Inflationary model building, reconstructing parameters and observational limits

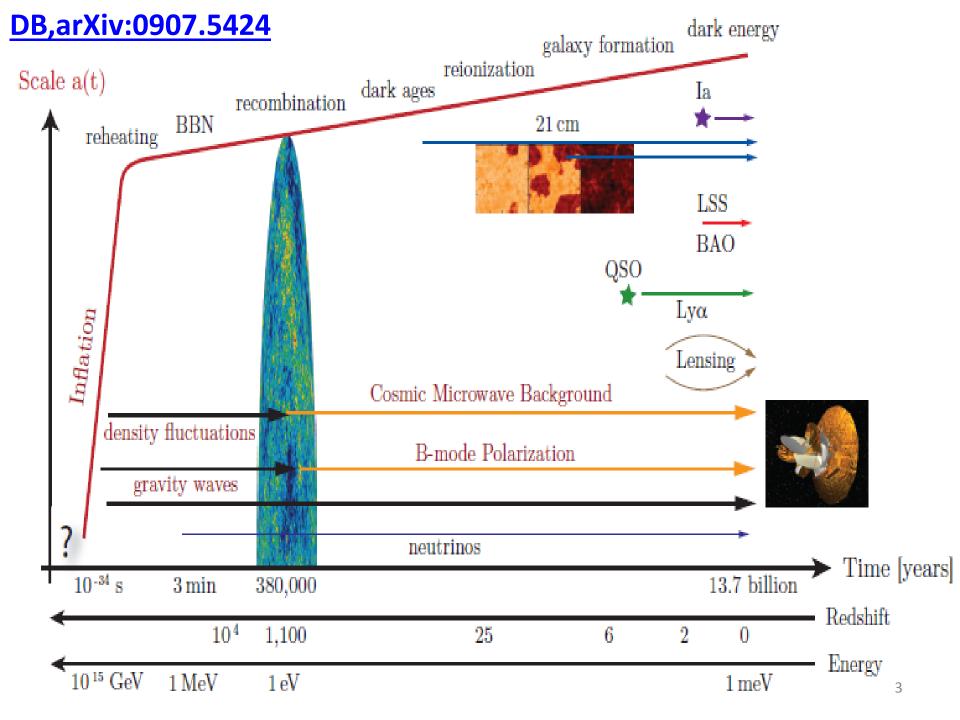
Sayantan Choudhury Physics and Applied Mathematics Unit Indian Statistical Institute, Kolkata

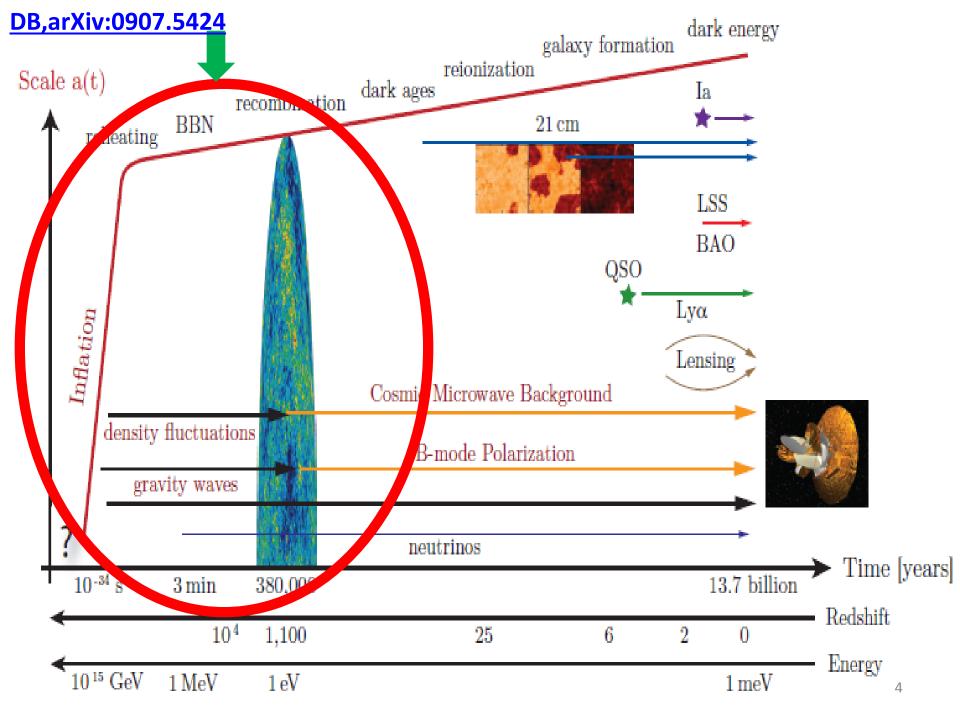
Date: 30/09/2014 Contact: <u>sayanphysicsisi@gmail.com</u> Webpage: http://isical.academia.edu/sayantanchoudhury

Outline of talk

- Inflationary paradigm and allied issues.
- Observational limits.
- Modeling inflation and parameter estimation.
- Reconstruction of inflationary potential.
- **Bottom lines.**

Open issues and future prospects.





DB,arXiv:0907.5424		Time	Energy
	Planck Epoch?	$< 10^{-43} { m s}$	10^{18} GeV
Scale a(t) recomb	String Scale?	$\gtrsim 10^{-43} { m \ s}$	$\lesssim 10^{18}~{ m GeV}$
Pleating BBN	Grand Unification?	$\sim 10^{-36}~{\rm s}$	
	Inflation?	$\gtrsim 10^{-34} { m \ s}$	$\lesssim 10^{15}~{ m GeV}$
	SUSY Breaking?	$< 10^{-10} { m s}$	$> 1 { m TeV}$
Inflation	Baryogenesis?	$< 10^{-10} { m s}$	$> 1 { m TeV}$
	Electroweak Unification	$10^{-10} { m s}$	1 TeV
	Quark-Hadron Transition	$10^{-4} \mathrm{s}$	$10^2 { m MeV}$
	Nucleon Freeze-Out	$0.01 \mathrm{\ s}$	$10 { m MeV}$
	Neutrino Decoupling	1 s	$1 { m MeV}$
Ē	BBN	3 min	$0.1 { m MeV}$
density fluctuations			
	Matter-Radiation Equality	10^4 yrs	1 eV
gravity waves	Recombination	10^5 yrs	$0.1 \ \mathrm{eV}$
	Dark Ages	$10^5 - 10^8$ yrs	
• 10.3 2 min 200.00	Reionization	10^8 yrs	
10^{-34} s $3 \min 380,00$	Galaxy Formation	$\sim 6\times 10^8~{\rm yrs}$	
104 1,100	Dark Energy	$\sim 10^9 \text{ yrs}$	
	Solar System	8×10^9 yrs	
10^{15} GeV 1 MeV 1 eV	Albert Einstein born	$14 \times 10^9 \text{ yrs}$	$1 { m \ meV}^5$

Basics of SBBC

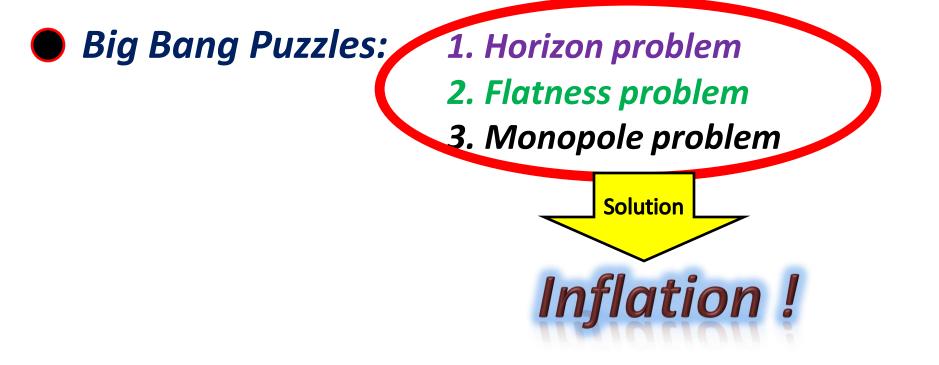
• Homogeneous and isotropic universe: FRW metric (for spatially flat k=0): $ds^2 = -dt^2 + a^2(t) \overline{dx_3}^2$

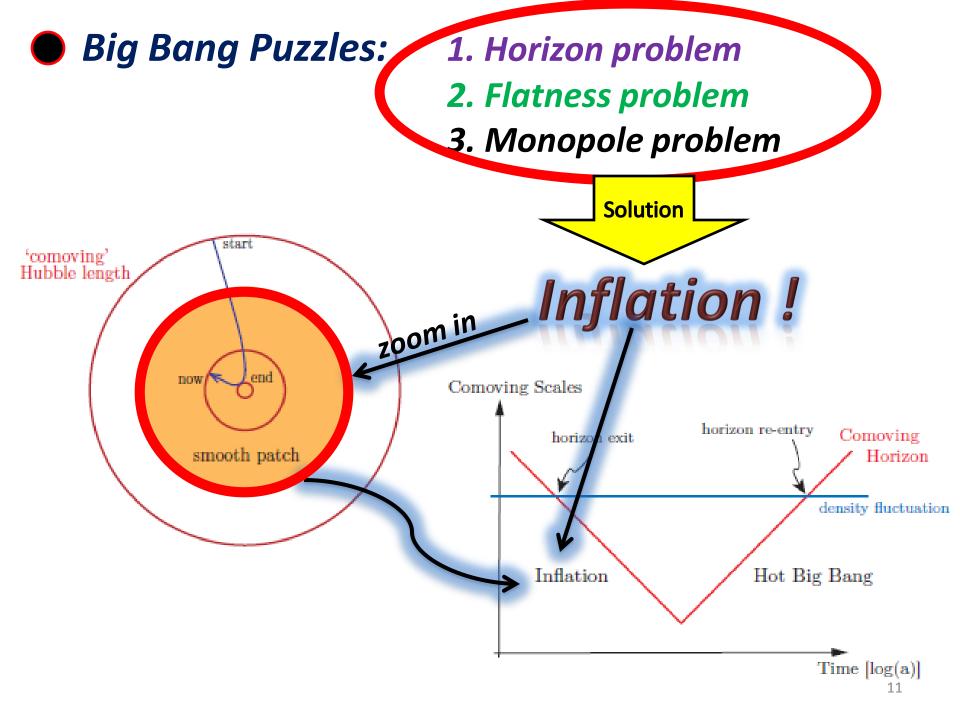
Basics of SBBC

Homogeneous and isotropic universe: FRW *metric (for spatially flat k=0):* $ds^2 = -dt^2 + a^2(t) \overrightarrow{dx_3}$ Friedman Equations in GR: Equation of continuity in GR: $\dot{\rho} + 3H(\rho + \beta)$ Equation of state: w =

Basics of SBBC Homogeneous and isotropic universe: FRW

metric (for spatially flat k=0): $ds^2 = -dt^2 + a^2(t) \overrightarrow{dx_3}$ Friedman Equations in GR: $=\frac{\rho}{3M^2}$ Equation of continuity in GR: $\dot{\rho} + 3H(\rho + \rho)$ Equation of state: $w = p/\rho$ FRW Solutions: Type **ρ(a)** W a(t) 1/3 RD MD 0 e^{Ht} a^0 -1





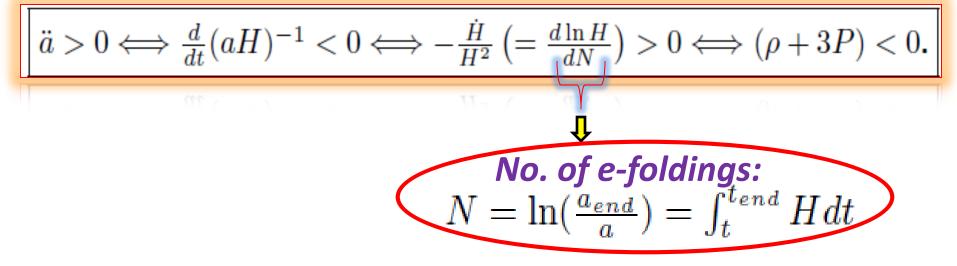
Inflationary paradigm and allied issues

Condition for inflation:

$$\ddot{a}>0 \Longleftrightarrow \tfrac{d}{dt}(aH)^{-1} < 0 \Longleftrightarrow - \tfrac{\dot{H}}{H^2}\left(= \tfrac{d\ln H}{dN}\right) > 0 \Longleftrightarrow (\rho + 3P) < 0.$$

Inflationary paradigm and allied issues

Condition for inflation:



Inflationary paradigm and allied issues Condition for inflation: $\ddot{a} > 0 \Longleftrightarrow \frac{d}{dt} (aH)^{-1} < 0 \Longleftrightarrow -\frac{\dot{H}}{H^2} \left(= \frac{d \ln H}{dN} \right) > 0 \Longleftrightarrow (\rho + 3P) < 0.$ No. of e-foldings: $N = \ln(\frac{a_{end}}{a}) = \int_{t}^{t_{end}} H dt$ Inflationary dynamics: Assume "inflaton" = scalar

