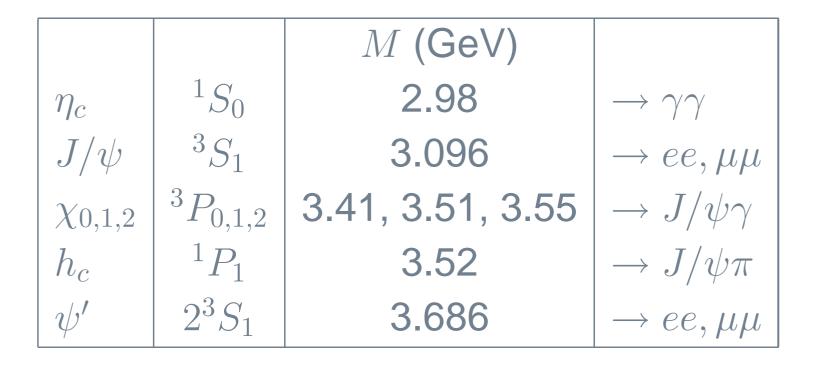
NRQCD – How effective a theory of

K. Sridhar Tata Institute of Fundamental Research Mumbai


Charmonia at the LHC

Sridhar K. - p. 1/20

- The theory of strong interactions based on a non-abelian colour SU(3) symmetry.
- QCD is asymptotically free.
- QCD factorisation.

Charmonium Family

Pre-NRQCD models

- Colour-evaporation
- Colour-singlet

Colour Singlet Model

- Colour singlet model worked reasonably for low-energy (ISR) production
- At higher energies, problems with b quark initiated states.
- At Tevatron, prompt J/ψ production disagreed seriously with colour singlet model predictions.

- Non-Relativistic QCD (NRQCD) is an effective theory obtained from QCD.
- Used to model bound state dynamics and study production and decay of quarkonia.
- Obtained by treating QCD with an ultraviolet cutoff $\sim M$.
- Neglecting states above M and adding new operators to account for this exclusion.

Velocity expansion

- Other scale is $Mv \ll M$ with $v \ll 1$.
- Suggests an expansion of the quarkonium wavefunction in v.

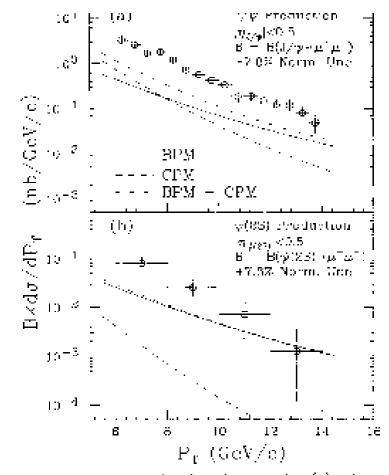
(1)
$$|J/\psi\rangle = |c\bar{c}({}^{3}S_{1}^{[1]})\rangle + v^{2}|c\bar{c}({}^{3}P_{J}^{[8]})g\rangle + \dots$$

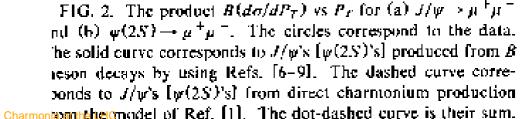
• So there is an octet state in the J/ψ with *P*-state quantum numbers – which connects to the physical state through the emission of a non-perturbative gluon.

Electric and Magnetic transitions

- So, in NRQCD quarkonium production and decay involves intermediate states where the $Q\bar{Q}$ pair has quantum numbers different from those of the physical quarkonium.
- Forms the physical state via chromo-electric or chromo-magnetic transitions. More explicitly,

$$\begin{aligned} &|c\bar{c}({}^{3}S_{1}^{[1]})\rangle + v^{2}|c\bar{c}({}^{3}P_{J}^{[8]})g\rangle + \\ &v^{2}|c\bar{c}({}^{3}S_{1}^{[8]})gg)\rangle + v^{2}|c\bar{c}({}^{1}S_{0}^{[8]})g\rangle + \dots \end{aligned}$$


*P***-state decays**


• Consider the χ states:

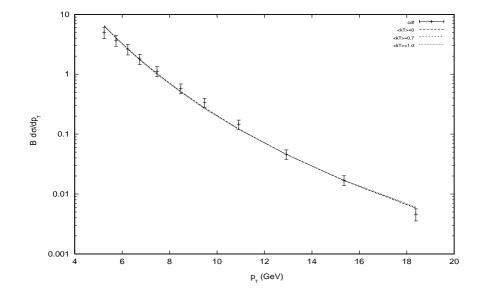
(2)
$$|\chi\rangle = v|c\bar{c}({}^{3}P_{J}^{[1]})\rangle + v|c\bar{c}({}^{3}S_{1}^{[8]})g\rangle$$

- In the colour-singlet model the amplitude for χ decays into hadrons has a divergence. This is due to neglecting the colour-octet component.
- Colour-singlet model is flawed.

at CDF – I

Sridhar K. – p. 10/20

NRQCD factorization


The cross section for production of a quarkonium state H is:

(3)
$$\sigma(H) = \sum_{n=\{\alpha,S,L,J\}} \frac{F_n}{M_Q^{d_n-4}} \langle \mathcal{O}_n^H(^{2S+1}L_J) \rangle,$$

- F_n's are the perturbatively computable short-distance coefficients
- \mathcal{O}_n are operators of naive dimension d_n , describing the long-distance effects.
- Factorization \rightarrow momentum-independence of the non-perturbative elements.

