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We show that dynamic quantum phase transitions (DQPT) in many situations involve renormalization
group (RG) fixed points that are unphysical in the context of thermal phase transitions. In such cases,
boundary conditions are shown to become relevant to the extent of even completely suppressing the bulk
transitions. We establish these by performing an exact RG analysis of the quantum Ising model on scale-
invariant lattices of different dimensions, and by analyzing the zeros of the Loschmidt amplitude. Further
corroboration of boundaries affecting the bulk transition comes from the three-state quantum Potts chain,
for which we also show that the DQPT corresponds to a pair of period-2 fixed points.
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Dynamical quantum phase transitions (DQPT), a recent
discovery of phase transitions, often periodic, in large
quantum systems during time evolution [1–3], have gen-
erated a lot of interest because here time itself acts as the
parameter inducing the transitions. Also, to be at a
transition point, only time needs to be chosen properly
without any requirement of fine-tuning of system param-
eters, unlike thermal transitions [4]. The signature of DQPT
is the nonanalytic behavior of various quantities in time
around critical times tc’s. These transitions have now been
shown in many models, like the transverse-field Ising
model (TFIM), spin chains, quantum Potts models, the
Kitaev model, and many others [1,2,6–10], and also
observed experimentally [11,12]. In spite of being a
zero-temperature quantum phenomenon, DQPT is not
determined by the quantum phase transitions of the system
but rather seems related to the classical thermal criticalities
of an associated system [10]. However, despite the use of
many techniques so far, very few exact results are known on
the scaling and universality in DQPT [10]. Moreover, the
natures of the possible phases and the transitions remain to
be properly classified, e.g., whether only equilibrium
phases and transitions would suffice or there can be
specialities of its own [10].
A general approach for phase transitions is the renorm-

alization group (RG) framework [5] in terms of length-
dependent effective parameters and their flows to the fixed
points (FP), with the stable FPs determining the allowed
phases, and the unstable ones (or separatrices) the phase
transitions. In this Letter, we adopt an exact RG scheme for
TFIM and the three-state quantum Potts chain (3QPC). Our
exact results establish that there are DQPTs involving FPs
that are unphysical in traditional thermal transitions.
Second, we show that, for those unphysical FPs, boundary
conditions (BC) are relevant and can even lead to a
suppression of the transitions completely, unlike thermal

cases where BCs do not affect the bulk transitions. Another
surprising result is the emergence of a pair of period-2 FPs,
never seen in the thermal context, that controls the DQPT in
3QPC, in contrast to the zero-temperature FP [2] for the
Ising DQPT case. In short, our exact results bring out
several distinctive features of DQPT, not to be found in
equilibrium transitions.
If a quantum system, with Hamiltonian H, is prepared in

a noneigenstate jψ0i and suddenly allowed to evolve, then
the probability for the system to be in state jψ0i after time t
is given by PðtÞ ¼ jLðtÞj2 ∼ e−NλðtÞ, where

LðtÞ ¼ hψ0je−itHjψ0i ∼ e−NfðtÞ; ðℏ ¼ 1Þ; ð1Þ

is the Loschmidt amplitude with fðtÞ and λðtÞ ¼ 2RefðtÞ
as the large-deviation rate functions [13] for a large system
of Nð→∞Þ degrees of freedom. Often, λðtÞ and fðtÞ show
phase-transition-like nonanalyticities at time t ¼ tc. These
phase transitions in time are the DQPTs [8,10].
TFIM is defined on a lattice as HI ¼ H þHΓ, where

H¼−J
X
hjki

σzjσ
z
k; HΓ¼−Γ

X
j

σxj ; ðJ;Γ>0Þ; ð2Þ

σαj being the Pauli matrices (α ¼ x, y, z) at lattice site j, and
hjki denoting nearest neighbors [14]. The interaction favors
an aligned state in the z direction [15], and HΓ is the
transverse field term that aligns the spins in the x direction.
We may add a boundary term given byHB ¼ −hðσz1 þ σzNÞ,
where the boundary field h acts only on the first and the
Nth spins. Two special cases are h ¼ 0 and h → ∞
corresponding to open BC and fixed BC (both up in the
z direction), respectively. For periodic BC in one dimen-
sion, HB ¼ −Jσz1σzN .
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The TFIM is prepared in a product state jψ0i [16] with
all spins aligned in the x direction, e.g., by Γ → ∞. At time
t ¼ 0, we set Γ ¼ 0. So, the magnet evolves with H of
Eq. (2) and any boundary termmentioned above. This is the
particular sudden quench we use in this Letter. By
expressing jψ0i in terms of the eigenstates of H, the
Loschmidt amplitude and the rate function per bond can
be expressed as [10,15],