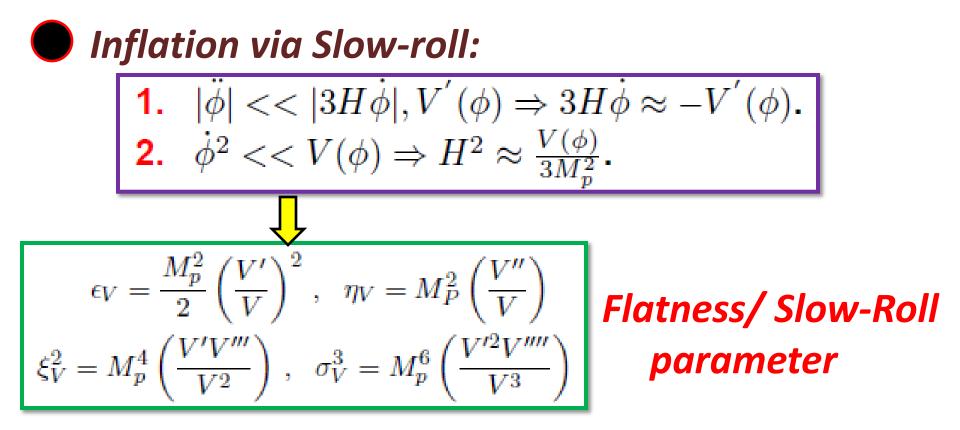
Inflationary paradigm and allied issues Condition for inflation: $\ddot{a} > 0 \Longleftrightarrow \tfrac{d}{dt} (aH)^{-1} < 0 \Longleftrightarrow - \tfrac{\dot{H}}{H^2} \left(= \tfrac{d \ln H}{dN} \right) > 0 \Longleftrightarrow (\rho + 3P) < 0.$ No. of e-foldings: $N = \ln(\frac{a_{end}}{a}) = \int_{t}^{t_{end}} H dt$ Inflationary dynamics: Assume "inflaton" = scalar

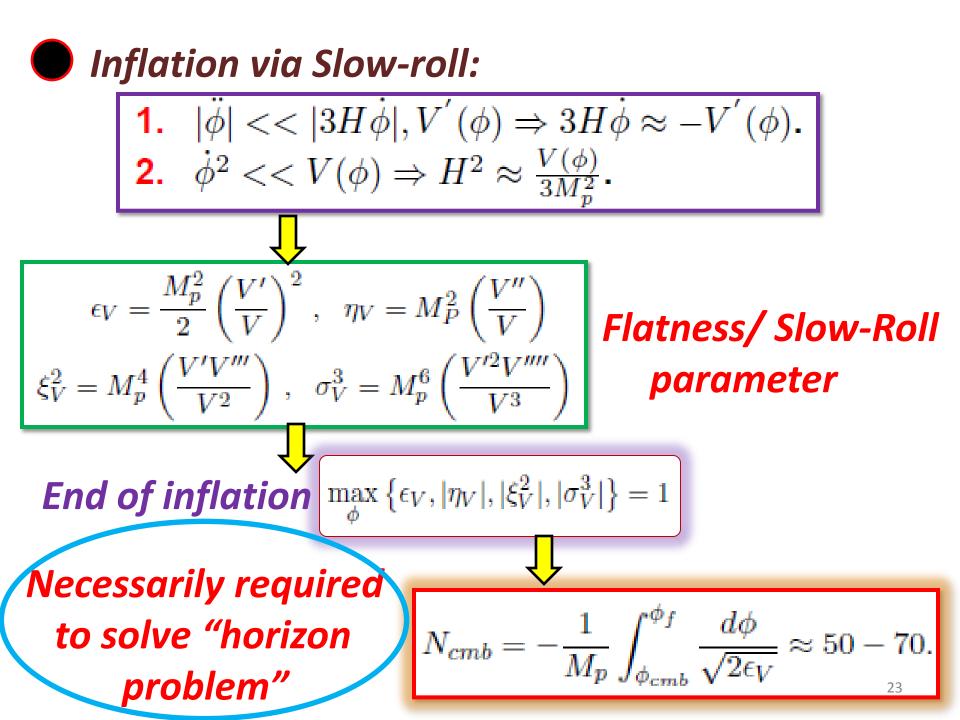
Inflationary paradigm and allied issues Condition for inflation: $\ddot{a} > 0 \Longleftrightarrow \tfrac{d}{dt} (aH)^{-1} < 0 \Longleftrightarrow - \tfrac{\dot{H}}{H^2} \left(= \tfrac{d \ln H}{dN} \right) > 0 \Longleftrightarrow (\rho + 3P) < 0.$ No. of e-foldings: $N = \ln(\frac{a_{end}}{a}) = \int_{t}^{t_{end}} H dt$ Inflationary dynamics: Assume "inflaton" = scalar $\rho_{\phi} = \frac{1}{2}\dot{\phi}^{2} + V(\phi) ,$ $p_{\phi} = \frac{1}{2}\dot{\phi}^{2} - V(\phi) .$ Scalar Field Eqn.: $\ddot{\phi} + 3H\dot{\phi} + V_{,\phi} = 0$

Inflation via Slow-roll:

1.
$$|\ddot{\phi}| << |3H\dot{\phi}|, V'(\phi) \Rightarrow 3H\dot{\phi} \approx -V'(\phi).$$

2. $\dot{\phi}^2 << V(\phi) \Rightarrow H^2 \approx \frac{V(\phi)}{3M_p^2}.$





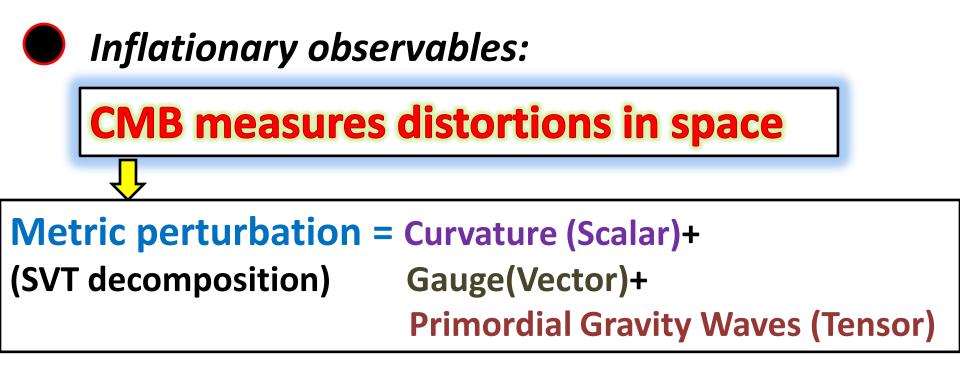
Inflationary Model Building

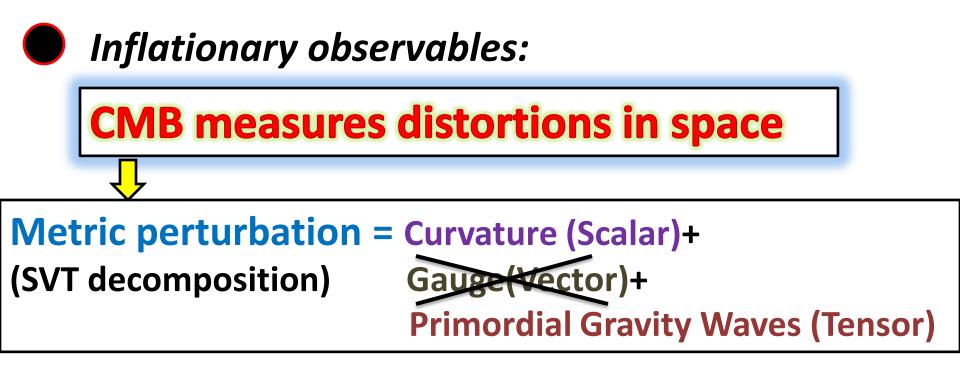
ALGORITHM

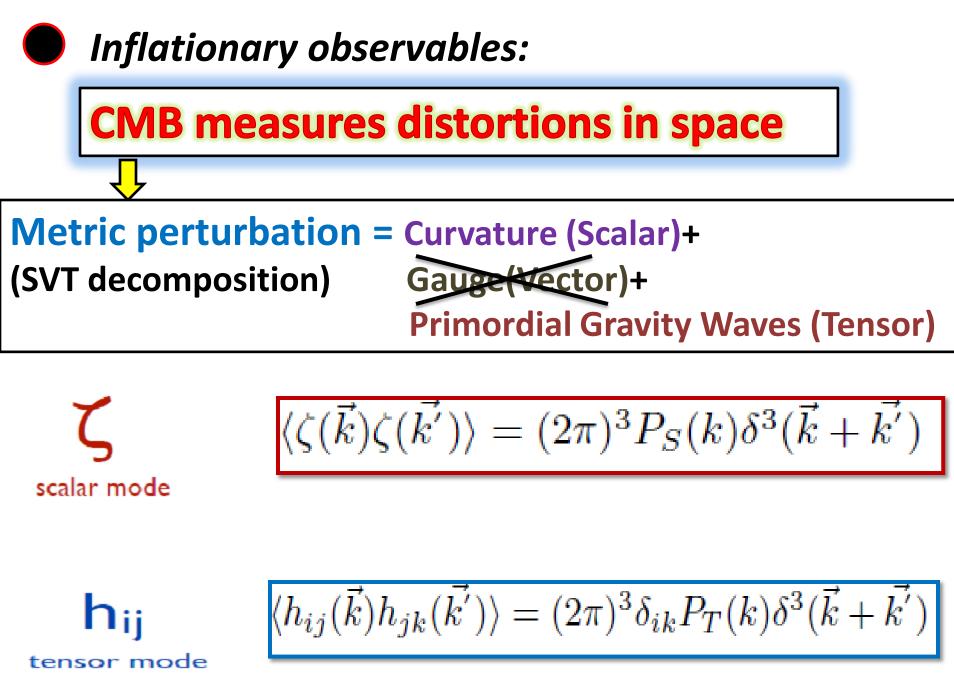
Inflationary Model Building Apply Slow-Roll technique Construct a potential Determine the field value at the CMB scale from "N" ALGORITHM **Determine various CMB** inflationary observables Confront with latest Determine the various observational probes cosmological parameters Determine the CMB power Put cosmic variances spectrum from model from observation

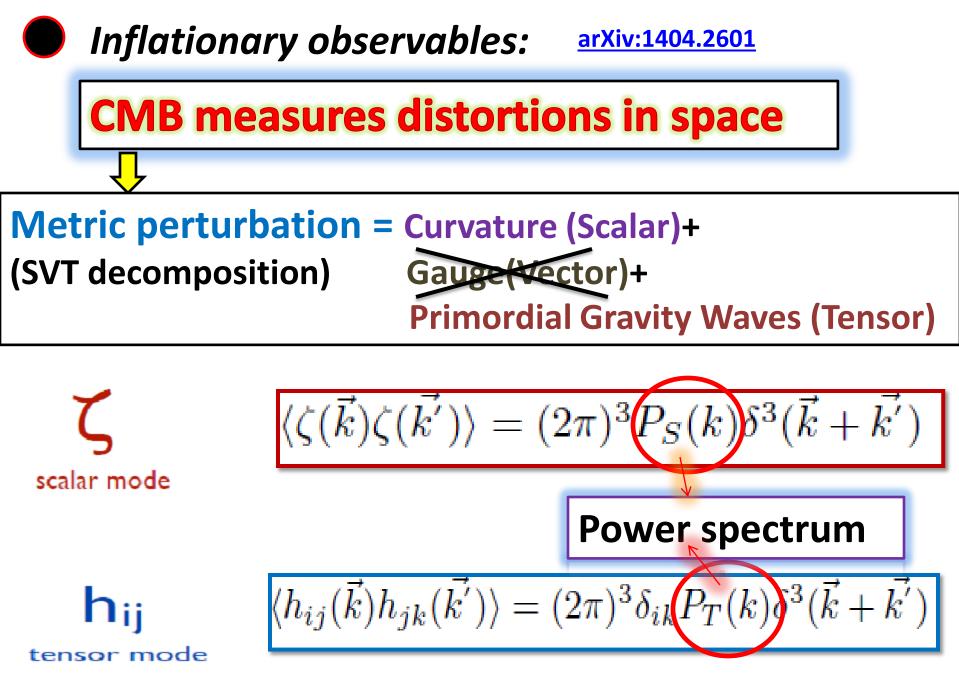
Inflationary observables:

CMB measures distortions in space









Inflationary observables:

