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Abstract. It is known that one can transfer the bulk of the kinetic energy of a body to another body of
smaller mass by arranging a large number of collisions with intermediate masses. In this project we explore
the transfer of kinetic energy for masses arranged in arithmetic and harmonic progression. We also take into
account inelastic collisions and find that there is an optimum number of intermediate masses which will ensure
maximal transfer of kinetic energy. We have discovered interesting duality relations. Irrespective of the fact
that the collisions are elastic or inelastic, we find that the results of arithmetic progression map onto that of the
harmonic progression.

1. INTRODUCTION

Collision is one of the simplest mechanical interaction between two bodies and in the process energy
and momentum are exchanged. One-dimensional collision as a means of transferring energy and
ensuring velocity amplification is of interest because it provides a simple model for understanding
natural phenomena where sequential collisions come into play. For example supernova explosion
can be understood with the help of one-dimensional chain collision of vertically stacked masses [1].
Kerwin has explained the phenomena of super-ball collisions using an analytical method [2]. The
dynamics of a queue, chain accidents in traffic, systems with narrow passage to allow for a single
particle etc. can be modelled as one-dimensional chain collision systems.

The quantity of interest in studying such systems is the fraction of energy or momentum that
is transferred. The exchange of kinetic energy and momentum depends mainly on the coefficient
of restitution e and the ratios of colliding masses. The coefficient of restitution is a property of the
colliding masses and for masses made of similar material we shall assume that it is a constant. What
one can manipulate is ‘mass’ because one can extract a particular amount of mass from the bulk.
Brilliantov and Pöschel considered viscoelastic particles where e is a function of colliding masses
and their relative velocity [3]. Recently, Ricardo and Lee showed that the maximum transfer of
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kinetic energy takes place if the intermediate masses are geometric means of final and initial mass
[4]. They have also considered the case of inelastic collision with fixed coefficient of restitution e.

In our work, we take two different intermediate mass systems and compare the numerical values
of kinetic energy and velocity transfer ratios for a given value of initial and final mass. Unlike
Ricardo and Lee, we take masses in arithmetic and harmonic progression. We consider the general
case of inelastic collision.

2. BASIC EQUATIONS

We assume that the two colliding masses are spheres placed on the x- axis in such a way that the
distance between their centres is greater than the sum of their radii. Let a mass M moving with
velocity V , collide with a mass m which was intially at rest and due to which it’s velocity changes
to V ′ while the mass m gains a velocity v. This is shown in Fig. 1.
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Figure 1. Collision of two masses

We define the velocity transfer ratio rv as

rv =
v

V

Similarly kinetic energy transfer ratio is defined as

rK =
1
2mv2

1
2MV 2

Since the momentum is conserved we have

MV = MV ′ +mv (1)

The coefficient of restitution is

e = (v − V ′)/V (2)

Using eqns. (1) and (2) we get the expression for velocity transfer ratio

rv =
(e+ 1)M

(M +m)
(3)
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M m1 m2 mn m
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Figure 2. There are n intermediate masses between M and m and (n+ 1) colisions.

Using eqn. (3) in the definition of kinetic energy transfer ratio for inelastic collision we get

rK =
(e+ 1)2Mm

(M +m)2
(4)

Now consider the situation with n intermediate masses m1,m2,m3 . . .mn between M and m.
For the transfer of kinetic energy from M to m there has to be n+ 1 collisions. Initially the sphere
of mass M was moving with velocity V towards the above described assembly of set of stationary
masses. After the first collision let the velocity of M be V ′ and that of m1 be v1. Then after the
second collision between m1 and m2 the velocity of m1 becomes v′1 and m2 gains a velocity v2.
Generalising the notation, the ith collision is between mi−1 and mi. Just after (i − 1)th collision
mi−1 gets a velocity vi−1 and after the ith collision it becomes v′i−1. The velocity of mass mi is vi
after ith collision. Let the velocity transfer ratio and kinetic energy transfer ratio at ith collision be
denoted by rvi and rKi respectively.

