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Abstract. In this paper I investigate the flavor dependence of the pion nucleon sigma term (σπN ) for the
Nf = 2, Nf = 2 + 1, and Nf = 2 + 1 + 1 cases, where Nf is the number of flavors. I calculate σπN
using the Hellmann-Feynman method which uses results of lattice quantum chromodynamics (LQCD). I use
the expansion from Baryon Chiral Perturbation Theory as my nucleon mass fitting equation. I extrapolate the
data to a → 0, where a is the spacing of the lattice in LQCD, and apply the constraint that data must meet the
condition MπL > 3.8 to avoid finite volume effects, where Mπ is the pion mass and L is the length of the
lattice in LQCD. My results shed light on the recent disparity between values of σπN calculated using different
methods.

1. INTRODUCTION

The search for dark matter has seen a surge of interest in recent years with the hope of finding
physics beyond the standard model. All current experimental searches rely on dark matter particles
interacting with nucleonic matter, i.e. protons and neutrons. One leading candidate for a dark
matter particle is the neutralino, which is predicted by the theory of super-symmetry [1]. In order
to constrain experiments searching for the neutralino, the cross section of interaction with nucleons
must be known. The pion-nucleon sigma term (σπN ), which is a fundamental parameter in the theory
of quantum chromodynamics (QCD), is used to calculate this cross section [2]. It was originally
calculated by phenomenological methods but recently has been calculated using methods involving
LQCD. There is a disparity between the two methods however, with σπN being significantly lower
using the latter method [3]. This disparity is large enough to cause concern in the dark matter
community as experiments would need to be changed accordingly.

One method of calculating σπN using LQCD data is called the Hellman-Feynman (HF) method.
The HF theorem relates σπN to the nucleon mass (MN ) dependence on the quark mass (mq) [4].
The HF theorem can also relate σπN to the nucleon mass dependence on the pion mass (Mπ) as
M2
π = mq . From this point on, Mπ and mq will be used interchangeably with this understanding.

The HF theorem is defined in Eq. 1.

σπN = mq
∂

∂mq
MN (mq) = M2

π

∂

∂M2
π

MN (M2
π) (1)

∗Summer REU student at the Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan
48823, USA. Email: cfkane@syr.edu

122



Studying the Puzzle of the Pion Nucleon Sigma Term

LQCD is used to calculate the nucleon mass from a given quark mass (quark masses need not be
physical). These data points are in turn used to determine the nucleon mass dependence on the
quark mass the HF theorem requires to calculate σπN . It does so by simulating the dynamics inside
the nucleon. Nucleons are composed of three valence quarks, but from the Heisenberg Uncertainty
Principle, ∆E∆t ≥ ~2, we know that quark-antiquark pairs can be created and annihilated from the
vacuum. Heavier quarks will be created for shorter periods of time and therefore will have a smaller
effect on the internal dynamics of the nucleon. It is common in LQCD simulations to assume that
only the two and three lightest flavors (up, down, strange) of quarks contribute to the dynamics and
that contributions from the heavier flavors (charmed, top, and bottom) can be ignored. In this paper
I present results of σπN calculated from data that included the two lightest flavors (Nf = 2), three
lightest flavors (Nf = 2 + 1), and four lightest flavors (Nf = 2 + 1 + 1) to see if the heavier quarks
have a significant contribution or if they can be safely ignored in further simulations.

2. LATTICE QCD

2.1 Overview

QCD is the theory that describes how quarks and gluons interact via the strong force. At high
energies, i.e. particle accelerators, perturbation theory can be used to perform precise calculations.
At low energies however, i.e. inside a nucleon, perturbation theory fails and calculations can no
longer be done. Lattice QCD is a fully non-perturbative formulation of QCD that can perform
calculations at any energy [5].

LQCD works by putting spacetime on a grid as seen in Fig. 1. The quark field exists on
the lattice sites and the gluon field exists on the lattice bonds connecting neighboring sites. Each
lattice has three important properties, the lattice spacing a, the box length L, and the quark mass
mq . LQCD is developed such that if the following limits are taken, lim a → 0, limL → ∞,
limmq → mq,physical, physical QCD is recovered. Because the universe we live in is continuous
and infinite however, any calculations done on a lattice inherently contain systematic errors. The
two major sources of systematic error are finite volume effects (L) and lattice spacing effects (a).