LðyÞ ¼ 2−N
X
C

y−EC=2J; fðyÞ ¼ −N−1
B lnLðyÞ; ð3Þ

respectively, where y ¼ e2zJ, NB is the number of bonds,
and, for generality, z is taken as a complex number. LðyÞ is
an analytic continuation of the partition function of the
traditional nearest neighbor Ising model [17] defined for
1 ≤ y < ∞ on the real positive axis (z ¼ β being the
inverse temperature). The quantum time evolution in
Eq. (1) is given by the unit circle jyj ¼ 1 (y ¼ ei2Jt) in
the complex y plane. A phase transition—defined as the
point of nonanalyticity of f—is expected along the unit
circle if there are zeros or limit points of zeros of LðyÞ on
the path [17]. An isolated zero on the circle, in contrast, just
indicates orthogonality of the evolved and the initial states.
The S1 (circle) topology guarantees (via winding numbers)
that, if there are zeros on the circle, there will be periodic
transitions in time.
In one-dimensional TFIM and 3QPC, similar DQPT

occurs, viz., linear kinks in fðtÞ, despite the absence of any
thermal transitions [1,7]. For the two-dimensional TFIM,
DQPT was found to be the same as the two-dimensional
Ising critical point [2]. However, the generality of these
results has not yet been established. In this context, we
focus on a class of exactly solvable models that would help
us in alienating the specialities of DQPT.
We choose scale-invariant lattices for which the real

space renormalization group (RSRG) can be implemented
exactly. The lattices are constructed hierarchically by
replacing a bond iteratively by a diamondlike motif of b
branches [18,19] as shown in Fig. 1. Such lattices appear
naturally in approximate RSRG for usual lattices. Three
cases are considered here, (a) b ¼ 1 corresponding to a
one-dimensional lattice, (b) b ¼ 2, which is two dimen-
sional but not a Bravais lattice, and (c) b ¼ 3 as a fractal-
type lattice.

The hierarchical structure of the lattice allows us to
calculate LðyÞ via a real space renormalization group
approach, by decimating spins on individual motifs
[18,20]. Let us define Zn ¼ 2NLn and fn ¼ ð2bÞ−n lnZn
for the nth generation. Note that fnðyÞ is related to fðyÞ
of Eq. (3) by f ¼ fnð1Þ − fnðyÞ. Zn and fn satisfy
the following recursion relations (see Supplemental
Material [21])

ZnðyÞ ¼ ζðy1ÞZn−1ðy1Þ; ζðxÞ ¼ 2bx1=2; ð4aÞ

fnðyÞ ¼ð2bÞ−1fn−1ðy1Þ þ ð2bÞ−1gðy1Þ; ð4bÞ

with gðxÞ ¼ ln ζðxÞ, and the RG flow equation

y1 ¼ 2−bðyþ y−1Þb: ð4cÞ

The boundary conditions (BC) are encoded in Z1 as,

Z1 ¼
�
2ðy1=2 þ y−1=2Þ; ðOpen BCÞ
y1=2; ðFixed BCÞð↑↑Þ; ð4dÞ

with f1 ¼ lnZ1.
Equation (4c) has FPs at y ¼ 1 (infinite-temperature FP,

paramagnetic phase), y ¼ ∞ (zero-temperature FP, ordered
phase), and a b-dependent unstable FP at y ¼ yc (for
b > 1) representing the critical point. For any odd
b > 1, there are additional “unphysical” FPs at y ¼ −1,
−yc (�∞ to be identified). There is no yc for b ¼ 1, as
there is no thermal phase transition for the one-dimensional
Ising model. The zeros of LnðyÞ can be determined from
those of Ln−1 via Eqs. (4a) and (4c), starting from the BC-
dependent roots of L1ðyÞ ¼ 0. In the n → ∞ limit, the
zeros then belong to the set of points that do not flow to
infinity, thereby constituting the Julia set of the trans-
formation [20]. These sets, obtained by MATHEMATICA,
are shown for b ¼ 1, 2, and 3 in Figs. 2 and 3.

