y → ∞ limit, there is an unstable fp at w∗
∞ = b−1, sepa-

rating the two stable fp’s at 0 and ∞. As b  >  1, w∗
∞ < 1; it is in the repulsive region. 

It might appear to represent a dissociation of a three chain bound state into a single 
strand and a bound pair at zero temperature because of large three chain repulsion. It 
is to be noted that w  =  0 is like hard core repulsion, preventing overlap of three strands.

Curiously, the recursion relations also allow a dierent set of fixed points for the 
relative weight

X = wy2.

In the y → ∞ limit, the RG relation from equation (1b) becomes

X ′ =
3(b− 1)

b
+

1

b
X2, (y → ∞),� (3)

which has two fixed points

X± =
b

2
± 1

2

√
b2 − 12(b− 1).� (4)

These fixed points are real for b � bX = 2(3 +
√
6) = 10.898 9794.., or  

b < 2(3−
√
6) = 1.1.... Of these, the latter one is not meaningful and therefore not  

considered in this work, as b  >  2 is required for melting.
A given system follows a path w = yη/ε as T is varied, with w → 0 or ∞ as T → 0, 

depending on the sign of η. Therefore, the fixed point w∗
∞ = 1/b does not play any role. 

We instead focus on the zero temperature fixed points for X.

2.2.1.  Justification of X.  To see why X is important, when the three chain weight is 
wy3, let us calculate the energy of the states. If n2, n3 represent respectively pure two 
chain, and three chain (mutually exclusive) contacts per unit length, then n2 + n3 � 1. 
The total energy per unit length of DNA is

E

N
= −n2ε+ n3(η − 3ε).� (5)

On minimization,

E

N

∣∣∣
min

=

{
η − 3ε if η < 2ε for n2 = 0, n3 = 1,

−ε if η > 2ε for n2 = 1, n3 = 0.� (6)

The zero temperature transition occurs when η = 2ε with the energy parameters as the 
variables. The high η(> 0) phase consists of bubbles made of single chain and bound 
duplex, with nonzero entropy. Naively, if ∆S is the low temperature entropy dierence 
per bond of these two phases, one may combine it with equation (6) to determine the 
free energy dierence, ∆F = ∆E − T∆S. The continuity of the free energies at the 
transition, i.e. ∆F = 0 then gives the transition temperature as wy2 ∼ exp(−|∆S|).

The above argument works for a first order transition as we see from equation (6). 
However local bubble formation in the triplex bound state at low temperatures softens 
the system. The ground state energy is independent of dimensions. As a result, there 
are two mutually exclusive possibilities, viz., (i) no transition, or (ii) a continuous trans
ition. In absence of a good estimate of the bubble entropy, this simple argument does 

https://doi.org/10.1088/1742-5468/aa75dc
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not give a clue about the critical dimension for the transition (d > dX ≈ 4.46, where 
dX = ln(2bX)/ ln 2, see below), but, in any case, it justifies the emergence of the combi-
nation variable X  =  wy2 in the low temperature region, as noted in section 2.2.

X is relevant for a phase transition from a three chain bound state to a state of 
bubbles and single chain, while the three chain Boltzmann weight wy3 plays a role in 
melting phenomenon of the Efimov state. The bound-mixed transition is not a straight 
forward peeling transition where the three chain bound state may split into a pair and 
a single one. If it were so, the transition would be equivalent to a two chain melting 
case because at very low temperatures a pair would be more-or-less bound acting like 
a single flexible polymer (in this model). The equivalent pairing interaction would be 
then X  =  wy2, yielding a peeling-o temperature X  =  b  −  1. This is not the case, as we 
see from equation (4). A comparison of equations (3) with (1a) shows the dierence. 
The factor of 3 in the RG equation for X vis-a-vis equation (1a) for y shows the extra 
entropic contribution coming from strand exchange. This extra entropy makes the 
bubble-bound phase a unique phase for three-stranded DNA.