2.2 Finite Volume Effects

Finite volume effects occur when L is small compared to the wavelength of the quarks on the lattice.
Instead of comparing L to the wavelength, it is usually compared to the mass of the quarks. To see
how this can simplify quantifying finite volume effects, we look at the DeBroglie wave equation
λ = hp. Because less mass implies less momentum, less mass implies a larger wavelength. So
the smaller the quark mass, the larger the box must be. A useful quantity to look at in judging the
magnitude of the finite volume effects is therefore the product of the pion mass and the box length
MπL. If this quantity is large enough, it is reasonable to ignore the systematic error. If it is small,
steps must be taken to extrapolate the calculations to L → ∞ and account for the finite volume
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Figure 1. Image of a proton on a typical lattice in LQCD. The lattice spacing a is in
green and the box length L is in red. The image is reproduced with the permission of
Professor H. Lin.

effects.

2.3 Lattice Spacing Effects

Finite lattice spacing effects occur when a is too large to properly simulate strong force dynamics.
The value of a necessary is less dependent on mq than L. A standard value of a generally accepted
to limit the size of finite lattice spacing effects is a < 0.1 fm. The leading corrections in the
lattice spacing effects that remain are typically O(a2) [5]. As systematic errors are unique to each
simulation, results can be extrapolated to a→ 0 by adding a term cja

2 to the fitting equation where
j indicates what collaboration each data point was calculated by. The cj terms are then treated as
fitting parameters.

3. METHOD OF CALCULATION

3.1 Applying the Hellmann-Feynman Theorem

The HF methods requires a functional relationship between the nucleon mass and quark mass. To
achieve the necessary functional relationship, I use the expansion taken from Baryon Chiral Pertur-
bation Theory (BχPT) [6]. The first several terms of the expansion in the pion mass can be seen in
Eq. 2.

MN (M2
π) = M0 − 4C1M

2
π +

1

2
ᾱM4

π +
C1

8π2f2π
M4
π ln

M2
π

M0
(2)
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The terms M0, C1, and ᾱ are low energy constants (LECs) that must be determined before
calculating σπN . Once they are known, the HF theorem allows for a straightforward calculation of
σπN through a simple analytic derivative given by Eq. 3.

σπN = −4C1M
2
π + ᾱM4

π +
C1

4π2f2π
M4
π ln

M2
π

M2
0

+
C1

8π2f2π
M4
π (3)

3.2 Determining the Low Energy Constants

The LECs are determined by fitting Eq. 2 to the nucleon mass data generated by LQCD using vary-
ing pion masses. All sources of error are small enough compared to the error in the values of MN

and are therefore deemed negligible. Additionally, errors in MN are assumed to be uncorrelated.
To ensure that finite volume effects were negligible, points that did not satisfy MπL > 3.8 did not
enter the fit. Points were extrapolated to a → 0 by including a term of the form cja

2 in the fit for
each collaboration data was taken from. Three cj terms were added in the Nf = 2 case and two cj
terms were added in both the Nf = 2 + 1 and Nf = 2 + 1 + 1 case. The final χ2 function that I
minimize is

χ2 =
∑
i=1

MN (M2
π) + cja

2 − di(M2
π)

σi
, (4)

where di(M2
π) are the LQCD data points for MN with associated uncertainties σi. The common

fitting parameters for all three fits include M0, C1, and ᾱ. A good fit will have χ2/dof ∼= 1, where
dof is short for the degrees of freedom in the fit and is defined as the number of data points (di)
minus the number of fitting parameters (i.e. M0, C1, ᾱ, cj). Uncertainties in the fit parameters,
nucleon mass, and σπN were determined using the standard jackknife procedure described in [7].
All values will be given in the form mean(stdev). As an example, 7.92(13) shows that the mean
value is 7.92 with an associated standard deviation is 0.13.

4. RESULTS

For the fit usingNf = 2 LQCD collaboration data, seven points were taken from the Mainz collabo-
ration [8], six points were taken from the RQCD collaboration [9], and seven points were taken from
the ETM collaboration [10]. The three extrapolation parameters (cj of Eq. 4), can be found in Table
1. The cLQCD and cRQCD terms are consistent with zero while the cMainz term is not. This shows
that the systematic error introduced in the ETM and RQCD collaborations were similar in magnitude
and thus a non-zero extrapolation was necessary for the Mainz data points. For the Nf = 2 + 1 fit,
nine points were taken from the LHP collaboration [11] and five points were taken from the NME
collaboration [12]. The extrapolation parameters cLHP and cNME are not consistent with zero as
seen in Table 1. For the Nf = 2 + 1 + 1 fit, fifteen points were taken from the ETM collaboration

Student Journal of Physics,Vol. 6, No. 3, Jul-Sep. 2017 125



Christopher Kane

[13] and six points were taken from the PNDME collaboration [14]. Like the Nf = 2 + 1 case, the
extrapolation parameters cETMC and cPNDME are not consistent with zero as seen in Table 1.