 $P_{S}(k) = P_{S}(k_{\star}) \left(\frac{k}{k_{\star}}\right)^{n_{S}-1+\frac{\alpha_{S}}{2!}} \ln\left(\frac{k}{k_{\star}}\right) + \frac{\kappa_{S}}{3!} \ln^{2}\left(\frac{k}{k_{\star}}\right) + \cdots$ $\frac{\text{DB,LM,arXiv:1404.2601}}{\text{DB,LM,arXiv:1404.2601}}$ $P_{T}(k) = P_{T}(k_{\star}) \left(\frac{k}{k_{\star}}\right)^{n_{T}+\frac{\alpha_{T}}{2!}} \ln\left(\frac{k}{k_{\star}}\right) + \frac{\kappa_{T}}{3!} \ln^{2}\left(\frac{k}{k_{\star}}\right) + \cdots$

$$\begin{aligned} \boldsymbol{\zeta} \\ \text{scalar mode} \\ \begin{array}{l} & \langle \zeta(\vec{k})\zeta(\vec{k'}) \rangle = (2\pi)^3 P_S(k) \delta^3(\vec{k} + \vec{k'}) \\ & \text{Power spectrum} \\ & \langle h_{ij}(\vec{k})h_{jk}(\vec{k'}) \rangle = (2\pi)^3 \delta_{ik} P_T(k) \delta^3(\vec{k} + \vec{k'}) \\ & \text{tensor mode} \end{aligned}$$

Inflationary observables via flow eqn within slow-roll

- **1.** Scalar power spectrum: $P_S(k_{\star}) = \frac{V}{24\pi^2 \epsilon_V M_n^4}$
- 2. Tensor power spectrum: $P_T(k_{\star}) = \frac{2V}{3\pi^2 M_n^4}$
- **3.** Tensor-to-scalar ratio: $r(k_{\star}) = \frac{P_T(k_{\star})}{P_S(k_{\star})} = 16\epsilon_V$
- 4. Scalar spectral tilt : $n_S(k_\star) 1 = \frac{d \ln P_S(k)}{d \ln k}|_\star = 2\eta_V 6\epsilon_V$
- **5.** Tensor spectral tilt: $n_T(k_\star) = \frac{d \ln P_T(k)}{d \ln k}|_\star = -2\epsilon_V$
- Running of scalar spectral tilt:

$$\alpha_S(k_\star) = \frac{dn_S}{d\ln k}|_\star = 16\eta_V\epsilon_V - 24\epsilon_V^2 - 2\xi_V^2$$

Running of tensor spectral tilt:

$$\alpha_T(k_\star) = \frac{dn_T}{d\ln k}|_\star = 4\eta_V \epsilon_V - 8\epsilon_V^2$$

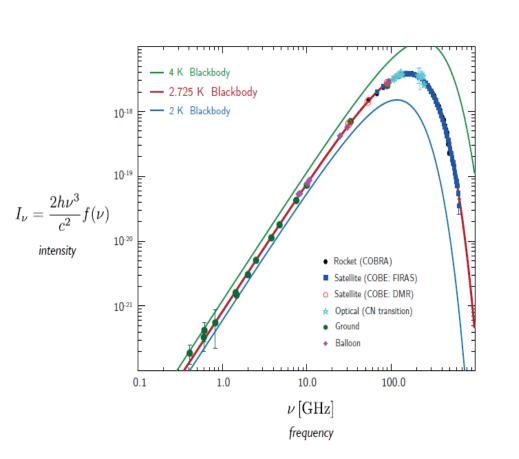
Running of the running of scalar spectral tilt:

$$\kappa_S(k_\star) = \frac{d^2 n_S}{d \ln k^2} |_\star = 192\epsilon_V^2 \eta_V - 192\epsilon_V^3 + 2\sigma_V^3 - 24\epsilon_V \xi_V^2 + 2\eta_V \xi_V^2 - 32\eta_V^2 \epsilon_V$$

Running of the running of tensor spectral tilt:

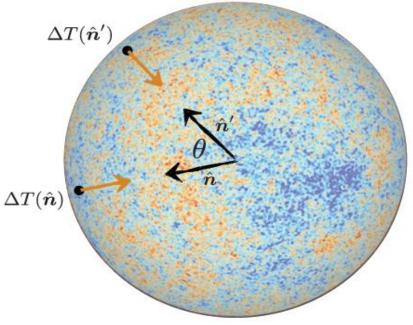
$$\kappa_T(k_\star) = \frac{d^2 n_T}{d \ln k^2} |_\star = 56\eta_V \epsilon_V^2 - 64\epsilon_V^3 - 8\eta_V^2 \epsilon_V - 4\epsilon_V \xi_V^2$$

33



Cosmic Microwave Background

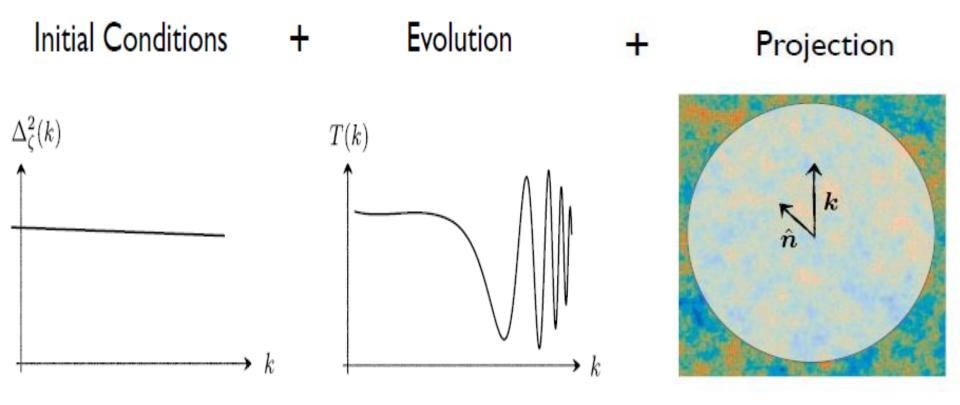
CMB Anisotropies $f(\nu, \hat{n}) = [\exp(2\pi\nu/T(\hat{n})) - 1]^{-1}$

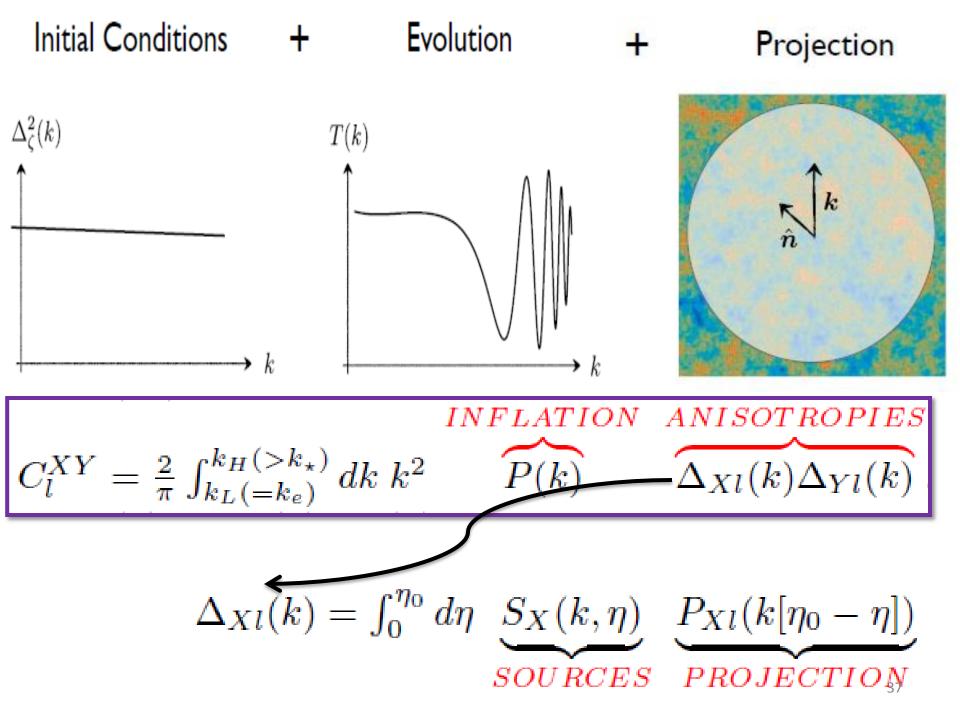




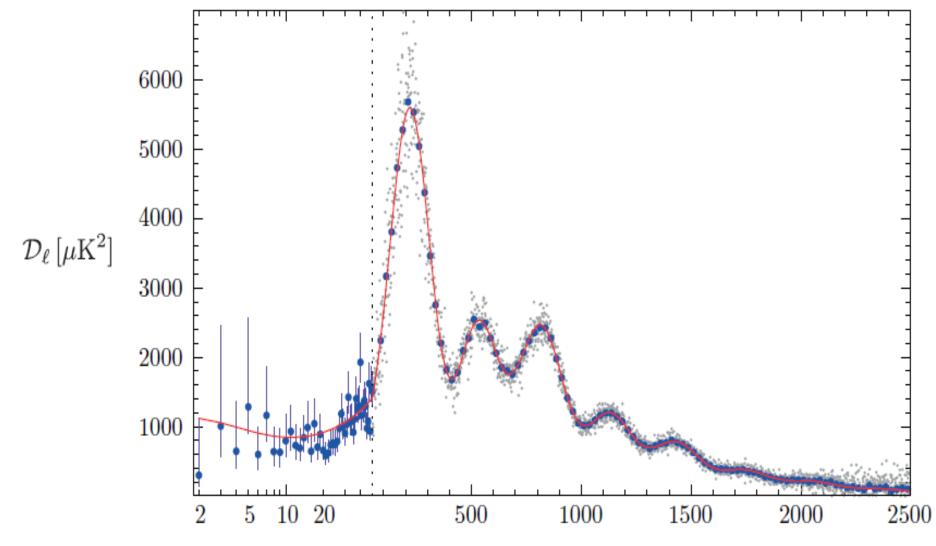
For Gaussian fluctuations, the statistics is determined by the 2-pt function:

 $<(a_{lm}^X)^*a_{l'm'}^Y>=C_l^{XY}\delta_{ll'}\delta_{mm'}$ where m=-l,...,+l, X,Y=T,E,B