2.3. Phase diagrams for large b: y  >  yc

2.3.1.  From RG: separatrix.  The existence of real fixed points of X for y → ∞, allows 
us to draw the phase diagrams for b  >  bX. This range of b corresponds to d  >  4.446.... 
Based on equations (2a) and (4), we have three dierent situations. (i) b  <  bc  =  8.56..., 
(ii) bc < b < bX, and (iii) b  >  bX. In case (i), there are no fixed points for X for y � yc. The 
separatrix for the flow pattern in the y-w plane does not correspond to any transition 
since the three chain bound state is the only thermodynamic phase. Even though there 
is a pair of fixed point for y  =  yc in case (ii), still there is only the three chain bound 
phase. Note that the fixed point for w at w∗

∞ = 1/b goes to infinity when expressed in 
terms of X.

The situation is dierent for b  >  bX. The RG equations written in terms of X and 
z  =  1/y are

z′ =
bz2

(b− 1)z2 + 1
≈ bz2 +O(z4),� (7a)

X ′ =
X2 + 3(b− 1) + (b− 1)(b− 2)z2

b[(b− 1)z2 + 1]
,� (7b)

which can be used to study the region z < zc = y−1
c = (b− 1)−1. In this low temperature 

regime, the unstable fixed points at z  =  zc and z  =  0 are connected by a separatrix as 
shown in figure 3(a) for b  =  16. In this case of b  =  16, the fixed points are

X
(c)
± = 13.7184, 3.348 31, at y = yc,� (8a)

X± = 12.3589, 3.6411, at y → ∞.� (8b)
The global stable point X− represents the mixed phase. The local slopes of the sepa-
ratrix at the fixed points are consistent with the eigen-directions of the linearized ver-
sions of equations (7a) and (7b) around the fixed points. E.g. the horizontal tangent at 
X+ follows from the absence of any linear term in equation (7a) for small z. The flow 

https://doi.org/10.1088/1742-5468/aa75dc
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along the separatrix is towards the zero temperature (or infinite y) fixed point. That the 
separatrix represents the phase boundary is established below by an exact computation 
for b  =  16 which corresponds to d  =  5.

It is interesting to note that under strong repulsion, the critical state at y  =  yc is 
represented by a stable fixed point.

The behavior of specific heat as measured by the derivative of free energy with 
respect to w, is controlled by the fixed point X+ at z  =  0. The relevant exponents are [17]

ν =
ln 2

ln dX′

dX

∣∣
X→X+

=
ln 2

ln

[
1 +

√
1− 12 (b−1)

b2

] ,
� (9a)

α = 2− ν,� (9b)
where ν describes the divergence of an appropriate length scale, while α describes the 
specific heat as cw ∼ |X −Xm(z)|−α, Xm(z) being the transition point. The specific heat 
here is defined as

cw = − 1

Ln

w
∂

∂w
w
∂ lnQ

∂w
,� (10)

keeping z constant. By construction, cw is related to the fluctuations in the number of 
three chain contacts. Equation (9b) shows that there is a continuous transition for all 
d  >  4.46 but no divergence in specific heat for b  <  13.4, i.e. d  <  4.74.

2.3.2. Exact computation of cw.  The specific heat or the fluctuations in the number 
of three contacts can be computed exactly for finite lengths in a recursive scheme. The 
recursion relations for the partition functions are given by

Cn+1 = b2Cn,� (11a)

Zn+1(y) = bZn(y)
2 + b(b− 1)C4

n,� (11b)

Qn+1 = bQ2
n + 3b(b− 1)Z2

nC
2
n

+ b(b− 1)(b− 2)C6
n,

� (11c)

where Cn, Zn, Qn are the nth generation partition functions for single, double and triple 
strand cases. The initial conditions are C0 = 1, Z0 = y,Q0 = wy3. One may also write 
down the recursion relations for the derivatives. To be noted here that the three chain 
interaction w does not aect Z, and therefore the recursion relation for cw (equation 
(10)) is simpler than other derivatives.

