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Softening of DNA near melting as disappearance of an emergent property
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Near the melting transition the bending elastic constant «, an emergent property of double-stranded DNA
(dsDNA), is shown not to follow the rodlike scaling for small-length N. The reduction in « with temperature
is determined by the denatured bubbles for a continuous transition, e.g., when the two strands are Gaussian,
but by the broken bonds near the open end in a Y-like configuration for a first-order transition as for strands
with excluded volume interactions. In the latter case, a lever rule is operational, implying a phase coexistence

although dsDNA is known to be a single phase.
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I. INTRODUCTION

DNA stores the genetic information in its base sequence,
but its functionality relies on its physical properties, like
stiffness and length. The elastic energy of DNA packaged
in a viral capsid helps in the injection process [1,2], ener-
getically costly bends of DNA provide sites for attachments
of transcription factors and other enzymes [3-5], while the
melting of DNA is a vital step in polymerase chain reac-
tions [6]. The topological constraint when double-stranded
DNA (dsDNA) is viewed as a ribbon leads to two indepen-
dent elastic constants for twist and bend [7-10]. Both these
elastic constants vanish on the melting of dsDNA [7,11,12],
when the ribbon picture is lost, showing that the stiffness
is an emergent property of the bound DNA [13]. However,
how this emergent behavior goes away at melting is still un-
known. Here we determine the fundamental relation between
the emergent bending elastic constant « and the fraction of
broken base-pairs that drives the melting transition. We show,
by simulating long semiflexible DNA, that the relation is
dependent on the order of the melting transition and involves
different physical mechanisms.

For a continuous melting transition, as for Gaussian chains,
a renormalized semiflexible chain picture is valid where the
effective « for long chains is renormalized nontrivially by
the fraction of broken bonds. Melting is found to occur ho-
mogeneously along the chain, but a wormlike chain model
is applicable only at low temperatures where there are no
broken pairs. In contrast, in the presence of excluded volume
interaction, when melting is first order, the effective « is
found to be determined by a phase-coexistence-type picture
with the reduction in rigidity coming mainly from the large
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fraction of broken bonds near the open end of dsDNA. It is
not homogeneous melting, and a phase coexistence is at odds
with the conventional mechanism of bubble-induced melting
transition.

The stiffness of dsDNA is expressed in terms of the per-
sistence length [8-10] [, ~ 50 nm, which is much larger
than that of highly flexible individual strands of DNA (ss-
DNA) with [, ~2 nm. Generally, [, at temperature 7 is
defined on dimensional grounds from the bending elastic con-
stant as [, = « /T (the Boltzmann constant kg = 1), whereas
the intuitive picture that a semiflexible polymer behaves
like a rod for lengths less than [, follows from the decay
length of the tangent-tangent correlation function, C(i — j) =
(t; - t;) ~exp(—l|i — jlb/l,), where t; is the tangent to the
space curve at monomer i as shown in Fig. 1, b is the bond
length, and (...) denotes the ensemble average. These two
definitions match for a wormlike chain which is Gaussian
at long length, but not in the presence of excluded volume
interaction when C(i, j) decays as a power-law without any
typical length [8,14,15].

As the base-pair energy ~6-9 kcal/mol, thermal fluctua-
tions lead to a cooperative breaking of the hydrogen bonds
in the long-length limit. This is the melting of DNA [16].
The broken base-pairs may be distributed along the chain or
may be near the open end (called the Y-fork) when one end
of DNA is kept fixed. A consecutive set of broken pairs is
called a bubble (see Fig. 2). This bubble-mediated transition
is the usual Poland-Scheraga scheme of thermal melting of
DNA [17]. The fraction n. of unbroken bonds plays the role
of the order parameter for the transition, viz.,n. # 0 (n. = 0)
in the dsSDNA (denatured) phase, and depending on the nature
of the interactions, the melting transition can be continuous or
first-order [17,18]. As the ssDNA’s are flexible, the bubbles
act as hinges for the rigid segments [7,19-24], and, addi-
tionally, bubbles have biologically important roles [25,26].
The extra flexibility introduced by the bubbles leads to a
downward renormalization of the elastic constant as shown
schematically in Fig. 1, provided the bubbles are distributed
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FIG. 1. Schematic diagram of renormalization of the elastic be-
havior of dsDNA due to bubbles. For Gaussian chains, tangents t;
and t; can be used to define a persistence length (see text). Can one
define a persistence length for configurations with bubbles?

homogeneously along the chain. The loss of stiffness of
dsDNA is gradual over a range of 20 °C near melting [11],
but the validity of the homogeneous picture and the func-
tional form of the temperature dependence are not known.
There is also a problem in defining C(i, j) or a “ribbon” at
higher temperatures for configurations dotted with bubbles
(Fig. 1), unless one coarse-grains at the scale of the bubble
size.