3=b2=b1=b

(c)(b)(a)

FIG. 1. Construction of hierarchical lattices. The sites are
represented by squares. Replace each bond by a motif of b
branches. (a) b ¼ 1, (b) b ¼ 2 (diamondlike motif), and
(c) b ¼ 3. Three generations are shown for b ¼ 2.

(a)

(b)

(c) (d)

FIG. 2. Zeros of LðyÞ in the complex-y plane, and RG flows.
The red circle is the unit circle (UC) for time evolution. For
b ¼ 1, (a) only one zero at y ¼ −1 for open BC, while (b) the
zeros populate the imaginary axis for periodic or fixed BC.
(c) For b ¼ 2, the zeros meet the UC at four points, Ap, p ¼ 1, 2,
3, 4. Under RG, UC flows to the positive real axis, taking each Ap

to yc ¼ 3.38298…. (d) For b ¼ 3, the four meeting points are of
two types; A1, A2 flow to yc ¼ 2.05817…, while K1, K2 to
−yc < 0. See Fig. 3.
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The y; y−1 symmetry in Eq. (4c) ensures that if y� is a FP,
then 1=y� flows to y�. Therefore, there are four special
points on the unit circle which flow to the nontrivial FPs,
and are, necessarily, members of the Julia set. These four
points on the unit circle in Figs. 2(c), 2(d), and 3 are the
four critical points in time for b > 1. Incidentally, Eq. (4c)
also ensures that any point on the unit circle, y ¼ eiθ, under
iteration, first flows to the real axis to cos θ and then
remains real afterwards. Consequently, complex RG fixed
points for b > 1 are not important.
DQPT has been studied for b ¼ 1 under periodic

BC [1]. The surprising result we find here is that, unlike
the thermal case, boundary conditionsmay even suppress the
bulk transition. The transfer matrix solution of the
1D Ising model describes the partition function by the two
eigenvalues Λ� ¼ y1=2 � y−1=2, with the larger one deter-
mining the N → ∞ behavior [17]. For y flowing to
y� ¼ þ1ðy� ¼ −1Þ, the larger eigenvalue in magnitude is
ΛþðΛ−Þ, so that, with y ¼ eiθ, the rate functions for the two
regions (f� ∼ lnΛ�=2) are (see SupplementalMaterial [21])

fþðyÞ ¼ −
1

2
ln cos2

θ

2
; and f−ðyÞ ¼ −

1

2
ln sin2

θ

2
; ð5Þ

respectively. As characteristics of the high-temperature
phases, f� should be independent of dimensions, remaining
valid for all b. Open BC yields only one zero at y ¼ −1
[Fig. 2(a)], and therefore no DQPT. On the other hand,
periodic and fixed BC give zeros on the imaginary-y axis
[Fig. 2(b)]. Two zeros y ¼ �i on the unit circle, demarcating
the RG flows of the points on the unit circle to y ¼ �1, are
the known transition points [1,2]. The transitions are from a
paramagnetic (described by FP at y ¼ 1, and fþ) to another
paramagnetic phase, which we call para0, described by FP
y ¼ −1 and rate function f− [Fig. 4(a)].
Now consider an open chain with the boundary term

HB ¼ −hðσz1 þ σzNÞ. For a finite chain, there will be
contributions from both the FPs y ¼ �1, so that for an
N-site chain (see Supplemental Material [21])