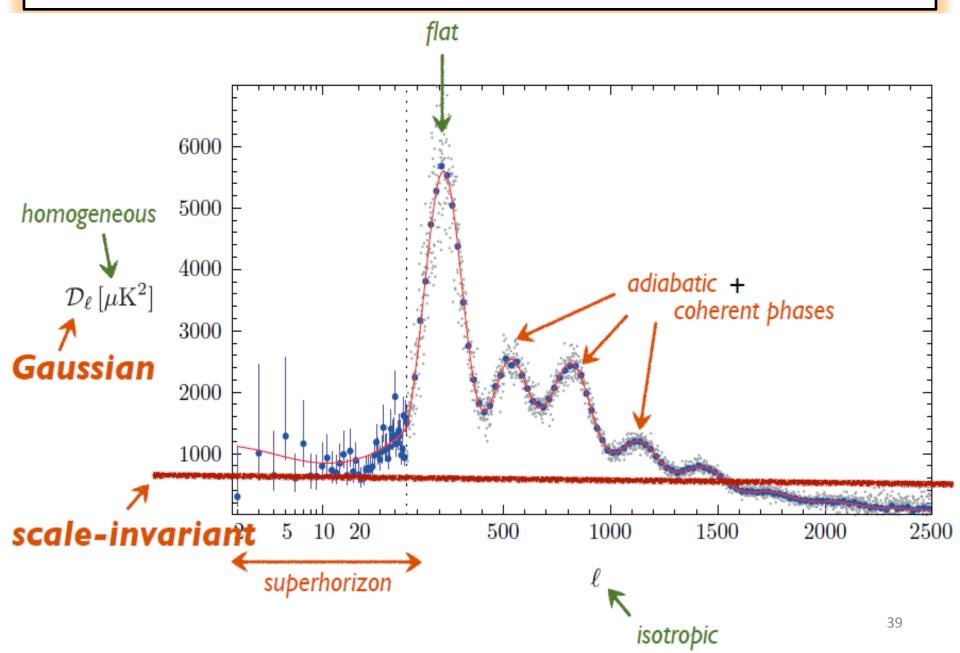


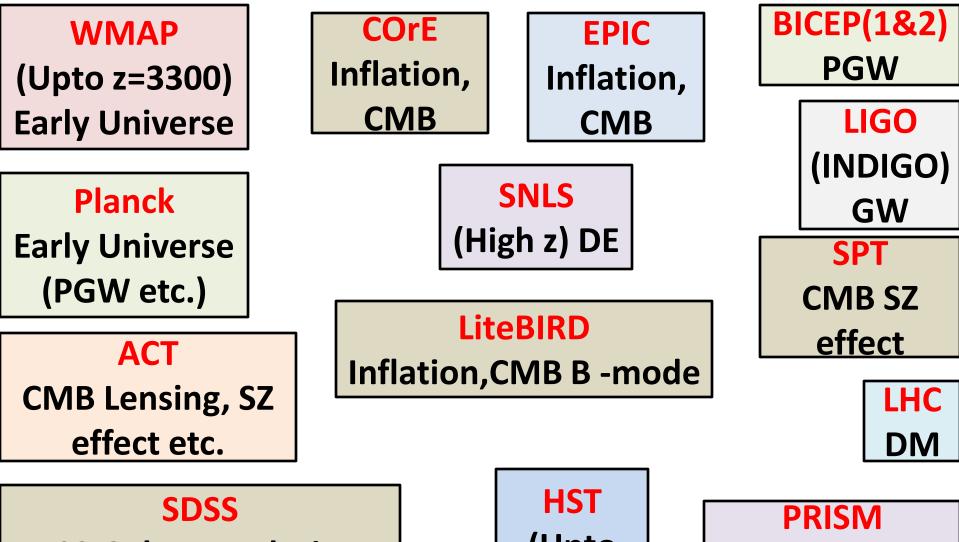


CMB TT Power spectrum



CMB TT Power spectrum

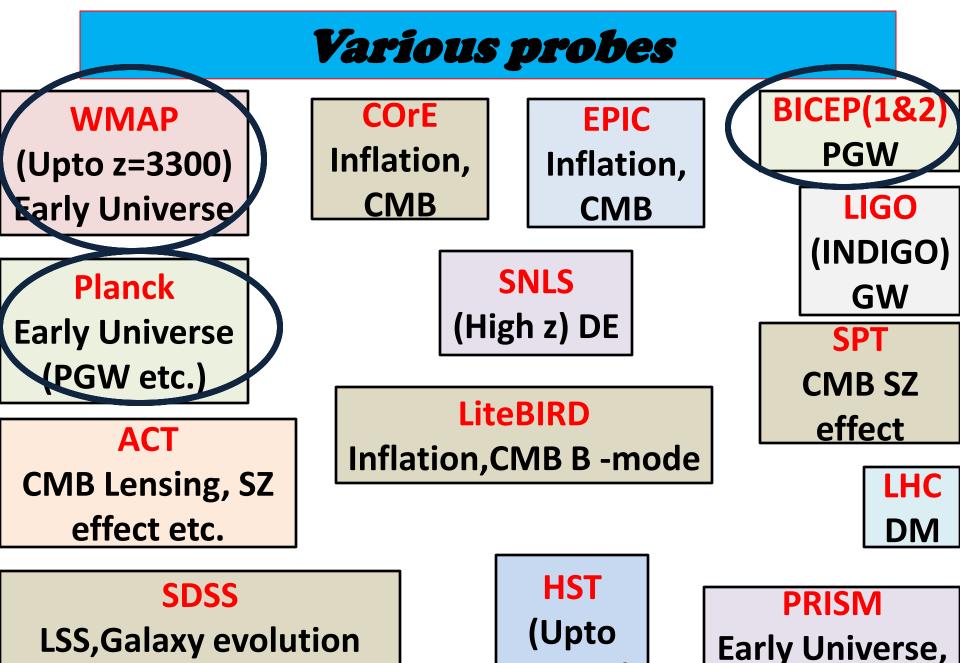




LSS,Galaxy evolution and cluster, DM, Lensing HST (Upto z=2100)

Early Universe,

CMB



and cluster, DM, Lensing

z=2100)

CMB

6-Parameter Fit

Baseline ACDM Model

4 parameters for the background:

- $\Omega_b = 0.045 \pm 0.001$ baryons
- $\Omega_m = 0.315 \pm 0.016$ dark matter
- $\Omega_{\Lambda}~=~0.685\pm0.018$ dark energy
 - $au~=~0.089\pm0.014$ optical depth

2 parameters for the perturbations:

(assuming r = 0 as of now)

 $10^9 A_s = 2.20 \pm 0.11$ amplitude $n_s = 0.960 \pm 0.014$ spectral index

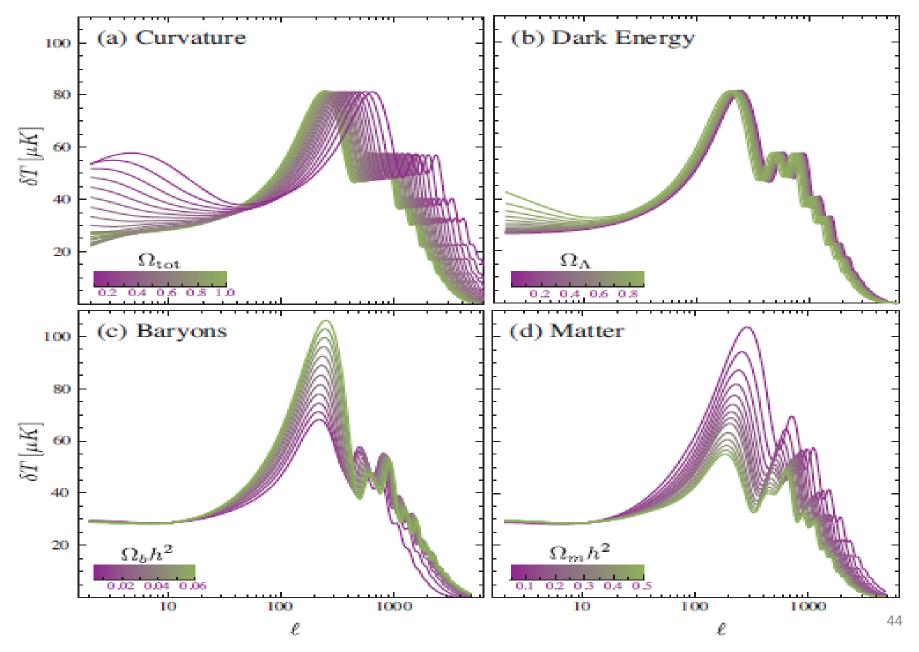
- 4 parameters for the **background**:
 - $\Omega_b = 0.045 \pm 0.001$ baryons
 - $\Omega_m = 0.315 \pm 0.016$ dark matter
 - $\Omega_{\Lambda}~=~0.685\pm0.018$ dark energy
 - $au~=~0.089\pm0.014$ optical depth

2 parameters for the **perturbations**:

 $r = 10^9 A_s = 2.20 \pm 0.11$ $n_s = 0.960 \pm 0.014$ Tensor to scalar ratio amplitude

spectral index

Cosmological Parameter Dependences



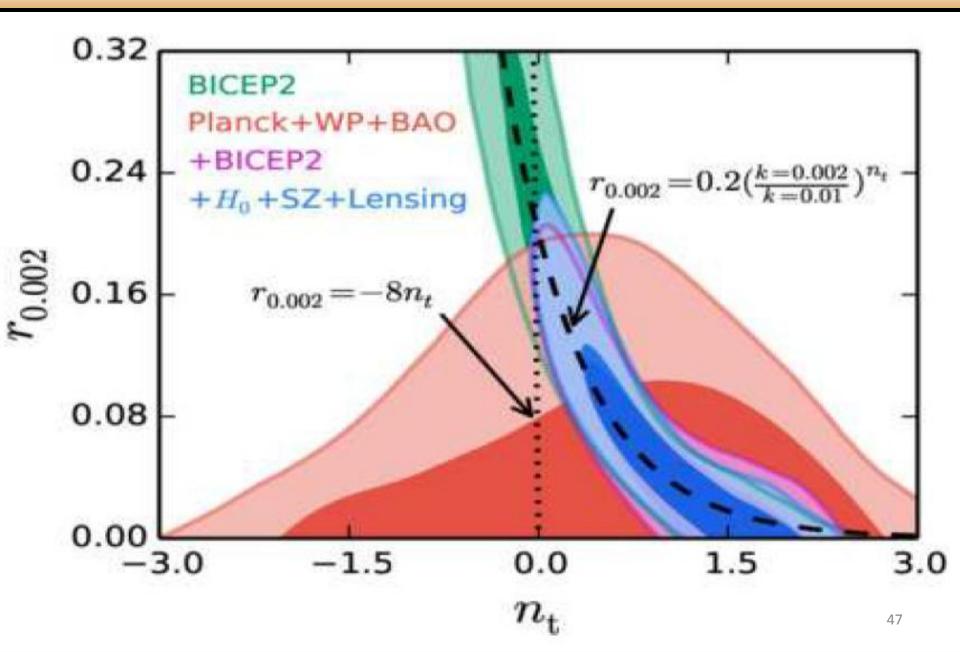
Observational limits

Sr.	Inflationary	PLANCK+WP+BICEP2	PLANCK+WP	WP
No.	observables		1	L 2
1	$\ln(10^{10}P_S)$	$3.089^{+0.024}_{-0.027}$	$3.089^{+0.024}_{-0.027}$	$3.204^{+0.328}_{-0.328}$
2	n_S	0.9600 ± 0.0071	0.9603 ± 0.0073	0.9608 ± 0.008
3	α_S	-0.022 ± 0.010	-0.013 ± 0.009	-0.023 ± 0.011
4	κ_S	$0.020^{+0.016}_{-0.015}$	$0.020^{+0.016}_{-0.015}$?
5	r	$0.2^{+0.07}_{-0.05}$	< 0.12	< 0.36
		$(r = 0 ruled out at 7\sigma)$		
6	n_T	$1.36 \pm 0.83 \; (Blue)$?	?
		> -0.76 (Red)	?	> -0.048 (Red)
		$(n_T = 0 \text{ ruled out at } 3\sigma)$		

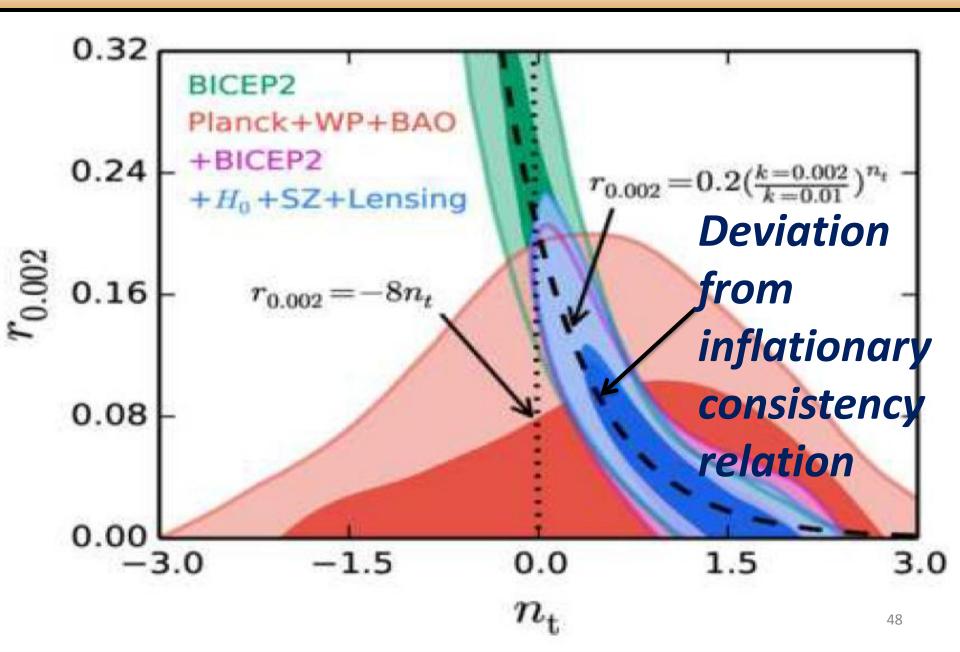
Observational limits

Sr.	Inflationary	PLANCK+WP+BICEP2	PLANCK+WP	WP
No.	observables	s a	1	
1	$\ln(10^{10}P_S)$	$3.089^{+0.024}_{-0.027}$	$3.089^{+0.024}_{-0.027}$	$3.204^{+0.328}_{-0.328}$
2	n_S	0.9600 ± 0.0071	0.9603 ± 0.0073	0.9608 ± 0.008
3	α_S	-0.022 ± 0.010	-0.013 ± 0.009	-0.023 ± 0.011
4	κ_S	$0.020^{+0.016}_{-0.015}$	$0.020^{+0.016}_{-0.015}$?
5	r	$0.2^{+0.07}_{-0.05}$	< 0.12	< 0.36
		Qrigined out at 70)		
6	n_T	1.36 ± 0.83 (Blue)	?	?
		$> -0.76 \; ({ m Red})$?	> -0.048 (Red)
		$(n_T = 0 \text{ ruled out at } 3\sigma)$		

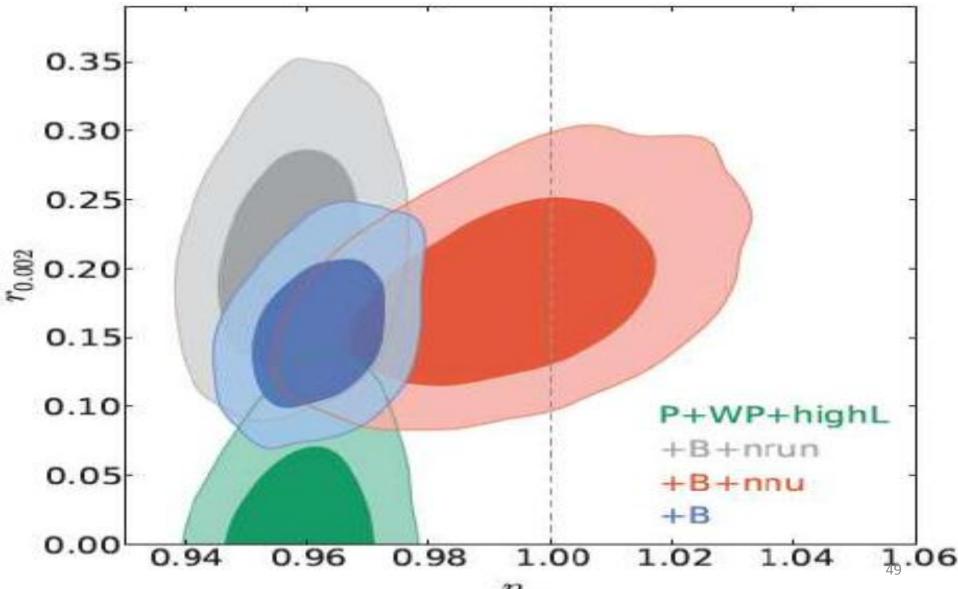
Primordial Gravity Waves: If blue????