By iterating the recursion relations, cw has been computed exactly up to n  =  27. 
See figure 3(b) where cw is plotted as a function of X for y  =  20. The strong growth 
with size is an indication of a diverging specific heat. A finite size scaling form suggests 
that all these data points can be collapsed on to a single curve if plotted as cwL

−p
n  vs 

(X −Xm)L
q
n, with p = α/ν, q = 1/ν, where ν and α are given by equations (9a) and 

(9b). Here, Ln = 2n. In this way Xm(z) can be estimated by using the data collapse mea-
sure of [45]. The data collapse is shown in figure 3(c). The transition point sits nicely 
on the separatrix in figure 3(a).
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for d  =  5 which corresponds to b  =  16. The two chain melting point is yc  =  15. The 
relevant region shown is for 0 � z � zc ≡ 1/yc. The solid curve is the numerically 
determined separatrix connecting the unstable fixed points at z  =  zc (green filled 
circle) and at z  =  0 (red filled square). The open pentagon (blue) represents the 
transition point obtained from the specific heat data in (b). (b) Exact specific heat 
cw for fixed y  =  20, as a function of X for three dierent lengths of chains, Ln = 2n 
with n  =  23, 25, 27. The size dependence indicates a diverging specific heat, and 
therefore, a continuous transition. (c) Finite size scaling: same data as in (b) 
but plotted with scaled variables, with p = α/ν, q = 1/ν and Xm = 12.770 12. This 
value of Xm at z  =  0.05 is shown by the open pentagon in (a).
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2.4. Summary for d  >  2

The end result is that for large d  >  dX, there is now a new phase, the bubble-bound 
phase or the mixed phase, at low temperatures in presence of three chain repulsion. A 
possible form of this three-stranded DNA with pairwise bound but without three chain 
contacts is shown by the schematic diagram in figure 4. In the mixed phase two are 
bound with one free over a certain length scale of the chain, but the strand exchange 
mechanism leaves no one free completely. This phase undergoes a continuous transition 
to a completely bound state, where the two chain attraction overcomes the weak local 
three chain repulsion.

For easy reference we show all possible states schematically in figure 5 for various 
dimensions. Three typical cases shown are (a) b  =  8 (i.e. d  =  4), (b) b  =  9 (d  =  4.1699), 
and (c) b  =  16 (d  =  5). Figure 5(a) is similar to the b = 4 (d = 3) case of [17]. The phase 
diagram displays the Efimov region and the mixed phase in addition to the conven-
tional bound and the unbound states. The Efimov-DNA has already been defined as 
the three chain bound state in situations where two chains would not have formed a 
bound state. The region in phase diagram where the Efimov-DNA may occur is called 
the Efimov region. For w  =  1, this region will be for y � yc up to the melting point of 
the triplex. A three-chain bound state is possible in the region w  >  wc even for y  =  1, 
i.e. in absence of any pair interaction (ε = 0). Combining these, the Efimov region is 
defined as the region in the 3-chain bound phase, where two chains would not be bound 
or the three not bound by w alone. In other words, this is a state where we would not 
see a bound state if either a chain is removed, or there is no two body attraction (i.e. 
ε = 0). The traditional Efimov case corresponds to w  =  1, y  <  yc. However, there is no 
well defined thermodynamic boundary for the Efimov region. Therefore drawing any 
boundary for the Efimov-DNA is subjective (see section 3.3 for a criterion applicable for 
d  <  2). It is fair to say that in the w-y plane, the Efimov region lies inside the domain 
of the triplex phase with w  <  wc (pure three chain melting at y  =  1) and y  <  yc (duplex 
melting). Such regions enclosing the Efimov states are marked as ‘Efimov’ in figure 5.

The mixed phase appears under the thin curve in figure 5(c) for b  >  bX. The trans
ition line between the unbound and the Efimov state is first order. The vertical melting 
line for the mixed to unbound phase and the mixed to bound phase transitions are both 
continuous. The transition from the mixed bubble-bound to the bound state is associ-
ated with diverging specific heat for high enough d.

We see that when there is an unstable fp at y  =  yc, the separatrix connecting 

(y = yc, X = X
(c)
+ ) and (y  =  1, X  =  wc) defines the Efimov line (represented by the thick 

line). Thus, d  =  4 is very special (figure 5(a)) among the three cases shown, where an 
Efimov-DNA occurs for any w at y  =  yc. In the intermediate range of dimensions, say 
4.0976...  <  d  <  4.446..., there is no mixed phase. The phase diagram (figure 5(b)) resem-
bles figure 5(c) but without the mixed phase and the curved transition line. Curiouser 

and curiouser here is the dierence in the melting behavior of the three chain bound 