It can be shown that the velocity transfer ratio for ith collision is

rvi =
vi

vi−1
=

(e+ 1)mi−1

mi−1 +mi
(5)

and the kinetic energy transfer ratio is

rKi =
1
2miv

2
i

1
2mi−1v2i−1

=
(e+ 1)2mi−1mi

(mi−1 +mi)2
(6)

Given the initial velocity of mass M we want to find rv and rK . From the definition of velocity
transfer ratio

rv =
v

V

Multiplying and dividing with vi where i = 1, 2, 3. . .n we get

rv =
v1
V

v2
v1

. . .
vn

vn−1

v

vn

=

n+1∏
i=1

rvi
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Similarly

rK =

n+1∏
i=1

rKi (7)

Next we consider two intermediate mass systems, arithmetic and harmonic.

3. INTERMEDIATE MASS SYSTEMS

3.1 Intermediate Masses in Arithmetic Progression

In this case the intermediate masses mi are such that M > m1 > m2 . . .mn > m and the magnitude
of difference of any two consecutive masses is a constant for the system. That is

M −m1 = mi−1 −mi = mn −m

where i = 2, 3 . . . n Let the common difference be denoted by d.

d =
M −m

n+ 1
(8)

Mass of ith intermediate sphere is mi = M − id. Substituting the value of d from eqn. (8) we
get

mi =
(n+ 1− i)M + im

n+ 1
(9)

Similarly

mi−1 =
(n+ 2− i)M + (i− 1)m

n+ 1

Using eqns. (5), (7) and (9), the velocity transfer ratio is

rv =

n+1∏
i=1

(e+ 1)[(n+ 2− i)M + (i− 1)m]

[2(n− i) + 3]M + (2i− 1)m
(10)

The momentum transfer ratio rpi for the ith collision is obtained by multiplying the mass ratio
mi/mi−1 with rvi. So, the momentum transfer ratio is

rp =

n+1∏
i=1

(
(e+ 1)[(n+ 1− i)M + im]

[2(n− i) + 3]M + (2i− 1)m

)
(11)

Similarly, using eqns. (6), (7) and (9), the kinetic energy transfer ratio is
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n e = 1 e = 0.99 e = 0.95 e = 0.90

0 0.7462 0.7388 0.7094 0.6735
1 0.8508 0.8361 0.7688 0.6929
2 0.8953 0.8705 0.7691 0.6581
3 0.9196 0.8835 0.7510 0.6101
4 0.9348 0.8891 0.7257 0.5597
5 0.9453 0.8901 0.6976 0.5108
6 0.9528 0.8882 0.6685 0.4647
7 0.9585 0.8847 0.6393 0.4219
8 0.9630 0.8799 0.6106 0.3825
9 0.9666 0.8784 0.5826 0.3465

Table 1. The energy transfer rK for varying number (n) of intermediate masses is
depicted in this table. Here the mass ratio x = m/M = 0.33. See text for discussion.

x e = 1 e = 0.99 e = 0.95 e = 0.90

nopt rK nopt rK nopt rK nopt rK

0.10 ∞ 1 13 0.7539 5 0.5394 3 0.4261
0.33 ∞ 1 5 0.8901 2 0.7691 1 0.6929
0.50 ∞ 1 3 0.9313 1 0.8498 0 0.8022

Table 2. Optimum number of intermediate masses (nopt) and corresponding energy
transfer (rK ) for various mass ratios (x) and coefficient of restitution (e).
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rK =

n+1∏
i=1

(e+ 1)2[(n+ 1− i)M + im][(n+ 2− i)M + (i− 1)m]

[(2(n− i) + 3)M + (2i− 1)m]2
(12)

The above expression for kinetic energy transfer is displayed for x = 0.33 in Table 1. For
nearly elastic collision (e.g. e = 0.99), the optimum number of collisions is nopt = 5. As the
collision becomes increasingly inelastic, nopt shifts to lower values. In fact for e = 0.9, nopt is 1.
For realistic scenarios, the exercise of introducing intermediate masses is counter-productive.

In Table 2 we display the optimum number of collisions for varying mass ratios. Even for an
almost elastic collision (e = 0.99), the kinetic energy transfer is sub-optimal varying from 93% to
75%. For a realistic case like e = 0.90 we find that the exercise of introducing intermediate masses
is not beneficial.