Primordial Gravity Waves: If blue????

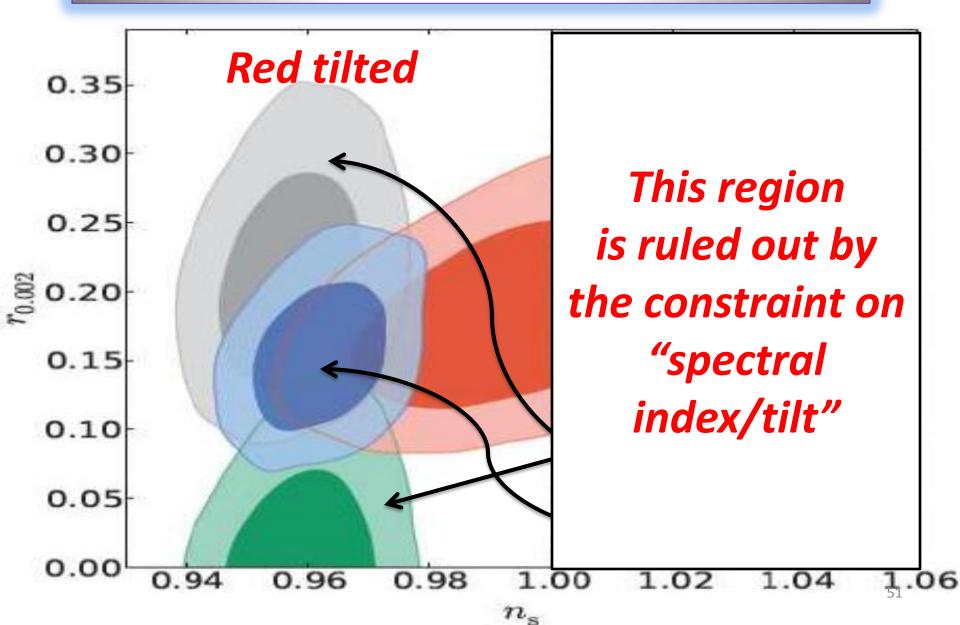


Present status of joint constraints



Present status of joint constraints Red tilted **Blue tilted** 0.35 0.30 0.25 r0.002 0.20 0.15 0.10 0.05 0.00 0.94 1.04 0.96 0.98 1.00 1.06 1.02

Present status of joint constraints

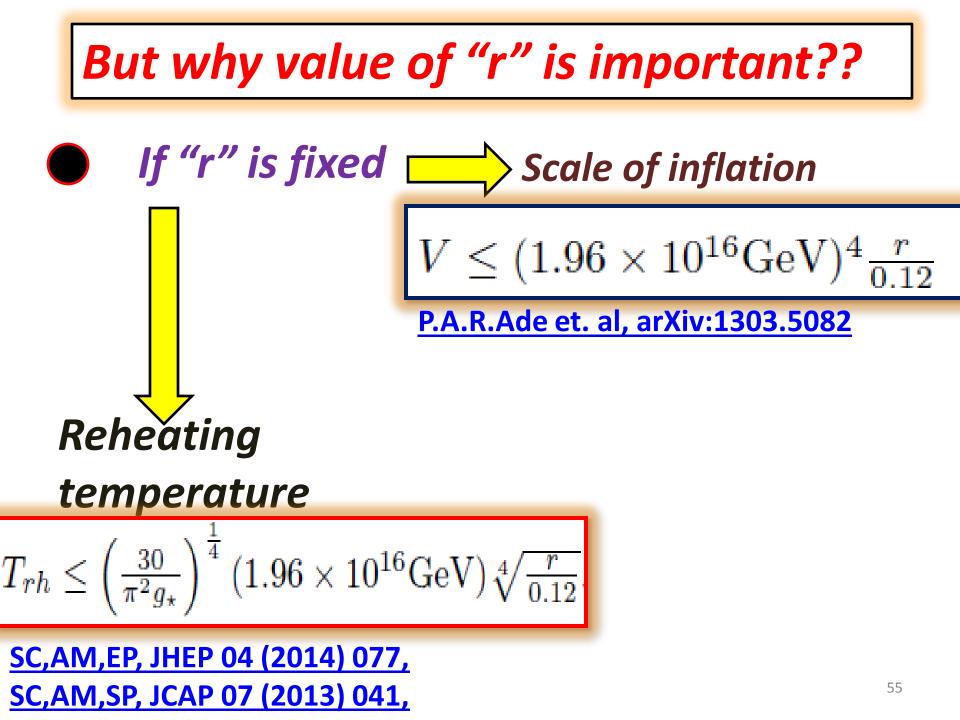


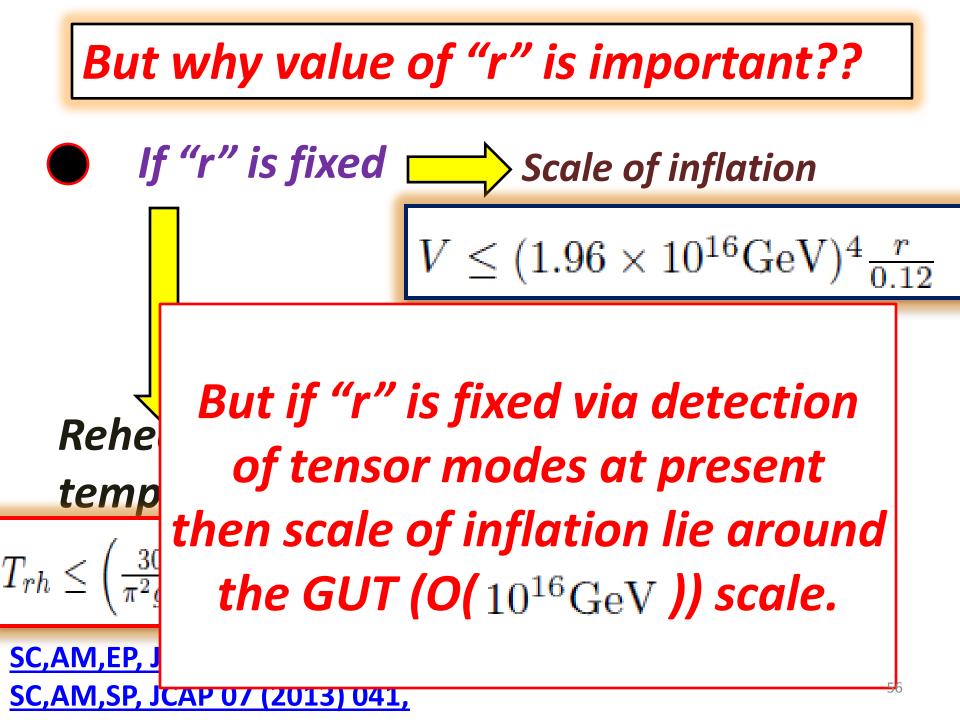
But why value of "r" is important??

But why value of "r" is important??

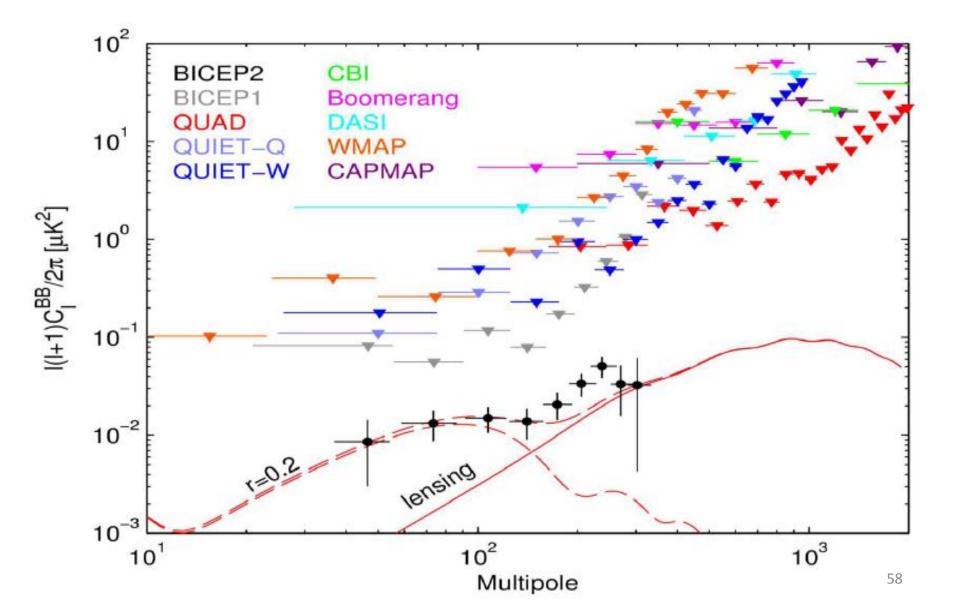
• If "r" is fixed

But why value of "r" is important??If "r" is fixed $V \leq (1.96 \times 10^{16} \text{GeV})^4 \frac{r}{0.12}$ P.A.R.Ade et. al, arXiv:1303.5082

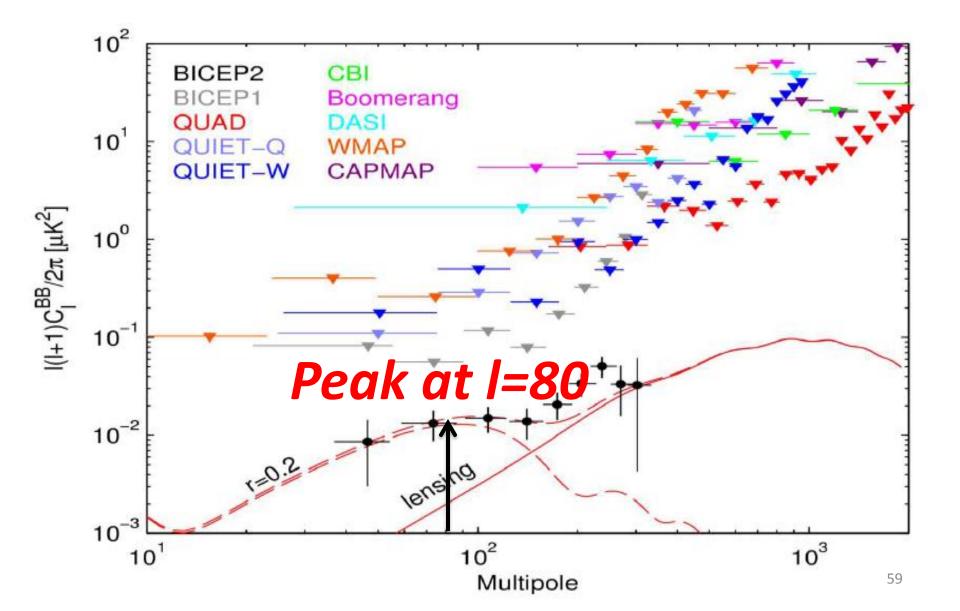




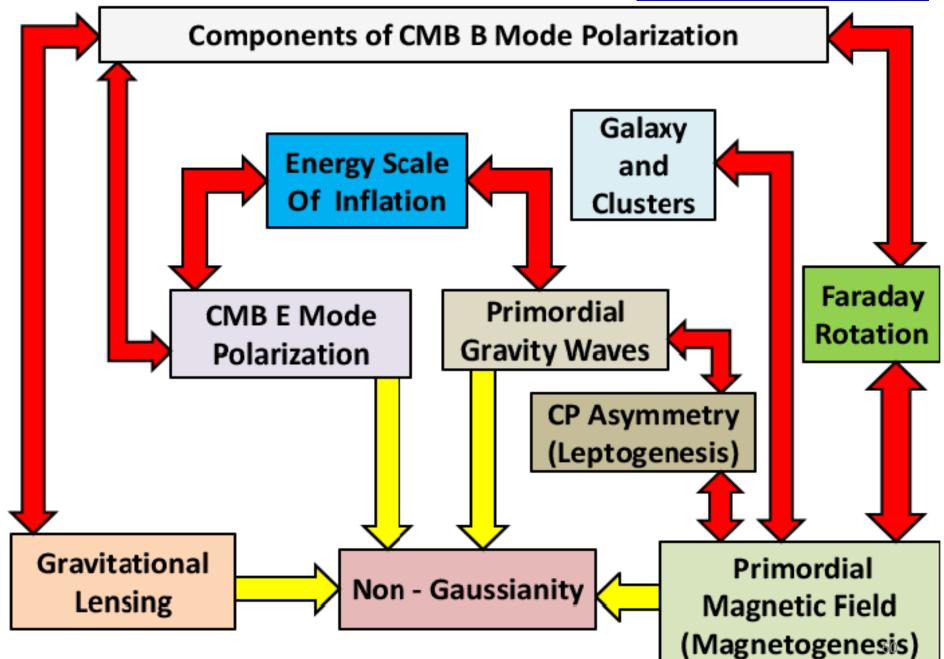
CMB B-modes????