Why is dsDNA stiff when individual strands are not and
how does that stiffness go away with the increase of tem-
perature? These questions may resemble similar ones about
the rigidity of crystals. However, there are fundamental dif-
ferences between the two cases. For a solid, rigidity is also
an emergent phenomenon, where the shear modulus, im-
parting rigidity, is a consequence of continuous-symmetry
breaking [13]. There is no such scenario for «, especially
because it is not the response function associated with any
order parameter, like n.. Instead, the bound phase allows a rib-
bonlike description for which topological arguments [7], e.g.,
the Célugdreanu theorem, are applicable. The twist elastic
constant, related to the helical nature, and the bending elastic
constant, related to the entropy of DNA [16], are relevant
for dsDNA, but not for ssDNA or the denatured phase where
the ribbon picture is lost. Of the two elastic constants, « is a
large-scale property that should be insensitive to microscopic
details, while the twist constant is dependent on the details
of the structure. It is, therefore, possible to model the re-
duction of « through the changes in the semiflexible bound
structure mediated by the broken base-pairs. The occurrences
of bubbles, as in Fig. 1, may seem to invalidate the ribbon
picture, even raising questions on defining a tangent vector t.
These issues may be alleviated by coarse-graining on a scale
larger than the bubble size (Fig. 1) restoring the ribbon picture
with renormalized elastic constants. With this in mind, we use
coarse-grained models for finite-length DNA, which are im-
portant from an experimental point of view, since experiments
are performed upon finite systems.

This paper is organized in the following manner. In Sec. II
the coarse-grained models are defined. Two models, viz.,
a Gaussian chain model and chains with self and mutual
avoidance, both on a cubic lattice are defined there. The
connection of the elastic constant with appropriate sizes via
fluctuation theorems are also elaborated there. Section III
gives the details of the simulation method of developing
PERM for dsDNA. Section IV discusses the drastic differ-
ence in the behavior of rigidity when excluded volume
interactions are taken into account. Section V concludes the
paper with some analogies between DNA melting and crystal
melting.
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FIG. 2. (a)—(c) Possible configurations for two successive bonds.
(a) Two bound bonds with three contacts and angle 6 = 0. (b) Open-
ing of a fork. (c) Same as panel (a) but with a bend (8 = 7 /2),
costing energy. There are reverse steps for Model 1. E. and E,
represent total contact and bending energies. (d) Identifying bubbles
and the Y-fork.

II. MODEL AND QUALITATIVE DESCRIPTION

Two different models are considered here, viz., I and
II, on a cubic lattice. In model I, the strands are Gaussian
chains, while in model II, we incorporate both self and mutual
avoidance. The binding of the chains is allowed by an attrac-
tive energy —e(e > 0) whenever a monomer of one chain
is in contact with a monomer of the other chain provided
both monomers have the same position along the chain. This
ensures the native base-pairing of DNA. In each case, we
consider two varieties of polymers, viz., (i) flexible polymers
where both the single and double strands are flexible, and (ii)
semiflexible dsDNA where only the bound parts are semiflex-
ible but the bubbles consist of flexible chains. The semiflexi-
bility in dsDNA is incorporated by penalizing a bend of two
successive paired bonds with energy E;, = —n cos 6, where 6
is the angle between two bonds and n(> 0) is the bending
energy constant [see Figs. 2(a)-2(c)]. Whereas a bent ds con-
figuration as in Fig. 2(c) is energetically favorable compared
to Fig. 2(b), the latter is a source of additional entropy. Conse-
quently, bubbles [Fig. 2(d)] are to be expected at higher tem-
peratures vis-a-vis bent ds chains at lower temperatures [27].