2*Nf = 2 cRQCD −0.12(15)

cETMC 0.15(14)
cMainz 0.55(19)

2*Nf = 2+1 cLHP 0.124(9)
cNME −0.166(4)

2*Nf = 2+1+1 cETMC 0.136(4)
cPNDME −0.042(25)

Table 1. Extrapolation parameter values (a→ 0) for the Nf = 2, 2+1, 2+1+1 fits.

The fit for the Nf = 2 case can be seen in Fig. 2. The large χ2/dof can be explained by
analyzing the contribution of each individual data point to the total value. In this fit, three data
points contributed to more than 50% of the total value. From this it is seen that using Eq. 2 as
the fitting equation is appropriate, and the systematic error in the three data points in question was
underestimated. The fit for the Nf = 2 + 1 case can be found in Fig. 3. Although the χ2/dof
is smaller than in the Nf = 2 case, it is still not low enough to be considered a good fit. Similar
to the previous case however, three data points accounted for over 50% of the value. This leads
to the same conclusion that the systematic error in those data points were underestimated. The
fit for the Nf = 2 + 1 + 1 case can be seen in Fig. 4. The χ2/dof is within the range to indi-
cate a good fit. This shows that errors in all data points have appropriate errors associated with
them.

Nf M0 [GeV] C1 [GeV-1] ᾱ [GeV-3] σπN [MeV] χ2dof

2 0.908(4) −0.55(6) −5.4(1.8) 40(4) 4.76
2+1 0.901(23) −0.26(18) 11(10) 25(11) 2.04

2+1+1 0.916(18) −0.56(4) −7.5(9) 40(3) 1.31

Table 2. Results for BχPT fits to Nf = 2, 2+1, 2+1+1 nucleon mass data.

The values of σπN for the Nf = 2 and Nf = 2 + 1 cases, seen in Table 2, agree with values
produced by [6] within errorbars. Comparing the values of σπN for all three cases, we see that the
mean values for the Nf = 2 and Nf = 2 + 1 + 1 cases are equal with similar error bars. The mean
value for the Nf = 2 + 1 case is significantly smaller comparatively, but has a standard deviation of
40% the mean value. Because of this large error, the value still agrees with the Nf = 2 case within
error bars and is just over one standard deviation away from agreeing with the Nf = 2 + 1 + 1

case within error bars. Furthermore, comparing the values of the fitting parameters it is seen that the
values ofM0 for the three cases are not statistically different. The values ofC1 and ᾱ for theNf = 2

and Nf = 2 + 1 + 1 cases are indistinguishable while the values for the Nf = 2 + 1 case disagree.
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Figure 2. Nf=2 flavor fit of nucleon mass vs. pion mass squared. Data points from
RQCD are in green, from Mainz are in red, and from ETMC are in blue. The shaded
blue region is the uncertainty in the MN calculations while the solid dark blue line is
the mean value of MN .
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Figure 3. Nf = 2 + 1 flavor fit of nucleon mass vs. pion mass squared. Data points
from NME are in blue and points from LHPC are in green.
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Figure 4. Nf = 2 + 1 + 1 flavor fit of nucleon mass vs. pion mass squared. Data
points from ETMC are in red and points from PNDME are in green.
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However, the error in C1 and ᾱ for the Nf = 2 + 1 case are, again large, with values of 70% and
90% of the mean respectively. One possibility for the large error in the Nf = 2 + 1 case is the small
number of available data points compared to the other cases. The Nf = 2 and Nf = 2 + 1 + 1 had
twenty data points that met the fit requirements while the Nf = 2 + 1 case had only fourteen points
that met the fit requirements. Because of the large error in the parameters for the three flavor case,
I cannot conclude the value of σπN is statistically different from the two and four flavor case. The
fits therefore show that the values of σπN for the three cases are not statistically different and there
is no apparent flavor dependence.

5. SUMMARY AND CONCLUSION

In this work I collected data from various collaborations generated using lattice QCD for the two
flavor, three flavor, and four flavor cases. The data needed to meet the requirement that MπL > 3.8

to assure finite volume effects could be safely ignored. Terms of the form cja
2 were added to the

fitting equation to account for lattice spacing effects. This data was fitted to an expansion of the
nucleon mass in terms of the pion mass developed from Baryon Chiral Perturbation Theory. Once
the low energy constants were determined, I applied the Hellmann-Feynman theorem to the fitting
equation in order to calculate σπN . Comparing the values of σπN for the three cases, it is seen that
they are not statistically different. This shows that after a first level analysis, σπN has no significant
dependence on the number of flavors included in the LQCD simulations. The inclusion of heavier
quarks can therefore not account for the disparity in values calculated by phenomenological methods
and LQCD methods.
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