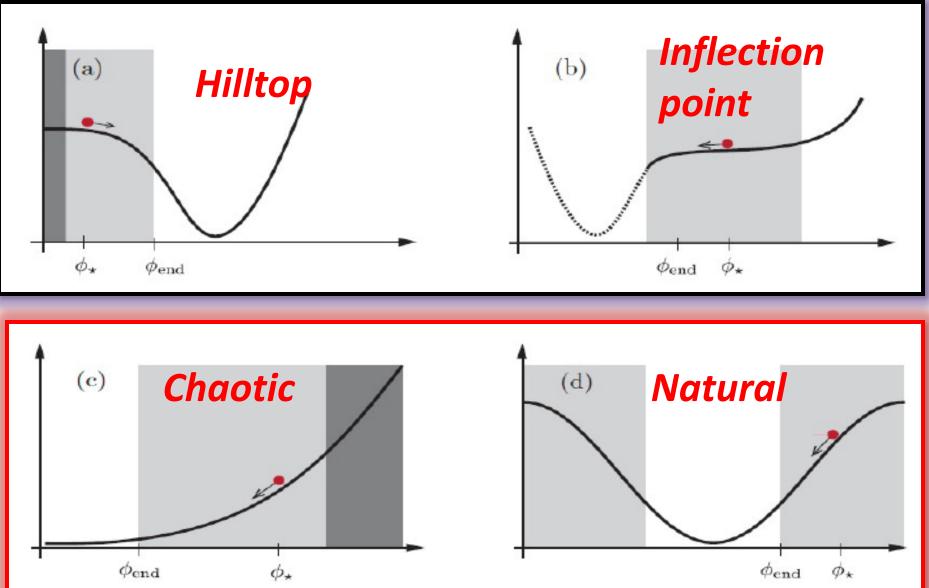
CMB B-modes????



SC,PLB 735 (2014) 138

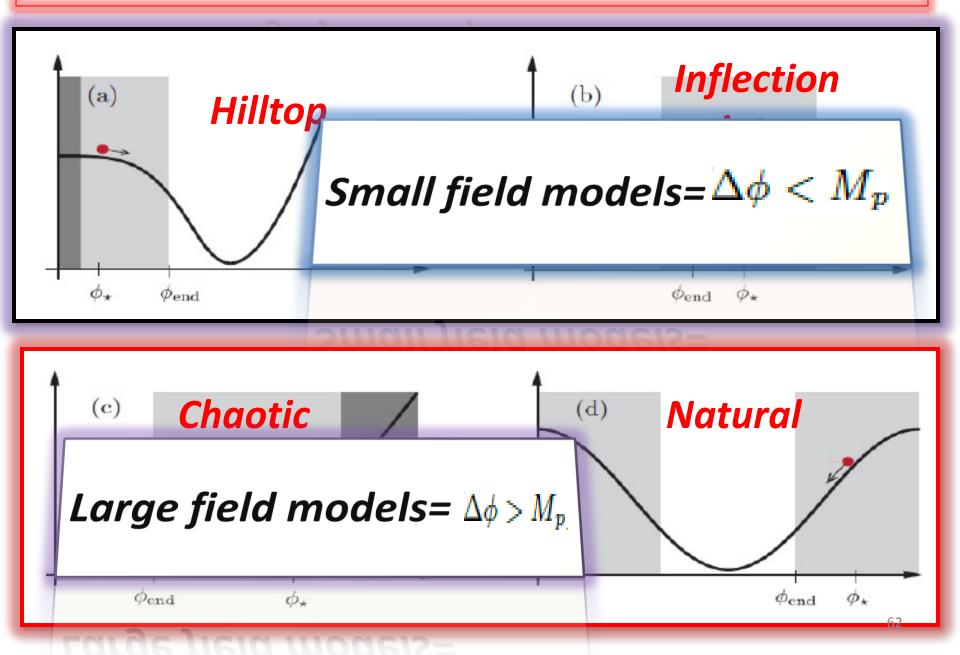


Modeling inflation & parameter estimation

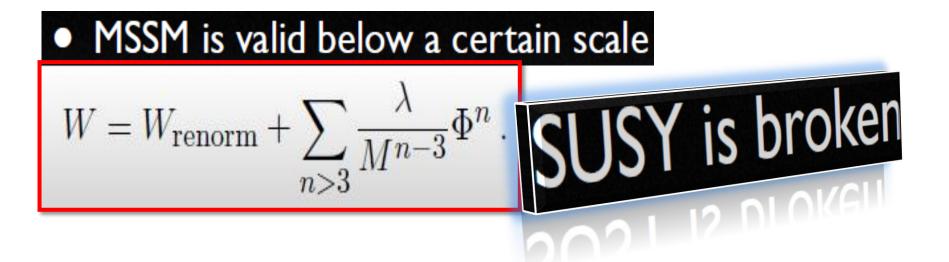


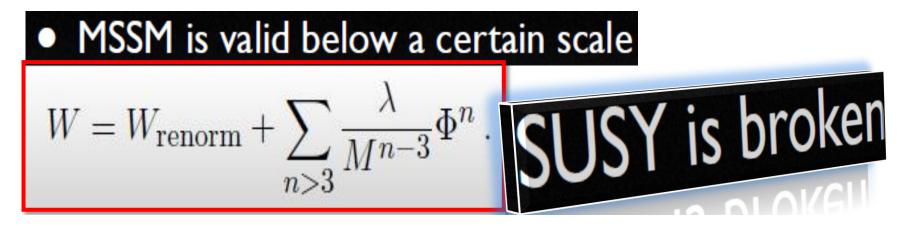
61

Modeling inflation & parameter estimation

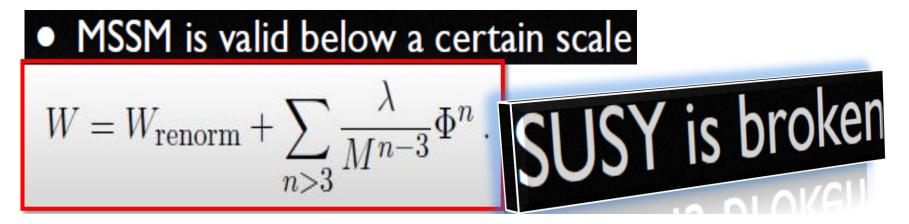


MSSM is valid below a certain scale $W = W_{\text{renorm}} + \sum_{n>3} \frac{\lambda}{M^{n-3}} \Phi^n \,.$

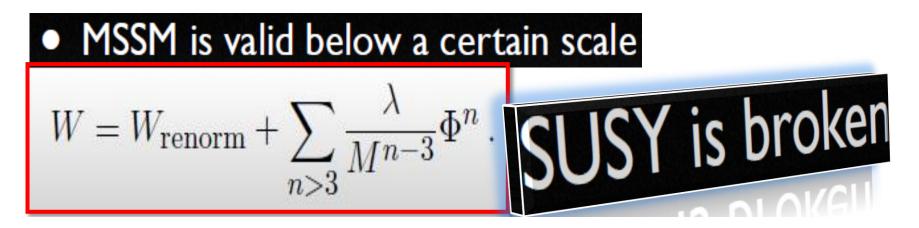




Here Φ is a gauge invariant superfield which contains the flat direction

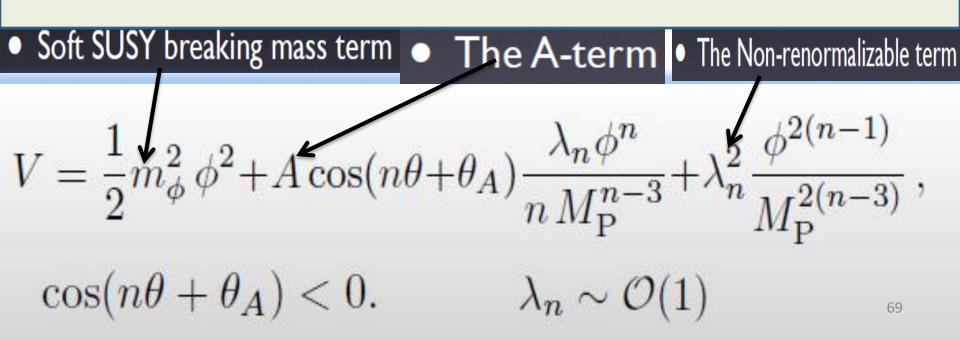


Here Φ is a *gauge invariant* superfield which contains the flat direction



Here Φ is a gauge invariant superfield which contains the flat direction • Soft SUSY breaking mass term • The A-term • The Non-renormalizable term $V = \frac{1}{2}m_{\phi}^{2}\phi^{2} + A\cos(n\theta + \theta_{A})\frac{\lambda_{n}\phi^{n}}{nM_{P}^{n-3}} + \lambda_{n}^{2}\frac{\phi^{2(n-1)}}{M_{P}^{2(n-3)}},$ $\cos(n\theta + \theta_{A}) < 0.$ $\lambda_{n} \sim \mathcal{O}(1)$

Example of Low scale visible sector model of inflation



<u>SC,JHEP 04 (2014) 105,</u> <u>SC,AM,EP, JHEP 04 (2014) 077,</u> <u>SC,AM,SP, JCAP 07 (2013) 041,</u>

$$V(\phi,\theta) = V_0 + \frac{(m_{\phi}^2 + c_H H^2)}{2} |\phi|^2 + (a_H H + a_\lambda m_{\phi}) \frac{\lambda \phi^n}{n M_p^{n-3}} \cos(n\theta + \theta_{a_H} + \theta_{a_\lambda}) + \frac{\lambda^2 |\phi|^{2(n-1)}}{M_p^{2(n-3)}} + \frac{\lambda^2 |\phi|^{2(n-1)}}{M_p^{2(n-1)}} + \frac{\lambda^2 |\phi|^{2(n-1)$$

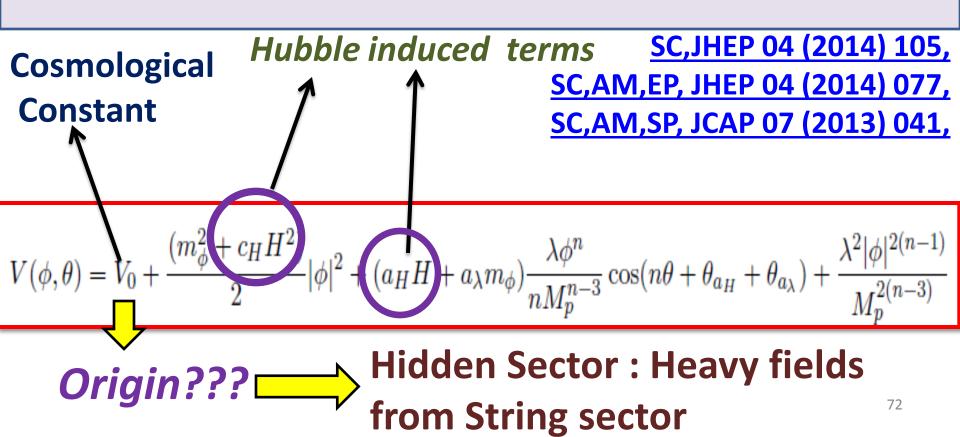
Example of High scale model of inflation

