Neutrino Astrophysics: Challenges and Possibilities

Sovan Chakraborty MPI for Physics, Munich

Institute of Physics, Bhubaneswar

NEUTRINOS

- Chargeless
- Spin ½
- Weakly interacting
- Almost massless

Neutrino oscillations —>Neutrinos have a tiny but finite mass

No bending in magnetic fields \rightarrow Point back to the source

Minimal obstruction / scattering → Arrive directly from regions opaque to light.

NEUTRINO SOURCES

NEUTRINOS FROM SUN

Solar Radiation: 98% light, 2% neutrinos 66 billion neutrinos/cm² sec 1-10 MeV

Thermonuclear Reaction Chain 1938

Hans Bethe (1906–2005, Nobel prize 1967)

Bethe & Peierls 1934: ... this evidently means that one will never be able to observe a neutrino. Neutrino Detection (1954-1956) Reactor Anti-Electron Neutrinos were detected Clyde Cowan and Fred Reines Fred Reines (1918-1998), Nobel Prize 1995

NEUTRINOS FROM SUN

Solar Neutrino Detection Homestake Solar neutrino Observatory (1967-2002)Inverse Beta Decay on Chlorine

Ray Davis Jr. (1914–2006) Masatoshi Koshiba (*1926)

Nobel Prize 2002 for Neutrino Astronomy

SOLAR NEUTRINO PUZZLE

(1967-2002)

Inverse Beta Decay on Chlorine

Ray Davis Jr. (1914–2006) Masatoshi Koshiba (*1926)

Nobel Prize 2002 for Neutrino Astronomy

ATMOSPHERIC NEUTRINO PUZZLE

Cosmic rays \oplus atmosphere \Rightarrow pions and muons \Rightarrow decay to neutrinos (ν_{μ} and ν_{e}) Expect almost isotropic flux of neutrinos Almost half the ν_{μ} are lost while passing through the Earth, no ν_{e} are lost.

Solution : Neutrino flavor oscillations

• Two flavor mixing
$$\begin{pmatrix} v_e \\ v_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

Each mass eigenstates propagates as e^{ipz} with $p_i = \sqrt{E^2 - m^2} \approx E - \frac{m_i^2}{2E}$

$$\left| \boldsymbol{v}_{\mu}(z) \right\rangle = -\sin\theta \ e^{-ip_{1}z} \left| \boldsymbol{v}_{1} \right\rangle + \cos\theta \ e^{-ip_{2}z} \left| \boldsymbol{v}_{2} \right\rangle$$
2 v oscillation probability $P(\boldsymbol{v}_{e} \rightarrow \boldsymbol{v}_{\mu}) = \left| \left\langle \boldsymbol{v}_{\mu}(z) \left| \boldsymbol{v}_{e}(0) \right\rangle \right|^{2} = \sin^{2} 2\theta \sin^{2} \left(\frac{\Delta m^{2}L}{4E} \right)$

ATMOSPHERIC NEUTRINO PUZZLE

Cosmic rays \oplus atmosphere \Rightarrow pions and muons \Rightarrow decay to neutrinos (ν_{μ} and ν_{e}) Expect almost isotropic flux of neutrinos Almost half the ν_{μ} are lost while passing through the Earth, no ν_{e} are lost.

 $\begin{array}{l} \text{Solution}:\\ \text{Neutrino flavor oscillations}\\ \nu_{\mu} \, and \, \nu_{\tau} \, mix \end{array}$

Measure $\Delta m_{\rm atm}^2$ and $\theta_{\rm atm}$

SOLAR NEUTRINO PUZZLE

Solution : Neutrino flavor oscillations in matter v_e mixes with other flavors. Resonance mixing inside the Sun Measure Δm_{\odot}^2 and θ_{\odot}

RREACTOR AND GEO NEUTRINO

Reactor Neutrinos:

Confirmed oscillations through solar neutrino parameters even in vacuum

Measure $\theta_{reactor}$

Geo Neutrinos:

Produced by natural radioactivity in Earth's crust KamLAND, Borexino Useful for understanding Earth's radioactivity

Neutrino Geophysics!!

3v FRAMEWORK and OPEN QUESTIONS

3v FRAMEWORK and OPEN QUESTIONS

Neutrinos from Supernovae

The core collapse and v cooling mechanism confirmed!