- NRQCD gives a good description of the cross-sections for J/ψ and other charmonium states measured at the Tevatron.
- One of the crucial features of the data is the large p_T tail which is due to gluon fragmentation.
- Fragmentation becomes important when $p_T > M$ and is naturally incorporated in NRQCD through colour-octet components.

 J/ψ at CDF – II

Figure 2: J/ψ at CDF

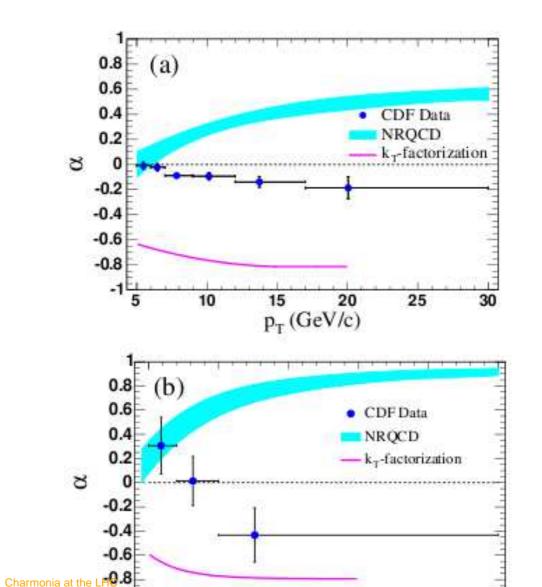
Charmonia at the LHC

Sridhar K. - p. 13/20

 ψ polarisation

- In fragmentation, the gluon transfers all its transverse polarisation to the $c\bar{c}$ pair.
- NRQCD has a heavy-quark symmetry the spin and flavour degrees of freedom are irrelevant in the non-perturbative soft interactions due to which the J/ψ inherits the transverse polarisation of the $c\bar{c}$ pair.
- The J/ψ at large- p_T should be transversely polarised.

Measuring polarisation


• Experimentally the $\cos\theta^*$ distribution is measured where θ^* is the angle of the decay lepton in the J/ψ rest frame with respect to the J/ψ boost direction in the lab. Then

(4)
$$\frac{d\sigma}{d\cos\theta^*} \sim (1 + \alpha\cos\theta^*)$$

where α is the polarisation parameter.

- $\alpha = 1 \rightarrow$ Transverse polarisation
- $\alpha = -1 \rightarrow \text{Longitudinal polarisation}$

CDF polarisation data

Sridhar K. – p. 16/20

Alternate test of NRQCD

- The heavy-quark symmetry of NRQCD implies that the non-perturbative matrix elements are related to each other.
- For example, for η_c production there are three contributions: from a colour-singlet 1S_0 state and from colour-octet 1P_1 and 3S_1 channels.
- We need to know three non-perturbative parameters to predict the η_c cross-section.

Heavy-quark symmetry relations

$$\langle 0 | \mathcal{O}_{1}^{\eta_{c}}[{}^{1}S_{0}] | 0 \rangle = \frac{1}{3} \langle 0 | \mathcal{O}_{1}^{J/\psi}[{}^{3}S_{1}] | 0 \rangle (1 + O(v^{2})),$$

$$\langle 0 | \mathcal{O}_{8}^{\eta_{c}}[{}^{1}P_{1}] | 0 \rangle = \langle 0 | \mathcal{O}_{8}^{J/\psi}[{}^{3}P_{0}] | 0 \rangle (1 + O(v^{2})),$$

$$\langle 0 | \mathcal{O}_{8}^{\eta_{c}}[{}^{3}S_{1}] | 0 \rangle = \langle 0 | \mathcal{O}_{8}^{J/\psi}[{}^{1}S_{0}] | 0 \rangle (1 + O(v^{2})).$$

This allows us to make predictions for η_c production at the LHC.

η_c **Production**

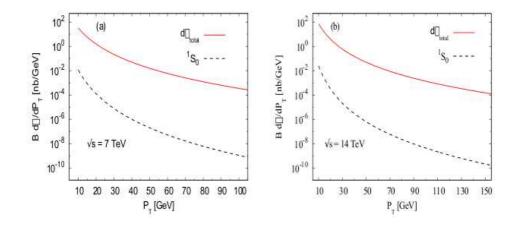


Figure 1: $d\sigma/dp_r$ (in nb/GeV) for η_c production (after folding in with Br($\eta_c \rightarrow \gamma\gamma$) = 3.0×10^{-4}) in pp collisions at $\sqrt{s} = 7$ TeV and 14 TeV with $-2 \le y \le 2$.

- A similar strategy may be exploited for h_c production.
- More difficult resonance to study has never been seen in hadron collisions.
- But large enough cross-sections for this state to be detected at the LHC. Will help study its properties more accurately.