<u>SC,JHEP 04 (2014) 105,</u> <u>SC,AM,EP, JHEP 04 (2014) 077,</u> <u>SC,AM,SP, JCAP 07 (2013) 041,</u>

$$V(\phi,\theta) = V_0 + \frac{(m_{\phi}^2 + c_H H^2)}{2} |\phi|^2 + (a_H H + a_\lambda m_{\phi}) \frac{\lambda \phi^n}{n M_p^{n-3}} \cos(n\theta + \theta_{a_H} + \theta_{a_\lambda}) + \frac{\lambda^2 |\phi|^{2(n-1)}}{M_p^{2(n-3)}}$$

$$Origin??? \longrightarrow Hidden Sector : Heavy fields$$
from String sector
71

Example of High scale model of inflation



MSS	M	Fla	t directions
	B-L	Always lifted by $W_{removin}$?	300 such combinations
LH _u	-1		
HuHd	0		VT T Chift cummetru
udd	-1		V T L Shift symmetry
LLe QdL	-1		
QuH _u	0		
QdH _d	0	V	$\longrightarrow LH_u$
LH _d e	ŏ	v v	
QQQL	0 0	· · · ·	
QuQd	0		H_u
QuLe	0		
uude	0		
$QQQH_d$	1	\sim	$1 (0) 1 (\phi)$
QuH_de	1	\sim	$1 = 1 (\Psi) = 1 (\Psi)$
dddLL	-3		H
uuuee	1		$ 11_{\mu} = , L = , L = $
QuQue	1		" 2 d 2 0
QQQQu	1	,	$\sqrt{2} \sqrt{\psi} \sqrt{2} \sqrt{\psi}$
dddLH _d	-2	√	• (') • ()
uudQdH _u	-1		
$(QQQ)_4LLH_u$ $(QQQ)_4LH_uH_d$	0		\mathbf{x} \mathbf{TT} 12
$(QQQ)_4H_uH_dH_d$	1	V	$\Psi = LH \equiv C\Phi^{-}$
$(QQQ)_4\Pi_0\Pi_d\Pi_d$ $(QQQ)_4LLLe$	-1	V	$\Phi = LH_u \equiv c\phi^2$
uudQdQd	-1		
(QQQ) ₄ LLH _d e	0		111
$(QQQ)_4LH_dH_de$	1	Ň	In general $\Phi = c\phi^m$
$(QQQ)_4H_dH_dH_de$	2	Ň	In general $\Psi = C \Psi$ 73

MSS	M Fla	t directions
	$\begin{array}{ c c c c c } & Always lifted \\ B-L & by W_{renorm}? \end{array}$	300 such combinations
LH _u H _u H _d udd LLe	-1 -1 -1 -1	$V \uparrow L$ Shift symmetry
QdL QuH _u QdH _d LH _d e		$\rightarrow LH_u$
QQQL QuQd QuLe uude		H_u
QQQH _d QuH _d e dddLL	$1 \sqrt{1} \sqrt{-3}$	$H_{H} = \frac{1}{1} \begin{pmatrix} 0 \end{pmatrix}_{I} = \frac{1}{1} \begin{pmatrix} \phi \end{pmatrix}_{I}$
uuuee QuQue QQQQu dddLH _d	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\prod_{u=1}^{n} \sqrt{2} \left(\phi \right)^{2} \prod_{v=1}^{n} \sqrt{2} \left(0 \right)$
$\begin{array}{c} uudQdH_u\\ (QQQ)_4LLH_u\\ (QQQ)_4LH_uH_d\\ (QQQ)_4H_uH_dH_d\end{array}$	$ \begin{array}{c ccc} -1 & \\ \hline -1 & \\ 0 & \\ 1 & \end{array} $	$\Phi = LH_{\mu} \equiv c\phi^2$
$(QQQ)_4LLLe$ uudQdQd $(QQQ)_4LLH_de$ $(QQQ)_4LH_dH_de$	-1 -1 0 1	In general $\Phi = c\phi^m$
$(QQQ)_4H_dH_dH_de$	2	- - - - - - - - - -

MSSM INFLATON CANDIDATE

n=4 flat directions:

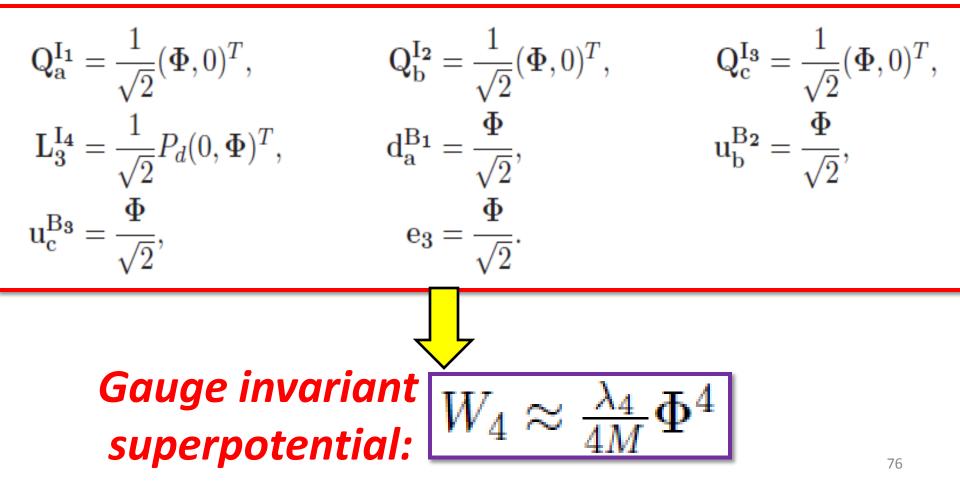
QQQL,uude,QuQd, QuLe

$$\begin{split} \mathbf{Q}_{\mathbf{a}}^{\mathbf{I}_{1}} &= \frac{1}{\sqrt{2}} (\Phi, 0)^{T}, & \mathbf{Q}_{\mathbf{b}}^{\mathbf{I}_{2}} &= \frac{1}{\sqrt{2}} (\Phi, 0)^{T}, & \mathbf{Q}_{\mathbf{c}}^{\mathbf{I}_{3}} &= \frac{1}{\sqrt{2}} (\Phi, 0)^{T}, \\ \mathbf{L}_{3}^{\mathbf{I}_{4}} &= \frac{1}{\sqrt{2}} P_{d}(0, \Phi)^{T}, & \mathbf{d}_{\mathbf{a}}^{\mathbf{B}_{1}} &= \frac{\Phi}{\sqrt{2}}, & \mathbf{u}_{\mathbf{b}}^{\mathbf{B}_{2}} &= \frac{\Phi}{\sqrt{2}}, \\ \mathbf{u}_{\mathbf{c}}^{\mathbf{B}_{3}} &= \frac{\Phi}{\sqrt{2}}, & \mathbf{e}_{3} &= \frac{\Phi}{\sqrt{2}}. \end{split}$$

MSSM INFLATON CANDIDATE

<u>n=4 flat directions:</u>

QQQL,uude,QuQd, QuLe



MSSM INFLATON CANDIDATE

<u>n=6 flat directions:</u> udd, LLe

$$u_i^{\alpha} = \frac{1}{\sqrt{3}}\phi, \ d_j^{\beta} = \frac{1}{\sqrt{3}}\phi, \ d_k^{\gamma} = \frac{1}{\sqrt{3}}\phi.$$
Baryonic
$$L_i^a = \frac{1}{\sqrt{3}}\begin{pmatrix}0\\\phi\end{pmatrix}, \ L_j^b = \frac{1}{\sqrt{3}}\begin{pmatrix}\phi\\0\end{pmatrix}, \ e_k = \frac{1}{\sqrt{3}}\phi,$$
Leptonic

MSSM INFLATON CANDIDATE

<u>n=6 flat directions:</u> udd, LLe

$$u_i^{\alpha} = \frac{1}{\sqrt{3}}\phi, \ d_j^{\beta} = \frac{1}{\sqrt{3}}\phi, \ d_k^{\gamma} = \frac{1}{\sqrt{3}}\phi.$$
 Baryonic
$$L_i^{a} = \frac{1}{\sqrt{3}}\begin{pmatrix}0\\\phi\end{pmatrix}, \ L_j^{b} = \frac{1}{\sqrt{3}}\begin{pmatrix}\phi\\0\end{pmatrix}, \ e_k = \frac{1}{\sqrt{3}}\phi,$$
 Leptonic

Gauge invariant $W_6 \approx \frac{\lambda}{6M_{PL}} \Phi^6$ Superpotential:

$$\phi = \phi_0 \sim (m_{\phi} M_{\rm P}^{n-3})^{1/n-2} \ll M_{\rm P}$$

$$MSSM \ superpotential
W_{\rm MSSM} = \lambda_u QH_u \bar{u} + \lambda_d QH_d \bar{d} + \lambda_e LH_d \bar{e} + \mu H_u H_d$$

$$MSSM = \lambda_u QH_u \bar{u} + \lambda_d QH_d \bar{d} + \lambda_e LH_d \bar{e} + \mu H_u H_d$$

$$MSSM = \lambda_u QH_u \bar{u} + \lambda_d QH_d \bar{d} + \lambda_e LH_d \bar{e} + \mu H_u H_d$$

$$MSSM = \lambda_u QH_u \bar{u} + \lambda_d QH_d \bar{d} + \lambda_e LH_d \bar{e} + \mu H_u H_d$$

$$MSSM = \lambda_u QH_u \bar{u} + \lambda_d QH_d \bar{d} + \lambda_e LH_d \bar{e} + \mu H_u H_d$$

$$MSSM = \lambda_u QH_u \bar{u} + \lambda_d QH_d \bar{d} + \lambda_e LH_d \bar{e} + \mu H_u H_d$$

$$MSSM = \lambda_u QH_u \bar{u} + \lambda_d QH_d \bar{d} + \lambda_e LH_d \bar{e} + \mu H_u H_d$$

$$MSSM = \lambda_u QH_u \bar{u} + \lambda_d QH_d \bar{d} + \lambda_e LH_d \bar{e} + \mu H_u H_d$$

$$MSSM = \lambda_u QH_u \bar{u} + \lambda_d QH_d \bar{d} + \lambda_e LH_d \bar{e} + \mu H_u H_d$$

$$MSSM = \lambda_u QH_u \bar{u} + \lambda_d QH_d \bar{d} + \lambda_e LH_d \bar{e} + \mu H_u H_d$$

$$MSSM = \lambda_u QH_u \bar{u} + \lambda_d QH_d \bar{d} + \lambda_e LH_d \bar{e} + \mu H_u H_d$$

$$MSSM = \lambda_u QH_u \bar{u} + \lambda_d QH_d \bar{d} + \lambda_e LH_d \bar{e} + \mu H_u H_d$$

$$MSSM = \lambda_u QH_u \bar{u} + \lambda_d QH_d \bar{d} + \lambda_e LH_d \bar{e} + \mu H_u H_d$$

$$MSSM = \lambda_u QH_u \bar{u} + \lambda_d QH_d \bar{d} + \lambda_e LH_d \bar{e} + \mu H_u H_d$$

$$MSSM = \lambda_u QH_u \bar{u} + \lambda_d QH_d \bar{d} + \lambda_e LH_d \bar{e} + \mu H_u H_d$$

$$MSSM = \lambda_u QH_u \bar{u} + \lambda_d QH_d \bar{d} + \lambda_e LH_d \bar{e} + \mu H_u H_d$$

$$MSSM = \lambda_u QH_u \bar{u} + \lambda_d QH_d \bar{d} + \lambda_e LH_d \bar{e} + \mu H_u H_d$$

$$MSSM = \lambda_u QH_u \bar{u} + \lambda_d QH_d \bar{d} + \lambda_e LH_d \bar{e} + \mu H_u H_d$$

$$MSSM = \lambda_u QH_u \bar{u} + \lambda_d QH_d \bar{d} + \lambda_e LH_d \bar{e} + \mu H_u H_d$$

$$MSSM = \lambda_u QH_u \bar{u} + \lambda_d QH_d \bar{d} + \lambda_e LH_d \bar{e} + \mu H_u H_d$$

$$MSSM = \lambda_u QH_u \bar{u} + \lambda_d QH_d \bar{d} + \lambda_e LH_d \bar{e} + \mu H_u H_d$$

sadale point condition:

Cosmologically Flat Potential MSSM superpotential

$$\phi = \phi_0 \sim (m_\phi M_{
m P}^{n-3})^{1/n-2} \ll M_{
m P}$$
 $W_{
m MSSM} = \lambda_u Q H_u \overline{u} + \lambda_d Q H_d \overline{d} + \lambda_e L H_d \overline{e} + \mu H_u H_d$
 $A^2 = 8(n-1)m_\phi^2$