[slides from G. Raffelt]

[slides from G. Raffelt]

Collapse (implosion)

ENERGY SCALE:

99% energy (10^{53} ergs) is emitted by neutrinos (Energy ~ 10 MeV).

TIME SCALE:

The duration of the burst lasts ~10s.

Shock Revival by Neutrinos

Growing Set of 2D Exploding Models

Failed Explosion

Status of SN Explosion

- Standard paradigm for many years: Neutrino-driven explosion (delayed explosion, Wilson mechanism)
- Numerical explosions ok for small-mass progenitors in 1D (spherical symmetry)
- Numerical explosions ok for broad mass range in 2D (axial symmetry)
- 3D studies only beginning no clear picture yet Better spatial resolution needed?

Sky Map of Lepton-Number Flux (11.2 M_{SUN} Model)

Lepton-number flux ($\nu_e - \overline{\nu}_e$) relative to 4π average Deleptonization flux into one hemisphere, roughly dipole distribution (LESA – Lepton Emission Self-Sustained Asymmetry)

Tamborra et al., arXiv:1402.5418

LESA Schematic Description

Tamborra et al., arXiv:1402.5418

Neutrino Average Energy

Accretion

- powered by infalling matter
 - Stalled shock
 Accretion: ~ 0.5 s

Flavor Oscillation can give harder v_e and \overline{v}_e spectra

[Fischer et al. (Basel Simulations), A&A 517:A80,2010, 10. 8 M_{sun} progenitor mass]

Neutrino Emission Phases

Flavor Oscillation can give harder v_e and \overline{v}_e spectra

Instabilities in neutrino evolution due to Neutrino-Neutrino interaction

> EXTRA Heating???

[Fischer et al. (Basel Simulations), A&A 517:A80,2010, 10. 8 M_{sun} progenitor mass]

Stability Analysis

LESA Schematic Description

LESA lepton asymmetry

Large lepton asymmetry prohibits instability in neutrino evolution

S.C, Raffelt, Janka & Mueller, arXiv:1412.0670

Stability Analysis: LESA

Maximum lepton Asymmetry

<u>S.C</u>, Raffelt, Janka & Mueller, arXiv:1412.0670

Stability Analysis: LESA

Minimum lepton Asymmetry

High Energy Neutrinos

Fréjus

What do we know?

Background and Signals

Atmospheric neutrino & muon production in cosmic ray air showers

Muons are absorbed inside the Earth. Only events from above.

Atmospheric neutrino background From North and South.

Earth becomes opaque to high-energy neutrinos.

PeV events are coming from above.

Event classes in IceCube

TRACKS

CASCADES

Source: $\nu \mu$ CC interaction

Good angular resolution (<1°)

Moderate energy resolution

Source: $\nu_{e}, \nu_{\mu}, \nu_{\tau} \text{ NC} + \nu_{e} \text{ CC interaction}$

Limited angular resolution (210°)

Good energy resolution

PeV Events in IceCube

- Shown at Neutrino'12
- Both downgoing cascades
- Expected background: 0.082

IceCube Collaboration, PRL 111, 021103(2013)

Number of events

PeV Events in IceCube

Needed more statistics

Extends sensitivity to lower energies

Optimized on events starting inside detector

IceCube Collaboration, PRL 111, 021103(2013)

Results of the follow-up search

36 events observed including 3 PeV events

8 Tracks events

Expected background 15 7 atmospheric neutrinos 8 atmospheric muons

Deposited EM-Equivalent Energy in Detector (TeV)

Energy and Zenith Distribution

[lceCube PRL 113 (2014)]

Energy and Zenith Distribution

No significant correlation with Galactic plane (Slight Excess)

[IceCube PRL 113 (2014)]

Energy and Zenith Distribution

[IceCube PRL 113 (2014)]

Questions Regarding the Origin

Several Possibilities:

- Active galactic Nuclei (AGN)
 - Low power GRB's
 - Star burst Galaxies
 - Fermi bubble
 - PeV dark matter decay

especially with some post-data tweaks!