To explore the elastic behavior, a force F is applied at
the end point r;(N) of each strand i = 1 and 2 of length N,
keeping the other ends fixed. The additional force-term in the
Hamiltonian is Hr = —F - X, where X = r{(N) + r>(NV). The
elastic response can be defined from a tensorial quantity x as

Xij = %—;’), with the subscripts i and j denoting the Cartesian

components. In the zero-force limit (F — 0), isotropy
can be used to define the elastic constant as & = Tr[x],
which can be related to the zero-force fluctuations of x as
k = kgTk = ((x?) — (x)?), where the averaging is done with
the F = 0 Hamiltonian. This fluctuation relation allows us to
determine « without any external force. As we see, the bend-
ing elastic constant is not the response function associated
with n. and so the conventional critical behavior of response
functions in phase transition problems are not applicable here.

Naively, one may interpret i as the variance of the end-
to-end distance of the center-of-mass (c.m.) chain X(i) =
[ri(i) + r2(i)]/2. Therefore, the N dependence of i is given
by the size R of the c.m. chain, with a scaling behavior
R ~ NV. However, the c.m. chain is not expected to behave
like an ordinary polymer, except in special situations, but in
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case it does so, the size exponent v = 1/2 for a Gaussian chain
and v ~ 0.588 for a self-avoiding walk (polymers in good sol-
vent). For a semiflexible Gaussian chain, the crossover from
R~ NforN ~1I,toR~ VN for N > 1, is given by [29]

!
/z=4R2=ssz{1 -5 —e‘N/’/’)}, ()

with [, as the persistence length. Here both /, and length N
are measured in units of bond lengths which are set to 1. This
formula is used often for DNA when the c.m. chain more or
less coincides with the strands, i.e., in the absence of bubbles.
In general, the temperature dependence of & /N2’ would show
us how DNA softens as the melting point 7, is reached.

In terms of the individual coordinates,

(ri(N) - I‘z(N))c>
(r(N)?)c

is determined by the interchain correlation. In the per-
fect bound state with no bubbles, r{ =r;, and we get
& /(ri(N)?). = 4, while in the high-temperature phase, if the
two chains remain uncorrelated, then & is equal to the sum of
the individual modulus. Then, &/ (r;(N)?). = 2 for Gaussian
chains. The ratio is expected to be >2 for strands with ex-
cluded volume interactions because there will be interstrand
correlations for long chains as dictated by the second virial
coefficient (or overlap concentration ¢*) [30]. Moreover, in the
bound phase, individual strands also acquire the stiffness of
the state, punctuated by bubbles and the Y-fork. Therefore, the
microscopic stiffness would no longer be the sole parameter
determining the overall elasticity of the chain (Fig. 1). In our
study, it is assumed that the bending rigidity is isotropic, i.e.,
the bending energy only depends on the angle by which the
polymer is bent locally and does not depend on the direction of
bending, although it has been shown that the bending rigidity
in the direction of the grooves is essentially smaller than in the
perpendicular direction [12,31]. To characterize the transition,
we computed the fraction f;, of broken bonds in the bubbles
and fy, the fraction in the Y-fork-like region. The transition
temperature was determined from the specific heat curves (see
Appendix A). In all cases, the order of transition is found to
be independent of the value of stiffness 7.

& =2(r (N)2)6<1 + (2)

II1. SIMULATION ALGORITHM

For simulation, we have used the zero parameter version
of the FLATPERM (Pruned and Enriched Rosenbluth Method)
which generates equilibrium configurations through cloning
and pruning [18,32]. Both the strands are grown simulta-
neously by considering all the joint possibilities of taking
steps together. The weighted atmosphere at each step, i.e., the
number of free sites available for the next step, serves as the
weight of that step w,, and the weight of a configuration is
the successive multiplication of the weights of the previous
steps Wy = ]_[Invz1 w,. For example, for the first step, each
of the chains has 6 different possibilities to step into. Of a
total of 36 possibilities, there are 6 possible ways of making
a contact; thus the local weighted atmosphere becomes w; =
30 + 6 exp (¢ /kpT). Similarly, the weight for the second step
including a bend and excluded volume interaction is w, =
4exp(e/kgT) + exp(e/kgT ) exp(n/kgT ) + 20. For Gaussian