state for X > X
(c)
+  and X < X

(c)
+ . For X > X

(c)
+ , the three chain bound state melts via 

the Efimov line, a first order melting [17], but for X < X
(c)
+ , there is a continuous melt-

ing identical to the two chain melting problem.
Let us list the lower critical dimensions (dlc) for the various phases (or transitions) 

we see in DNA:
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	 1.	dsDNA melting: dlc = 2.
	 2.	Pure tsDNA melting: dlc = 1.
	 3.	Melting of Efimov-DNA: dlc = 2.
	 4.	Existence of bubble-bound mixed phase: dlc = dX ≈ 4.446 (see below equation (4)).
	 5.	Critical melting of tsDNA (under repulsion): dlc = dc ≈ 4.0976 (see below  

equation (2b)).

3. Model: d  <  2

The mixed phase was observed in studies on low dimensional models [18], namely 
the Sierpinski gasket of fractal dimension d = ln 3/ ln 2 < 2. The melting in these low 
dimensional models is induced either by a noncrossing condition or by an extra weight 
for pair breaking, σ, called the cooperativity factor. This extra weight for pair-breaking 
(or better called Y-fork) allows the bubble entropy to be competitive with the bound 
state energy. It (σ) can be present in the noncrossing case too. The mixed phase was 
observed in several cases in the σ-y phase diagram. Our purpose is now to study the 
stability of the mixed phase with respect to the three chain repulsion. To appreciate 
its relevance, we mention two features, (i) the possibility of studying low d, and (ii) the 
possibility of investigating the role of σ. In fact, σ allows us to define an unambiguous 
criterion for the Efimov-DNA, resolving a diculty faced for the d  >  2 cases. By tuning 
σ to zero, bubble formation can be forbidden. As bubbles play a crucial role in Efimov 
physics, we may now compare the phase diagram of a nonzero σ with that of σ = 0. 
The region inbetween will be the Efimov region.

The Sierpinski gasket is constructed recursively. See figure 6 for generations n = 1, 2. 
The construction starts from a unit triangle, copies of which are glued together in the 
next generation as shown in the figure. This process is repeated iteratively in a self-
similar way with the motif generated at the nth step to form a bigger lattice at the 
next step. As the size increases, so do the holes, making the lattice an object of d  <  2.

Figure 4.  Schematic diagram of the mixed phase of three polymers. Per unit 
length of the chain two monomers are in contact leaving the third free. The pair 
interaction is shown by the vertical bonds. (a) Polymers cannot cross each other. 
(b) Polymers can cross each other. (c) Polymers cannot cross each other. Two 
bound and one free strands.

https://doi.org/10.1088/1742-5468/aa75dc
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There are only two phases three-strand bound state and unbound DNA, separated 
by the solid line. This is a first order transition line. The y  =  yc dotted vertical line 
is the two chain melting line and does not exist for the three chain system. The 
filled circle on the solid line at y  =  1, w  =  wc is the pure three chain melting point. 
The horizontal line w  =  1 corresponds to the traditional Efimov case with pure two 
body interaction. The Efimov region is the region enclosed by (i) the w  =  wc line, 
(ii) the solid line, and (iii) the vertical y  =  yc line. (b) The X-y phase diagram for 
b = 9 (d = 4.1699). The Bound phase now melts via the Efimov state for larger X, 
but at y  =  yc for smaller X. This phase diagram is similar to that in [43]. (c) The  
X-y phase diagram for b  =  16(d  =  5). There is now a mixed phase on the y  >  yc 
side. The thin lines denote continuous transitions, while the melting from the 
Efimov side (thick solid line) is first order. The dotted line, a relic of the two chain 
melting, does not exist in the three chain system. The two continuous lines and the 
first order melting line meet at the multicritical point at X+ at y  =  yc.
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3.1. Chains on a Sierpinski gasket

The polymers are restricted to the non-horizontal bonds of a Sierpinski Gasket to keep 
DNA length same for all the strands. The DNA problem can be classified into two 
dierent cases according to the constraints on walks. In one case polymers cannot cross 
each other and in the other case polymers can cross each other at any length of the 
polymers. The triple-chain melting was discussed in [18], where weights σij and σijk 
were assigned at the vertex for bubble opening or closure, and y for sharing same bond 
by two strands. Here we define a more general model by assigning an extra weight w for 
three chains sharing a bond. As in section 2, if three strands share a bond, the weight 
is y3w. This model contains some of the models of [18] and it reproduces essentially all 
of the results discussed there, in appropriate limits.