Neutrino Beams:

Target: Protons or Photons

 $\mu \,
u_{\mu}$ Approx. equal fluxes of photons & neutrinos

Equal neutrino fluxes

Active Galactic Nuclei

- Neutrino interactions from pγ interactions in AGN cores [Stecker et al.'91]
 - Complex spectra from various photon backgrounds
 - Deficit of sub-PeV and excess of EeV neutrinos

[Murase, Inoue & Dermer 1403.4089]

Gamma Ray Bursts

- Strong limits of neutrino emission with the fireball model [Abbasi et al. '12]
 - IC excess exceeds limit by factor of around 5
 - What about undetected low-power GRB [Murase et al. arxiv 1306.2274]

Gamma Ray Bursts

CRs accelerated in GRB colliding in the galactic molecular cloud

[Dado and Dar. PRL'14]

Starburst galaxies

- Intense CR interactions (and acceleration) in dense starburst galaxies
- Cutoff/break feature (0:1-1) PeV at the CR knee (of these galaxies)

Normal galaxies (i.e., Milky Way, Andromeda)

Starburst galaxies (i.e., M82, NGC 253)

• pp efficiency

 $f_{\pi} = \min(1, t_{\rm esc}/\tau_{pp})$ $\tau_{pp}(\varepsilon_p) = [\kappa \sigma_{pp}(\varepsilon_p)nc]^{-1}$

•Two escape ways: 1) diffusion 2) advection

$$t_{\rm diff} = h^2/4D$$
 $t_{\rm adv} = h/V_w$

Hypernovae occur in star-forming galaxies
 & starburst galaxies

$$f_{\pi}^{\mathrm{N}} = t_{\mathrm{diff}}^{\mathrm{N}} / \tau_{pp}^{\mathrm{N}} \simeq 0.01 \text{ and } f_{\pi}^{\mathrm{B}} = t_{\mathrm{diff}}^{\mathrm{B}} / \tau_{pp}^{\mathrm{B}} \simeq 0.4$$

Murase et al. arXiv:1306.3417, Liu et al. arXiv:1310.1263, Tomborra et al. arXiv:1404.1189

• pp efficiency

 $f_{\pi} = \min\left(1, t_{\rm esc}/\tau_{pp}\right)$ $\tau_{pp}(\varepsilon_p) = [\kappa \sigma_{pp}(\varepsilon_p) nc]^{-1}$

•Two escape ways: 1) diffusion 2) advection

$$t_{\rm diff} = h^2/4D$$
 $t_{\rm adv} = h/V_w$

Hypernovae occur in star-forming galaxies
 & starburst galaxies

$$\varepsilon_{p,b}^{\rm B} = 1.6 \, {\rm PeV} \, \left(\frac{h}{1 \, \rm kpc}\right)^{3.3} \left(\frac{V_w}{1500 \, \rm km \, s^{-1}}\right)^{3.3} \left(\frac{D_0}{10^{27} \, \rm cm^2 \, s^{-1}}\right)^{-3.3}$$

Murase et al. arXiv:1306.3417, Liu et al. arXiv:1310.1263, Tomborra et al. arXiv:1404.1189

Liu et al. 13

What about ordinary SNR?

- Local SNR rate
 ~100 × HNR rate
- However SNR
 Ejecta Energy
 ~0.1 × HNR Ejecta
 Energy

$$\varepsilon_{p,b}^{\rm B} = 1.6 \, {\rm PeV} \, \left(\frac{h}{1 \, \rm kpc}\right)^{3.3} \left(\frac{V_w}{1500 \, \rm km \, s^{-1}}\right)^{3.3} \left(\frac{D_0}{10^{27} \, \rm cm^2 \, s^{-1}}\right)^{-3.3}$$

Liu et al. 13

What about ordinary SNR?

Local SNR rate
 ~100 × HNR rate

However SNR
 Ejecta Energy
 ~0.1 × HNR Ejecta
 Energy

$$\varepsilon_{p,b}^{\rm B} = 1.6 \, {\rm PeV} \, \left(\frac{h}{1 \, \rm kpc}\right)^{3.3} \left(\frac{V_w}{1500 \, \rm km \, s^{-1}}\right)^{3.3} \left(\frac{D_0}{10^{27} \, \rm cm^2 \, s^{-1}}\right)^{-3.3}$$

S.C and I. Izzaguire, arXiv:1501.02615

- Local SNR rate
 ~100 × HNR rate
- However SNR
 Ejecta Energy
 ~0.1 × HNR Ejecta
 Energy

The HNR flux normalization should come from 100 TeV flux dominated by SNR

Summary and Outlook

- Important progress in neutrino astrophysics in the last years.
- Neutrinos as extremely important to understand the stellar dynamics.
- Novel flavor conversion phenomena uncovered in supernovae but key questions remain open.
- IceCube TeV-PeV background has opened yet another area of neutrino astrophysics.