strands, reverse steps in the ds mode with Ej, = n are consid-
ered with an appropriate change in w,. The partition function
for chain length n is estimated by averaging over the weights
of configurations of length n with respect to the number of
started tours where a tour is a set of chains generated with
a rooted tree topology between two successive returns to
the main() function. An average over 107 tours was used
in this study for chain lengths up to 2000 and error bars
were estimated on the fly (see Appendix D). Pruning and
enrichment is done continuously depending on whether the
ratio of the weight of the particular configuration W, and
the partition function estimate Z, for length n, r = W, /Z, is
smaller or greater than 1, respectively. For ratio r < 1 the
configuration keeps on growing with probability r and is
pruned otherwise. While for » > 1 we make ¢ distinct copies
with ¢ = min(|r], a,), where a,, is the total atmosphere (a, =
a; x ap), and each copy with weight %Wn. And for r =1
the configuration continues to grow without any pruning or
enrichment. The input parameters for the simulations consist
of the temperature T, the contact energy €, and the bending
energy constant 1 with € = kg = 1 throughout the simulation
unless otherwise specified. To translate AT in our simulation
to a variation in °C in experiments, one requires a proper
scaling, e.g., € can be estimated by comparing our 7, to the
experimental melting temperature.

IV. RESULTS AND DISCUSSION

If dsDNA behaves as a semiflexible chain, then for small
N, & ~N?as a rigid rod, with a crossover to Gaussian or
self-avoiding walk (SAW) like behavior for large N. No rod-
like behavior is seen for n = 0. Figure 3(a) shows that for
model I, a tightly bound DNA (without bubbles) at €/T =
10, n/T =3 (kg = 1) satisfies Eq. (1) with [, = 5.2, consis-
tent with the estimate of /, from a transfer matrix calculation
(see Appendix F). For model II also, at low temperatures, it is
possible to define a rodlike behavior [see Fig. 3(b)]. However,
the crossover description fails near the transition because of
substantial contributions from f, and/or fy. In the log-log
plot, the slope for small lengths is not consistent with the rigid
rod expectations. For T close to 7., DNA is neither rodlike nor
completely flexible for small chain lengths. We call this region
soft DNA. It follows that though an effective elastic constant
can be defined, persistence length from tangent correlations
may not have any special significance.

Model I. For Gaussian chains, the melting transition
is continuous at T, =1.336£0.006 for n=3 and
T. =0.928 £0.006 for n =0. Below melting, bubbles
develop, and the fraction of broken bonds, 1 — n,, increases
with temperature continuously to 1 as 7 — T,— for N — oo.
For finite chains, there are also broken bonds at the open
end, but the fy vs T curve sharpens into a step function
for N — oo. Stiffness on the ds segments has the effect of
suppressing the bubble formation at lower temperatures, but
the continuous transition remains intact. Figure 4(a) shows
the fractions for n = 0 and n = 3.

These results are consistent with the Poland-Scheraga pic-
ture of DNA melting, in which most of the broken bonds are
in the bubbles, while the fraction in the Y-region increases
for T > T.. As the bubbles act like hinges, the decrease of
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FIG. 3. Log-log plot of /N vs N. (a) Model I for flexible
n = 0 and semiflexible chain n = 3, and different AT =T —T..
The curve ¢(x) is a fit to the data points for € /7 = 10,n/T =3
using Eq. (1) with [, as a parameter. (b) Model II for flexible n = 0
and semiflexible chain n = 3, and different AT =T — T.. ¢(x) is
a straight line of slope (2 — 2v) representing the rodlike scaling
regime. No other data sets show the initial slope of ¢ (x).

the elastic constant with 7 can be attributed to the broken
bonds, thereby renormalizing the effective elastic constant as
in Fig. 1. As melting is continuous [see Appendix A and
Fig. 4(a)] the change in the elasticity near melting is ex-
pected to be a power law 8k = i /N — (K /N)y ~ nl for T —
T.— [33]. The order parameter has the asymptotic behavior
n.~ (T —T.)/ TL,Iﬂ, so that the temperature dependence of
the elastic constant is éx ~ |(T — TC)/TC|‘1ﬂ . To extend the
range of the asymptotic form valid for T — T, we make an
ansatz,

1
NI? = —AI[(I — I’l?,)a — 1] + 2 (model I),

3)
where At is the amplitude, and the exponents ¢ and a take
care of the softening by the bubbles. The values of g = 1 and
a = 0.1 are found to give a good agreement of the data shown
in Fig. 4(b) when the values of f;, and fy from Fig. 4(a) are
used. The same picture remains valid for both = 0 and n =
3. We find Af = 9.5 for n =0 and A = 98 for n = 3. This
proposed model for elasticity suggests that the rigidity follows
the order-parameter curve as the melting point is approached
from the bound side.