Lðt; hÞ ¼ ðcos JtÞN−1cos2htþ ði sin JtÞN−1sin2ht: ð6Þ

DQPT with f�ðtÞ is recovered in the N → ∞ limit
only if h ≠ 0. See Fig. 4(a). For an open chain, LðtÞ≡
Lðt; h ¼ 0Þ ¼ ðcos JtÞN−1. Hence, there is no transition
[Fig. 4(b)], consistent with one single zero [Fig. 2(a)].
There are four sectors of possible configurations of the two
boundary spins, viz., ð�;�Þ. Each of these four sectors
individually shows DQPT. However, for the zero-field open
chain, requiring superposition of the four sectors, there is a
perfect cancellation of the y ¼ −1 contributions. Thus,
only fþ survives [Fig. 4(b)]. When the subtle cancellation
of the four sectors is disturbed by the small boundary fields,
the transitions appear, as shown in Fig. 4(a). We see that
boundary conditions (like open-chain) become relevant
only at the unphysical fixed point.
For any odd b > 1, there are four critical points on the

unit circle, Figs. 2 and 3. These are A1, θA ¼ 2Jτ1 ¼
arccos yc−1=b, and A2, 2Jτ2 ¼ 2π − θA, on the right half-
plane, flowing to yc > 0, and K1, 2Jκ1 ¼ π − θA ¼
arccosð−ycÞ−1=b, and K2, 2Jκ2 ¼ π þ θA, on the left
half-plane, flowing to the unphysical FP at −yc < 0, via
y ¼ −1=yc. These transition points (lπ � θA, for any
integer l) are determined exactly. In this particular case,
the nature of the singularity happens to be the same for all,
as for the thermal case [a diverging third derivative of f,

FIG. 3. Zeros of LðyÞ as Julia sets in the complex-y plane for
(a) b ¼ 2 and (b) b ¼ 3. See Fig. 2. The zeros pinch the UC at
four points. (c) For b ¼ 3, zoomed view of the region near A1 of
Fig. 2(d).

(a) (b)

(c)

FIG. 4. Rate function Refðy ¼ ei2JtÞ vs 2Jtð¼ θÞ. (a) b ¼ 1:
for a chain of N ¼ 8 sites with boundary field h ¼ 0.1. RefðyÞ
from a direct time evolution (using MATLAB) (discs) agrees with
Eq. (6) (solid green line). The N → ∞ limit is shown by the blue
dash-dot (fþ) and orange dashed (f−) lines, with DQPT at A1,
θ ¼ π=2, and A2, θ ¼ 3π=2 [Fig. 2(d)]. (b) Same as (a) but
without the boundary field (h ¼ 0): time evolution data from
MATLAB agree with fþ (solid line) and with the values (green
crosses) from Eq. (4b) [which fails for θ ∈ ðπ=2; 3π=2Þ]. (c) For
b ¼ 3: f (thin brown line) from Eq. (4b) for n ¼ 8 withþþ spins
at the two boundary points. The intersections of the horizontal
line at fc (the critical value of f, Supplemental Material [21])
with f locates the transition points A1;2 and K1;2 [Fig. 2(d)]. At
these points d3ðRefÞ=dt3 diverges (solid blue line). Around
θ ¼ 0 and π, fðyÞ matches with fþ (magenta dash-dot) and f−
(green dashed lines), respectively.
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Fig. 4(c)]. The flows of the four arcs of the unit circle are
shown in Fig. 2(d). K1K2, being characterized by FP
y ¼ −1, is expected to be sensitive to any constraint on
the boundary spins. For, say, fixed boundary spins, a
sequence of phases occurs in time, para-ferro-para0-ferro-
para, separated by the four critical points. The two para
phases with FP y ¼ �1 have ferromagnetic phases in
between. However, in the unbiased case, the algebraic
sum of the contributions of the four boundary sectors may
lead to cancellation as in the b ¼ 1 case. A signature of the
cancellation in the K1K2 region is the failure of Eq. (4b) for
f as y → −1 on renormalization. This stability problem is
also seen in the one-dimensional case, Fig. 4(a) vis-à-vis
Fig. 4(b) [the recursion relation, Eq. (4b), fails for
π=2 < 2Jt < 3π=2]. We, therefore, conjecture that for
the open BC case (free boundary spins) there is no
intermediate para0 phase, but instead the whole arc
A1K1K2A2 represents the ferro phase—a major boundary
effect on bulk DQPT.
For even b, there are again four points on the unit circle