3.2. Partition functions

To describe exactly all possible configurations of the three chain system, we need 
to introduce the following partition functions, a10, a11, a20, a21, a22, a30, a31, a32, a33. 
Dierent possible polymer walks are shown in figure 7. The generating functions in 
terms of sum over all the configurations for the non-crossing case can be written as

A10 = a210,� (12a)

A20 = a220,� (12b)

A30 = a230,� (12c)

A11 = a210 a11 + a211,� (12d)

A21 = (a10 a11 + a01 a20) a21,� (12e)

A31 = (a11 a20 + a01 a30) a31,� (12f )

A22 = a11 a221 + a220 a22 + a222,� (12g)

A32 = a221 a31 + (a10 a22 + a02 a30) a32,� (12h)

A33 = a22 a231 + a11 a232 + a230 a33 + a233,� (12i)

with the initial conditions

a10 = 1, a11 = 1, a20 = y, a21 = y, a22 = y2,

a30 = y3w, a31 = y3w, a32 = y4w, a33 = y6w2.
� (13)

Here we have set the bubble initiation factors σij = σijk = 1. This is a generalization of 
the TS1 case of [18].

The generating functions for the crossing case can be written as (rest are same as 
equation (12))

A22 = a11 a221 + 2a220 a22 + a222,� (14a)
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A32 = 2a221 a31 + (a10 a22 + a02 a30) a32,� (14b)

A33 = 3a22 a231 + 3a11 a232 + a230 a33 + a233,� (14c)

with the initial conditions shown in equation (13).
The total partition functions for the two chain and the three chain systems are 

given by

Z2 = A2
11 + A22,� (15)

Z3 = A3
11 + A11A22 + A33,� (16)

Figure 6.  Schematic diagram of a Sierpinski Gasket for generation n = 1, 2. The 
basic motif is shown in (a). In next step shown in (b) three triangles are glued 
together with a forbidden region at the center.

Figure 7.  Possible configurations for single, double and triple chain systems. All 
possible configurations are represented by the partition functions aij (i, j  =  0, 1, 2, 3).

https://doi.org/10.1088/1742-5468/aa75dc
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with their logarithms giving the free energies. The two terms in equation (15) are for 
the unbound and for bound chain configurations. The first term of the two chain equa-
tion dominating over the second one results in a phase transition. A similar procedure 
of comparison has been adopted for the three chain system. The unbound, the bound, 
and the mixed phases appear over a wide range of temperatures. The mixed phase is 
represented by the middle term of equation (16). To obtain the phase diagram in w-y 
plane we look for the convergence or divergence of the following ratios

r1 =
A22

A2
11

, r2 =
A33

A3
11

, and r3 =
A33

A11A22

.� (17)

The phase boundaries separating the phases can be obtained from condition ri  =  1, for 
any i  =  1, 2, 3.

3.3. Phase diagrams

3.3.1. Non-crossing case.  The phase diagram for the non-crossing case is shown in 
figure 8. All the three phases, three-bound, three-unbound and mixed, appear here. 
The vertical line y  =  yc corresponds to the two chain melting and it is also the melt-
ing line for the mixed phase. On the bound side, y  >  yc, there is a triplex-mixed phase 
transition line. The topology of the phase diagram is similar to figure 5(c), but here 
all are first order lines. The three transition lines meet at the triple point at yc. The 
dashed line, w  =  1/y verifies the results of TS1 model of [18]. TS1 is defined as the 
model of noncrossing walks with y12 = y23 = y31 = y, σij = σ, and w  =  1/y. A sequence 
of transitions

triplex ↔ mixed ↔ denatured

occurs in this case.

3.3.2. Crossing case.  For y  >  yc when chains are supposed to be in pairs, the three 
chain repulsion plays an essential role to produce the mixed phase by stopping three 
monomers contact at a time. For the non-crossing case each of the three phases (bound, 
unbound, and mixed) occurs for a wide range of temperatures whereas for the cross-
ing case there is no two chain melting at any finite temperature. See figure 9. This is 
because the bubble entropy in low dimensions is not enough to induce a melting. As 
a result the DNA strands remain bound at all temperatures for any arbitrarily weak 
short range pair attraction. Nevertheless the situation can be changed if the three chain 
repulsive interaction is incorporated. A transition from the bound to the mixed state is 
possible by tuning the three chain repulsive force among chains.