FIG. 4. Bubble, Y, and « for n = 0 and 3 for Model I (continuous
transition). (a) Bubble fraction f,, Y-fraction fy, and total fraction
1 —n. vs (T — T.). See text for the values of 7. (b) Rescaled elastic
modulus (¢ /N?") vs (T — T.), with v = 1/2. Equation (3) is shown
by solid lines, ¢; for n = 0 and ¢, for n = 3, with n. from panel (a).
Inset in panel (b): Plot of (i /N) — 2 vs (1 — n.)*! for n = 0 and 3.

Model I1. For self and mutually avoiding chains, the melt-
ing transition is first-order at 7, = 1.536 £ 0.006 for n =3
and 7, = 0.745 £ 0.006 for n = 0. The temperature depen-
dencies of f;, and fy are shown in Fig. 5(a), while that of
(k/N?') is shown in Fig. 5(b), where v takes into account
the effect of excluded volume interaction [see Eq. (2)]. There
are significant differences from model I. Close to melting,
most of the broken bonds are in the Y-fork, the fraction in the
bubbles remains more or less the same. Consequently, Eq. (3),
encoding Fig. 1, is not meaningful, but instead an empirical
equation, reminiscent of the lever rule in phase coexistence,
is found to describe the data. We see a deviation from the
Poland-Scheraga picture. Our proposed model for rigidity in
this case is based on the superposition of the elastic constant
for the bound and the unbound Y-part in the proportion of
(I—fy): fras

R/INY = —Aqp ¥ + ®R/N?), (model I),  (4)

which gives (k/N?"), of the bound phase for fy — 0 and
(k/N?'), of the unbound phase for fy — 1 with A=
(k /N?'), — (& /N*"),, the two limiting values were adjusted to
get a good fit with the values of fy taken from Fig. 5(a). These
points are also shown in the figure. The bubble contribution
in the bound part is found to be very small. The temperature
independence of the elastic constant on the bound side away
from melting is consistent with the experimental results of
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FIG. 5. Same as in Fig. 4 but for Model II with first-order
transition and v = 0.588. (a) fp, fr, 1 —n. vs (T —T.). In panel
(b) v =0.588 has been used, and Eq. (4) is shown by solid lines,
¢, for n = 0 and ¢, for n = 3, with fy taken from panel (a). Inset in
panel (b): Plot of (i /N'17¢) — 2.4 vs fy for n = 0 and 3.

Ref. [11]. The major implication of Eq. (4) is the coexistence
of the bound and the unbound state, although dsDNA is a
single phase.

We note that the bubble fraction f;, is lower for the semi-
flexible models [Figs. 4(a) and 5(a)] and is a manifestation
of the coupling between bubble formation and DNA bending
energetics (see Fig. 2). For stiffer bonds, it becomes more
energetically favorable to maintain a bound state and make
a straight move than to form a bubble to become flexible; in
other words, bending energy of a semiflexible DNA reduces
the possibility of bubble formation. This tendency to maintain
the bound state decreases the entropy of the system com-
pared to the n = 0O case, thereby providing thermal stability
to the bound phase. Thus the melting temperature is higher
for nonzero 7, and the transition becomes sharper. However,
the bubble size distribution and thus the average bubble length
near the transition remain unaltered by stiffness.