3.2 Intermediate Masses in Harmonic Progression

For the intermediate masses to be the harmonic means of M and m, their reciprocals have to be the
arithmetic means of 1/M and 1/m. Let us denote the common difference by d′. So,

d′ =

( 1
m −

1
M

n+ 1

)
(13)

The reciprocal of ith mass is

1

mi
=

1

M
+ id′

On simplifying further we get

mi =
Mm(n+ 1)

(n+ 1− i)m+ iM
(14)

Similarly the mass of (i− 1)th sphere will be

mi−1 =
Mm(n+ 1)

(n+ 2− i)m+ (i− 1)M

Using eqns. (5), (7) and (14) the velocity transfer ratio is

rv =

n+1∏
i=1

(
(e+ 1)[(n+ 1− i)m+ iM ]

[2(n− i) + 3]m+ (2i− 1)M

)
(15)

The momentum transfer ratio in this case is

rp =

n+1∏
i=1

(e+ 1)[(n+ 2− i)m+ (i− 1)M ]

[2(n− i) + 3]m+ (2i− 1)M
(16)

Now, using eqns. (6), (7) and (14) the kinetic energy transfer ratio is

rK =

n+1∏
i=1

(
(e+ 1)2[(n+ 2− i)m+ (i− 1)M ][(n+ 1− i)m+ iM ]

[(2(n− i) + 3)m+ (2i− 1)M ]2

)
(17)
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3.3 Symmetry

A numerical exercise for the mass ratio m/M=0.33 in the harmonic case yields results identical to
the arithmetic case of Table 2. This is not surprising since an interesting symmetry relation can be
discerned by examining the relevant expressions. For a system with n intermediate masses, it is seen
that the velocity transfer ratio in the (n + 2 − i)th collision for the arithmetic mean system is the
same as that in ith collision of the harmonic mean system. Replacing i by (n + 2 − i) we get the
self-same expression for the velocity transfer ratio of ith collision in harmonic mean system.

(rvi)AP =
(e+ 1)[(n+ 2− i)M + (i− 1)m]

[2(n− i) + 3]M + (2i− 1)m
(18)

Replacing i→ n+ 2− i in eqn. 18

(
rv(n+2−i)

)
AP

=
(e+ 1)[(n+ 2− (n+ 2− i))M + ((n+ 2− i)− 1)m]

[2(n− (n+ 2− i)) + 3]M + (2(n+ 2− i)− 1)m

This simplifies and we get(
rv(n+2−i)

)
AP

=
(e+ 1)[iM + (n+ 1− i)m]

[(2i− 1)M + (2(n− i) + 3)m]
= (rvi)HP (19)

Now it immediately follows that the kinetic energy transfer ratio will be same for (n + 2 − i)th

collision in arithmetic mean system and ith collision in harmonic mean system.(
rK(n+2−i)

)
AP

= (rKi)HP (20)

It is easy to see that the final velocity transfer ratio and kinetic energy transfer ratio will be same for
both progressions.

Consider the expression for momentum transfer for ith collision in the harmonic case.

(rpi)HP =
(e+ 1)[(n+ 2− i)m+ (i− 1)M ]

[2(n− i) + 3]m+ (2i− 1)M
(21)

An interesting relation exists. If we switch the masses M ↔ m for the velocity gain (eqn. (18)),
we obtain the corresponding momentum gain for the harmonic case (eqn. (21)). The reverse is also
true.

4. CONCLUSION

We began by discussing that full transfer of kinetic energy from one body to another is not possible,
if their masses are unequal. However, a judicious introduction of intermediate masses may ensure
optimum transfer of kinetic energy. We have taken two different intermediate mass systems, arith-
metic and harmonic. An interesting duality relation between arithmetic and harmonic was observed
(section 3.3). We find that for realistic scenarios the exercise of introducing intermediate masses
yields limited benefit. This scheme is a paradigm for similar exercises, such as impedance matching
in electrical circuits. We hope to explore such connections in the near future.
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