Furthermore transitions can be induced in the crossing case if we introduce the 
bubble initiation or closure factor σ in equation  (13), e.g. by considering the initial 
conditions a21 = yσ, a31 = y3wσ2, a32 = y4wσ2, as in the TS2 model of [18].

With σ = 0 when the bubble formation is suppressed, the chains will be either open 
or bound, i.e. once the chains are unbound reunion is not possible along the length of 
chains. This is the Y-fork model. In the Y-fork model the crossing and the non-crossing 
case do not have any dierence as the strand exchange is not allowed for σ = 0. We 
refer to [21] for discussions on the Euclidean lattice results.

https://doi.org/10.1088/1742-5468/aa75dc
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By equating the partition function of the bound state to the partition function of 
the unbound state, the duplex melting turns out to be

A11y
N = A2

11 =⇒ wy0 = A
1/N
11 ,� (18)

where y0 = yc(σ = 0). It is known that y0 = 1.264 08..... We may use the same logic for 
the triplex melting

wt =
A

2/N
11

y3
=

y20
y3

� (19)

This relation fits the numerically obtained points in figure 10, suggesting that the phase 
is a triple chain bound state and not necessarily the Efimov-DNA. This should be the 
case because with σ = 0 there are no bubbles. This point is further elaborated below.

Using similar logic as above, the triplex to mixed transition occurs at

wm =
A

1/N
11

y2
=

y0
y2

.� (20)

where N  =  2n+1 is the length of a polymer. The arguments used here are very similar to 
those in section 2.2.1, and show the roles played by wy3 and wy2 in dierent transitions.

All the above three transitions occur at the same temperature y  =  y0 if we choose 
w  =  1/y in a Y-fork model. It is also apparent from figure 10 that the three chain phase 
boundary and the mixed phase boundary meet at w0 = 1/y0 for σ = 0.

Bubbles are essential for the Efimov-DNA and the bubble-bound mixed phase. 
Therefore, Efimov-DNA may occur for σ �= 0 but definitely not at σ = 0. The triplex 
melting line wt given by equation (19) is from the tightly bound to the unbound phase, 
without any bubble. Incidentally, the Efimov state is a continuation of the three chain 
bound phase, and not a distinct thermodynamic phase; there is no phase boundary to 
protect it, except for melting. We may then identify the Efimov region for 0 < σ < 1 
as the region w  <  wt up to the corresponding melting line and y < yc(σ) (see the inset 
in figure 11). This is the region where the bubbles contribute most. A similar situation 

Figure 8.  Phase diagram in the w-y plane for the non-crossing case with σ = 1. 
The Efimov (red) and the mixed (blue) phase boundaries intersect the vertical line 
y  =  yc. The dashed line is for the TS1 model.
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arises in the context of the bubble-bound mixed phase, whose existence is also at stake 
at σ = 0. In the σ = 0 limit, a transition takes place at wm (equation (20)) to a phase 
where any two will be bound throughout and one free (see figure 4). Absence of bubbles 
strictly implies no strand exchange. As a result, the transition is actually like peeling o 
one chain from the three. We may still call this a mixed phase by continuation because, 
by symmetry, any one can be unbound.

The projection of the w-y-σ phase diagram for the crossing case is depicted in 
figure 11 for dierent σ (=1, 0.8, 0.6, 0) in the w-y plane. The melting lines for the three 

Figure 9.  Phase diagram in the w-y plane for the crossing case with σ = 1. Two 
chain melting is at y  =  yc. The phase boundary is for the transition from the bound 
to the mixed phase. No two chain or pure three chain melting at finite temperature 
as yc  =  1 (wc = y−1

c = 1).