V. CONCLUSION

We conclude by comparing the melting picture of DNA
with that of a crystal. Two main contenders of the mechanism
for the melting of a crystal are the homogeneous melting via
the formation of defects, topological or nontopological, and
a surface melting [34,35]. If the defects form anywhere in
the bulk crystal due to thermal fluctuations, the ordering is
destroyed with a reduction of the rigidity. The melting pro-
cess is then homogeneous. A different possibility is a surface

melting where a wetting liquid layer is formed on the surface
and the thickness of the layer diverges at the melting point.
We do see analogs of these two processes in DNA melting,
though distinctly different in detail and dependent on the
order of the transition. For continuous transitions, it is the
Poland-Scheraga scheme of homogeneous bubble formation
that modifies the elastic constant as in Eq. (3). For a ribbon
picture to be applicable, a coarse-graining as shown in Fig. 1
is necessary. The reduction in rigidity follows the temperature
dependence of the fraction of intact bonds. On the other hand,
with excluded volume interaction the melting process starts at
the open end, like surface melting, at temperatures below the
real melting temperature, forming the Y-region. The melting
process completes when the length of the Y-region diverges
(for infinite chains). In this scenario, for long chains, the den-
sity of broken bonds when expressed in terms of the length of
the bound segment, viz., f,/(1 — fy), should be independent
of N, as we found to be the case (see Appendix E). This
picture also suggests that if a dSDNA is capped by a sequence
of high binding energy (i.e., of a higher melting point), then
there is a possibility of superheating a dsDNA, when the
dsDNA state can be maintained in its bound phase above the
melting point. This nonequilibrium aspect is beyond the scope
of equilibrium simulations.
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APPENDIX A: ESTIMATION OF THE TRANSITION POINT

The transition (melting) point has been estimated from the
contact number fluctuation per base-pair C./N (related to the
specific heat). For model I, undergoing a continuous transi-
tion, the transition point is determined from the intersection
point of the curves for various lengths N, which remains
invariant under a change of system size [Fig. 6(a)], and the
transition point is estimated to be 7. = 1.336 + 0.006 for
n = 3. For model II which undergoes a first-order transition,
the transition point is determined from the peak of the contact
number fluctuation curves [Fig. 6(b)], and the transition point
is estimated to be 7. = 1.536 % 0.006 for n = 3.

APPENDIX B: BUBBLE SIZE DISTRIBUTION

The bubble size distribution at the transition point scales
as [17,36]

P~ 17V, (B1)

where P(/) is the probability of a bubble of length / and the
exponent v is related to the nature of the transition [17]. If
¥ > 2, it represents a first-order transition, while 1 < ¢ < 2
represents a continuous transition and for ¥ < 1 there is no
transition at all. As per the definition of a bubble, broken
bonds in the Y-fork are not included in the bubble statis-
tics (see Fig. 7). The observed slopes are consistent with a
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FIG. 6. Contact number fluctuation. (a) Model 1. (b) Model II.
Both results are for semiflexible models with bending energy con-
stant n = 3.

continuous transition for Model I (Gaussian chains) but a first-
order transition for Model II (chains with excluded volume
interaction).

APPENDIX C: BENCHMARK FOR SIMULATION RESULTS

To check for the accuracy of our code in case of semi-
flexible Gaussian chains, we calculated the mean squared
end-to-end distance for different rigidities at a very low tem-
perature where the DNA is in the bound state and compared
with the exact analytical result for a single ideal semiflexible
chain. Analytically, for an ideal semiflexible chain the mean
squared end-to-end distance varies with the rigidity of the
local bending as [29]

1+ L(#H) _ 1 =LY ()
R =N+ 1)———= —2V’L(7l)———=, (Cl
() = B0V + Dy — Do ©Y
where
B sinh())
L(n) = o InZ(#) = cosh(?) +2°

n =n/ksgT, and Z(7) is the two-step partition function when
no external force is applied. The comparison is shown in
Fig. 8. The form of L(#) is specific to our convention of the
energetics for polymer bending, where if overlapped (i.e., in
the single-chain limit) the polymer has the following local

(a) 10°
10'1 4; *
=030
T 103 ¢
104 F

105 |

10-6- s M | N PP | . MY
100 10! 102 103

*s

10-6 M | N M | N M
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FIG. 7. Bubble size distribution at the melting point. (a) Model
Ifor n=0and 3 and T ~ 7T, = 0.928 and 1.33, respectively, for
a chain length N = 1000. The straight line ¢(x) ~ x~'7 is a fit to
the intermediate region of the n = 0 data points. (b) Model II for
n=0and3atT ~ T, = 0.75 and 1.54, respectively, for chain length
N = 500. The straight line ¢(x) ~ x~2* is a fit to the intermediate
region of the n = 3 data points.
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FIG. 8. The mean squared end-to-end distance R? vs 7, obtained
both analytically [Eq. (C1)] and from simulation at temperature
T much below the n = 0 transition point 7, €/T = 10 > €/T, =
1.077. This is for length N = 1000.
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FIG. 9. Log-log plot of the scaled mean squared end-to-end dis-
tance R?/N?’ vs the chain length N for model II, with Boltzmann
factors exp (e/T) = 7 x 10* for contact and exp (—7) = 0.005 for
bends, for the dsDNA, and a single self-avoiding semiflexible chain
with the same Boltzmann factor for bending exp (—7) = 0.005.