Extra Slides

NEUTRINOS FROM SUN

Super-Kamiokande: Sun in the Light of Neutrinos

Super-Kamiokande: Sun in the Light of Neutrinos

ca. 60,000 solar neutrinos measured in Super-K (1996–2012)

[Fischer et al. (Basel Simulations), A&A 517:A80,2010, 10. 8 M_{sun} progenitor mass]

Large-Scale Convection in 3D (11.2 M_{SUN})

Tamborra et al., arXiv:1402.5418

r-Process Nucleosynthesis

- Heating by neutrino driven wind coming from neutrino-sphere $v_e + n \Rightarrow e^- + p; \ \overline{v}_e + p \Rightarrow e^+ + n$
- Important quantity whose evolution should be studied is Electron fraction (Ye) = No of electrons/No of Baryons
- For Neutron rich conditions Ye < 0.5 (Preferably < 0.45).

PeV Events in IceCube

- Shown at Neutrino'12
- Both downgoing cascades
- Expected background: 0.082

GZK ? cosmic rays interact with the microwave background

$$p + \gamma \rightarrow n + \pi^+ and p + \pi^0$$

Too low energy, more events should be seen in higher energies

Glashow-Cohen Radiation

Superluminal propagation allows kinematically forbidden processes :

LIV Processes (neutrino) Cohen & Glashow 2011

Depletion of the high-energy neutrino fluxes during their propagation

observed flux $= e^{-\Gamma L}$ initial flux

• The two PeV cascade neutrino events detected by IceCube –if attributed to extragalactic diffuse events– can place the strongest bound on LIV in the neutrino sector.

$$\delta = (v^2 - 1) < 10^{-18}$$

Extra-Galactic Diffuse γ -ray Emission

 $\nu \rightarrow \nu e^+ e^-$

 e[±] propagate only few kpc before scattering off the CMB populating a *γ*-ray flux between 1 ~ 100 GeV.

Extra-Galactic Diffuse *γ*-ray Emission flux is constrained by Fermi data :

 γ Energy Density

$$\omega_{\gamma} = \frac{4\pi}{c} \int_{E_1}^{E_2} E \frac{d\varphi_{\gamma}}{dE} dE \lesssim 5.7 \times 10^{-7} \,\mathrm{eV/cm^3} \,.$$

Abdo et al. 2010

Extra-Galactic Diffuse γ -ray Emission

 $\nu \rightarrow \nu e^+ e^-$

 \mathbf{D} \mathbf{T}

Observed v Energy Density

$$\omega_{\nu}^{\text{obs}} = \frac{4\pi}{c} \int_{1 \text{ PeV}}^{1.1 \text{ PeV}} E \frac{d\varphi_E}{dE} \, \mathrm{d}E \sim 10^{-9} \, \mathrm{eV/cm^3}$$

Extra-Galactic Diffuse *γ*-ray Emission flux is constrained by Fermi data :

 γ Energy Density

$$\omega_{\gamma} = \frac{4\pi}{c} \int_{E_1}^{E_2} E \frac{d\varphi_{\gamma}}{dE} dE \lesssim 5.7 \times 10^{-7} \,\mathrm{eV/cm^3} \,.$$

Abdo et al. 2010

Bound on δ

$$e^{-\Gamma d} \gtrsim \frac{\omega_{\nu}^{\text{obs}}}{\omega_{\gamma}} \sim 10^{-2}$$

Initial flux $\leq 10^2$ Observed flux

$$\Gamma_{e^{\pm}} = \frac{1}{14} \frac{G_F^2 E^5 \delta^3}{192 \pi^3} = 2.55 \times 10^{53} \delta^3 E_{\rm PeV}^5 \,\,{\rm Mpc}^{-1}$$

 $\delta^{3} E^{5}_{PeV} L_{Mpc} \le 1.8 \times 10^{-53}$

For a source L ~ Mpc: $\delta \leq 2.6 \times 10^{-18}$

Borriello, <u>SC</u>, Mirizzi & Serpico, PRD (201