Figure 10.  Phase diagram in the w-y plane for the crossing case with σ = 0. All the 
phases occur in this case like in the non-crossing case. Three phases (three-chain 
bound, all bound and the mixed phase by continuation) coexist at the triple point 
(y0  =  1.264.., w0 = y−1

0 ).
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chain and the mixed phase meet at wt(σ) = wm(yc) for any given value of σ. Model 
TS2 of [18] can be recovered exactly from this model. The curve w  =  1/y intersects the 
mixed phase boundaries for dierent values of (σ, yc(σ)). These data certainly reproduce 
the σ-y phase diagram of the TS2 model in [18].

4. Conclusion

The role of dimensionality of the underlying lattices on the emergence of the mixed 
or the bubble-bound phase of a triple-stranded DNA has been the focus of this paper. 
The mixed phase was first discussed in the context of a class of DNA models on low 
dimensional fractal lattices, where a melting transition is induced by a bubble initiation 
factor that suppresses bubble entropy. We showed that the phase remains stable even 
with three body repulsion. With native DNA pair interaction and three chain repul-
sion, we further showed that such a phase is thermodynamically stable on the bound 
side of a duplex if dimensionality is large (d  >  4.5). We established a diverging specific 

Figure 11.  Crossing case. Phase diagram in the w  −  y plane for dierent σ(=1, 0.8, 
0.6, 0). For each σ, the thin red line is the phase boundary for the unbound to the 
Efimov region of the triplex bound state, whereas the blue phase boundary (thick 
line) is for the bound to the mixed state. These two boundaries meet at the filled 
triangles on the vertical lines at the two chain melting y = yc(σ), which is also the 
melting line of the mixed phase. Filled triangles are the triple points. The dashed 
curve w  =  1/y intersects the mixed phase boundaries at ym(σ) (shown by filled 
circles), and reproduces the phase diagram of TS2 model [18] in the σ-y plane. 
The triangle and the circle coincide only at σ = 0 and σ = 1. Inset: in the inset the 
shaded part denotes the Efimov region for σ = 0.6. This region is enclosed by two 
Efimov transition lines corresponding to σ = 0 and σ = 0.6. See text.
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heat for d  =  5 from both renormalization group and finite size scaling analysis of exact 
computations.

When a bubble-bound phase exists, the topology of the phase diagram remains the 
same for both higher and low dimensional models. However the nature of the transitions 
are dierent. In general, the transition from the mixed bubble-bound phase to the three 
chain bound state is continuous for d  >  4.5, but for d  <  2, all transitions are first order.

A few comments on dimensionality are in order. The evidence is that the mixed 
phase is present for d  <  2 and for d  >  dc  =  4.46.... This is true even at σ = 1 (figure 9). 
We may generalize to say that there exists a d* such that the mixed phase is seen for 
d  <  d* and d  >  dc, with ln 3/ ln 2 < d∗ < ln 6/ ln 2, although we cannot evaluate d* in 
the present study. This ‘reentrant’ behaviour as a function of d is probably associated 
with the dierent order of the mixed-bound and mixed-unbound transitions seen in 
dierent dimensions. This calls for more elaborate studies on systems with both σ and 
w in spaces whose dimensions can be tuned finely over a bigger range than studied here.

Appendix. Derivations of equations (1a) and (1b)

The RG recursion relation for double stranded DNA is given by

Zn−1(y
′) ∝ Zn(y),� (A.1)

where left (right) hand side of the equation is the (n  −  1)th (nth) generation partition 
function, following the decimation as shown in figure 1. The partition functions are 
given by equations (11a) and (11b). The RG transformation for y and its renormalized 
value y′ can then be written as (see figure 1)

y′ = A{b(b− 1) + by2},� (A.2)

with the constant A determined by the condition that infinite temperature case cor-
responds to y = y′ = 1. This gives A  =  b−2. Hence equation (1a).

The RG transformation for the three-chain case can also be written in the same 
spirit as in the two-chain case as

Qn−1(y
′, w′) ∝ Qn(y, w)� (A.3)

but with y′ determined by equation (A.2). For the single step of figure 1, writing the 
renormalized three strand weight as w′y′3, we get

w′y′3 = B{b(wy3)2 + 3b(b− 1)y2 + b(b− 1)(b− 2)},� (A.4)

with B to be determined such that at infinite temperature, y  =  w  =  1, we get y′ = w′ = 1. 
This sets the proportionality constant as B  =  b−3. Hence equation (1b).
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