[Figs. 2(c) and 3(a)], Ai, (i ¼ 1, 4), which have identical
angular relations as the four points for odd b, except that
here all flow to yc in two steps via y ¼ 1=yc. All points in
arcs A1A4 and A2A3 flow to ∞ implying an ordered state,
while the remaining two arcs, A1A2 and A3A4, flow to 1, the
disordered phase. Therefore, there is an oscillation between
ordered (broken-symmetry) phase and the standard disor-
dered phase with critical points at four different times. The
nonanalytic features at the four critical times are the same
as for the temperature-driven critical point at yc. In essence,
DQPT here follows closely the thermal transition.
To show the generality of the boundary effect, let us

consider the three state Potts chain of N sites (3QPC)
involving 3 × 3 matrices [7]. The interaction term is

H ¼ −J
X
j

ðΩ†
jΩjþ1 þ H:c:Þ; ð7Þ

where Ω ¼ diagð1; ei2π=3; ei4π=3Þ. Analogous to the trans-
verse field of Eq. (2), the spin flipping term for Potts spin is
HΓ ¼ −Γ

P
j Tj, where the elements of the 3 × 3 matrix T

are given by Tαβ ¼ 1 − δαβ, (α, β ¼ 1, 2, 3). Γ can be used
to prepare the chain in a product state of equal-amplitude
superpositions of the three states of each spin. The chain
evolves in time with H of Eq. (7), once Γ is switched off.
Two boundary conditions are considered here, viz., peri-
odic and open BCs. These two differ by an interaction term
connecting the first and the Nth sites. (See Supplemental
Material [21].)
In the Potts model the basic energy scale for a bond is the

gap 3J, and so define y ¼ expð3βJÞ. The RG equation for y
is [20,22]

y1 ¼ RðyÞ≡ ðy2 þ 2Þ=ð2yþ 1Þ; ð8Þ

whose fixed points are yp ¼ 1, yu ¼ −2 (“unphysical”),
and y ¼ �∞. The DQPT involves the transition between
the two stable phases described by yp and yu, [analogous to
Fig. 2(d)], with the critical times at the points of intersection
of the unit circle and the line of zeros of LðyÞ ¼ 0. These
intersections are A1, yA1 ¼ ei2π=3, and A2, yA2 ¼ ei4π=3,
which flow into each other under the RG transformation.
In other words, A1 and A2 are period-2 FPs of RG, i.e., the
fixed points of Rð2Þ ¼ R(RðyÞ). By linearizing Rð2Þ around
A1 or A2, the thermal eigenvalue is found to be 1, which
leads to a kink in Ref at the transition points [7]. The
emergence of these novel unphysical fixed points distin-
guishes the DQPT from thermal transitions in general, and,
in particular, the 3-state Potts chain from TFIM, though
both show similar nonanalyticity [23].
Now consider a free (i.e., open) chain. There is only

one zero at y ¼ −2 outside the unit circle [compare with
Fig. 2(a)]. There cannot be any DQPT. A direct compu-
tation of the rate function fðyÞ by the transfer matrix
method [7,17] shows that fðyÞ∼−ln½ðyþ2Þ=3�, (y ¼ eiθ),
and no DQPT, in agreement with the zeros. From the RG
point of view, we see that the phase described by the
unphysical fixed point at y ¼ −2 does not occur for the
open chain case, though it exists for the periodic case. This
exact result provides yet another example of boundary
conditions affecting the bulk transition in the quantum case,
when an unphysical FP is involved.
Our results are summarized at the beginning, and, to that,

we add the following details. The four transition points
(critical times) for dynamical quantum phase transitions are
determined exactly for the Ising model on hierarchical
lattices of any b > 1. The ordered (broken-symmetry) state
appears as a phase only in higher dimensions (b > 1). For
all odd b, the phase transitions involve one phase charac-
terized by a stable, but unphysical, fixed point. There are no
such unphysical fixed points for even b, and, therefore, no
sensitivity to boundary conditions. We anticipate that our
results would lead to explorations of other unphysical fixed
points in various quantum systems to look for new phases,
criticality, and boundary effects not found in thermal phase
transitions [24].
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Note added.—Recently, Ref. [24] appeared, which dis-
cussed the role of complex fixed points for Potts chains.
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