partition function for a two-step walk:
Z=e"+e " +4, (C2)

where €” is for moving straight, e~" for moving backwards,
and 1 for right angle turns over a cubic lattice according to the
bending energy E, = —1ncosé6.

In the presence of self and mutual avoidance, for model
IT of DNA, a good check would be to compare the size of
the polymer chain at a very low temperature (i.e., large € /T),
when the two chains would be completely in the overlapped
state and would behave as a single rigid chain, with that of
the single chain of the same rigidity [37]. The comparison
is shown in Fig. 9. Note that for both dsDNA and a single
self-avoiding chain, the relative weight for bending is taken as
exp(—1) = 0.005.

APPENDIX D: ON THE FLY ERROR CALCULATION
FOR FLUCTUATING QUANTITIES

The estimation of error for any thermodynamical observ-
able is the fluctuation of that quantity. For quantities which are
fluctuating in themselves, e.g., contact number fluctuation C,
or elastic modulus «, estimation of error becomes tricky. The
way PERM is implemented every tour provides an independent
estimate of any quantity which contributes to another sample
in the running average. Now, with every new estimate from a
tour the difference of the present estimate from the estimate
of the average up to now gives a measure for the fluctuation of
that quantity. The updates of the mean and the fluctuation of a
quantity x follow the scheme

Xp = Xp—1 +(Xn—)_Cn_1)/I’l, (Dl)

d> =d? |+ (x, — %)% — Xn1)s (D2)

where x, is the current nth estimate of the quantity, X,_;
represents the average up to n— 1 samples, and d? =
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FIG. 10. Plotofn, = f,/(1 — fy) vs T — T, for n = 0 and 3 and
various N, using the data of Fig. 5(a). The data collapse corroborates
the picture of phase coexistence. The deviation near 7' = T, is the
usual finite-size effect at a phase transition.

Z?:l (x; — )_cn)z. Thus, the standard deviation is given by

d?
S, = .
(n—1)

(D3)
This method is known as Welford’s method.

APPENDIX E: DATA COLLAPSE FOR FIRST-ORDER
MELTING

Let N, and Ny be the total number of broken bonds in bub-
bles and the Y-fork region. Then f;, = N,/N and fy = Ny /N
and their temperature dependence are shown in Fig. 5(a). If
we treat the chain as consisting of two segments, bound and Y,
then the density of broken bonds in the bound segment will be
ny = Np/(N — Ny) = f/(1 — fy). For long bound segments,
np, should be independent of N. The plot of n, vs T — T, in
Fig. 10 shows a nice collapse both for = 0 and n = 3, except
for the usual finite-size effect near 7,. This data collapse
validates the coexistence picture.

APPENDIX F: TRANSFER MATRIX CALCULATION
OF PERSISTENCE LENGTH

For Gaussian semiflexible chains, the tangent-tangent
correlation or bond-bond correlation (Fig. 1) decays exponen-
tially for large |i — j|, (t; - t;) ~ exp(—[i — j|b/l,) providing
a definition for the persistence length /,, where b is the bond
length. This definition is not applicable for cases with ex-
cluded volume interaction, as SAWs are critical objects [14].
The persistence length for model I with n at temperature
T (7 = n/kgT) can be exactly calculated from the transfer
matrix calculation of a two-step walk. The transfer matrix for
a two-step walk is written as

e 1 1 1 1 e
1

1 el 1 e " 1
1 1 el e 1 1
1 1 e eh 1 1 (F1)
1 e 1 1 e 1
e 1 1 1 1 e’
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The largest eigenvalue for the above matrix is A} =4 +
2 cosh 7, and for 77 = 3 the second largest eigenvalue obtained

using MATHEMATICA is A, = 19.562. Therefore, the persis-
tence length is [, = [111()»1/)\2)]_1 ~ 5.3.
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