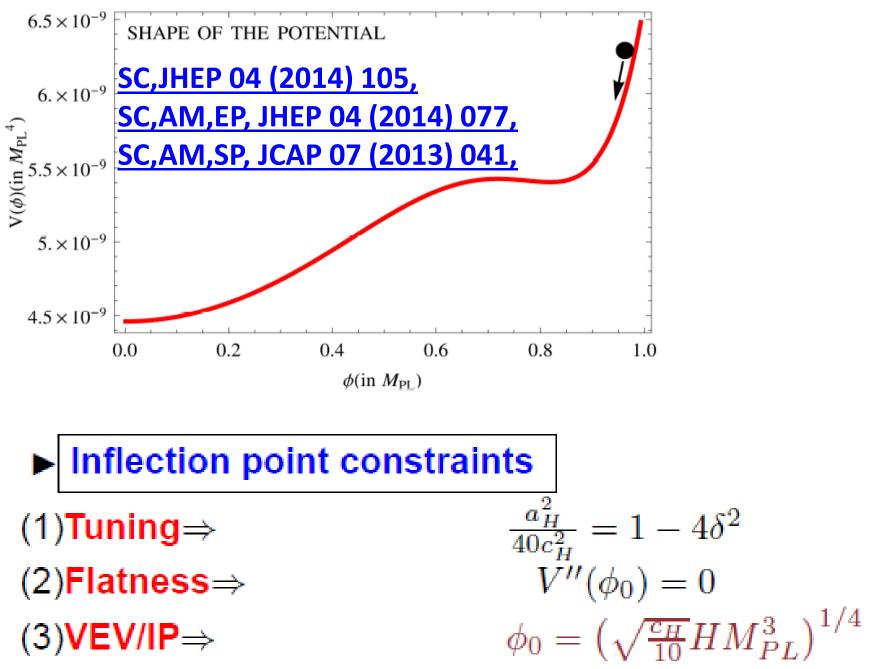
Saddle point condition: $V'(\phi_0) = 0, V''(\phi_0) = 0$ $V'''(\phi_0) \neq 0$

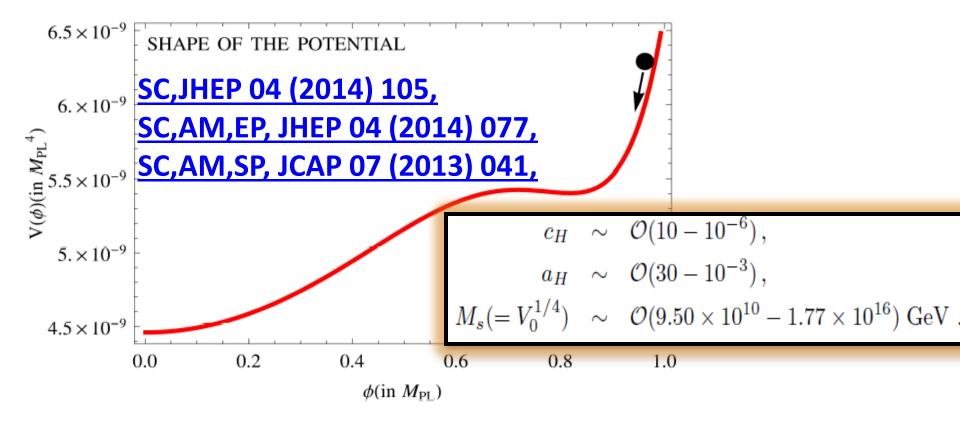
$$\begin{split} m_{\phi} &\sim 1 \ \text{TeV} \\ H_{inf} &\sim 1 \ \text{GeV} \\ \phi_0 &= 3 \times 10^{14} \ GeV \end{split}$$

Sub-Planckian

$$\Delta \phi \sim \frac{H_{inf}^2}{V'''(\phi_0)} \sim \left(\frac{\phi_0^3}{M_P^2}\right) \gg H_{inf}$$

 $8(n-1)m_{\phi}^{2}$



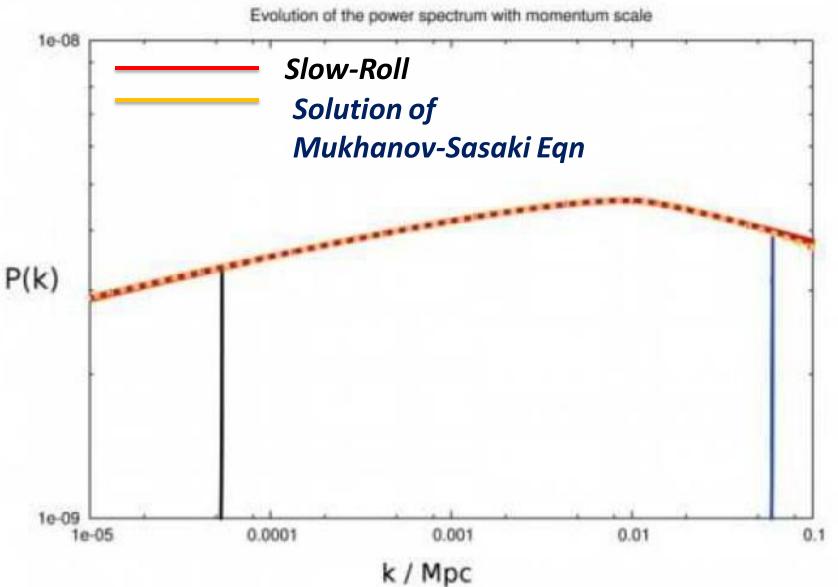


► Inflection point constraints (1)Tuning⇒ $\frac{a_{H}^{2}}{40c_{H}^{2}}$ (2)Flatness⇒ V (3)VEV/IP⇒ ϕ_{0} =

$$\frac{a_{H}^{2}}{40c_{H}^{2}} = 1 - 4\delta^{2}
V''(\phi_{0}) = 0
\phi_{0} = \left(\sqrt{\frac{c_{H}}{10}}HM_{PL}^{3}\right)^{1/4}
\phi_{0} \sim \mathcal{O}((1-3) \times 10^{16}Ge\mathbb{V})$$

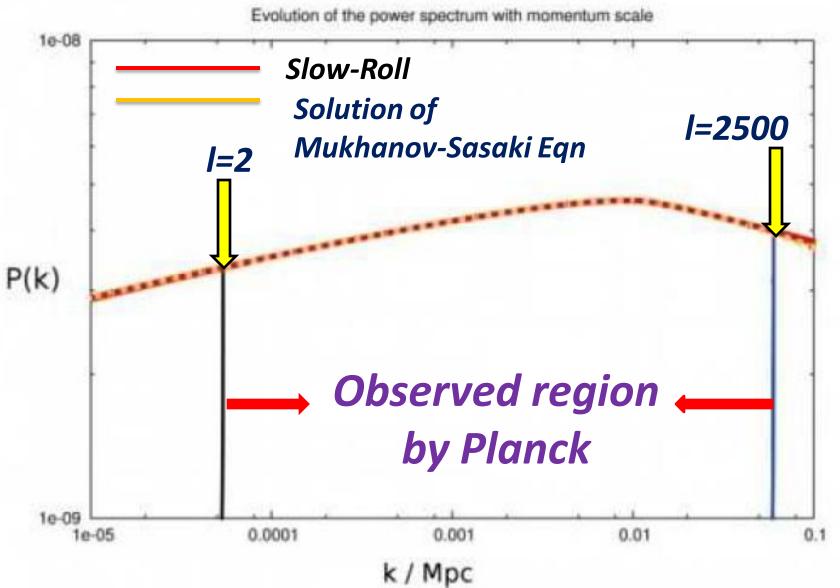
SC,AM,SP, JCAP 07 (2013) 041

Validity of slow-roll approximation



SC,AM,SP, JCAP 07 (2013) 041

Validity of slow-roll approximation

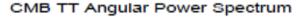


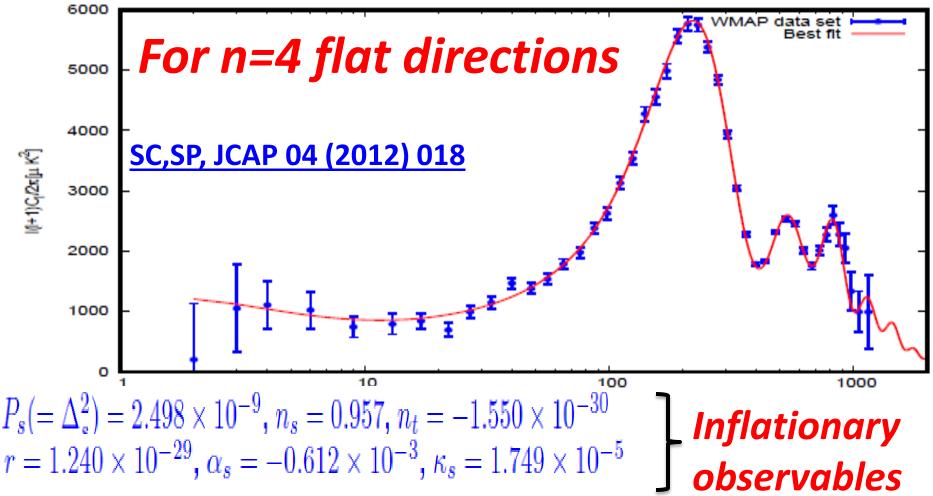
For n=4 flat directions

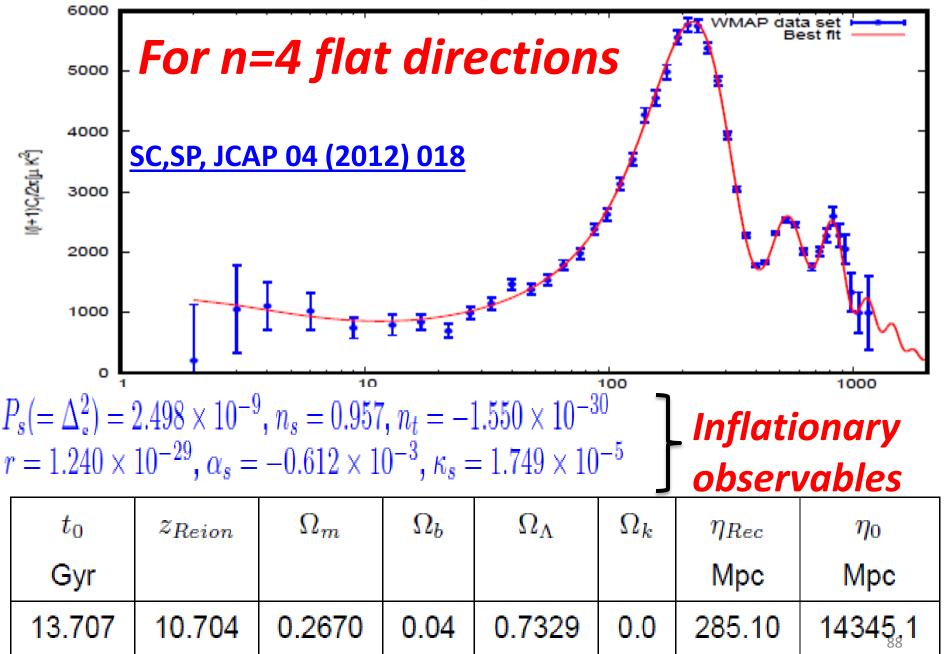
SC,SP, JCAP 04 (2012) 018

$$P_{s}(=\Delta_{*}^{2}) = 2.498 \times 10^{-9}, n_{s} = 0.957, n_{t} = -1.550 \times 10^{-30}$$

$$r = 1.240 \times 10^{-29}, \alpha_{s} = -0.612 \times 10^{-3}, \kappa_{s} = 1.749 \times 10^{-5}$$

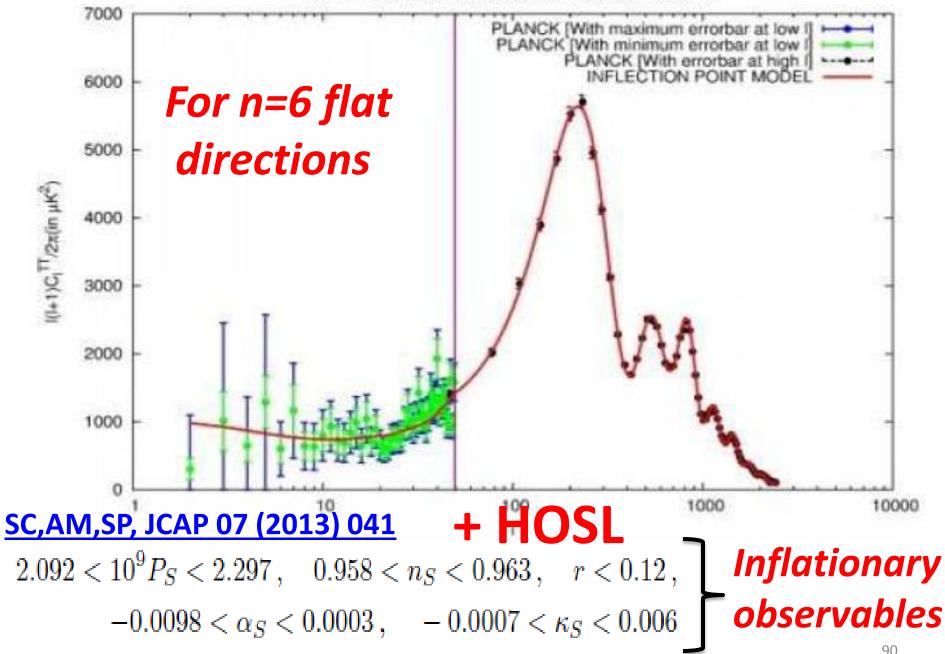


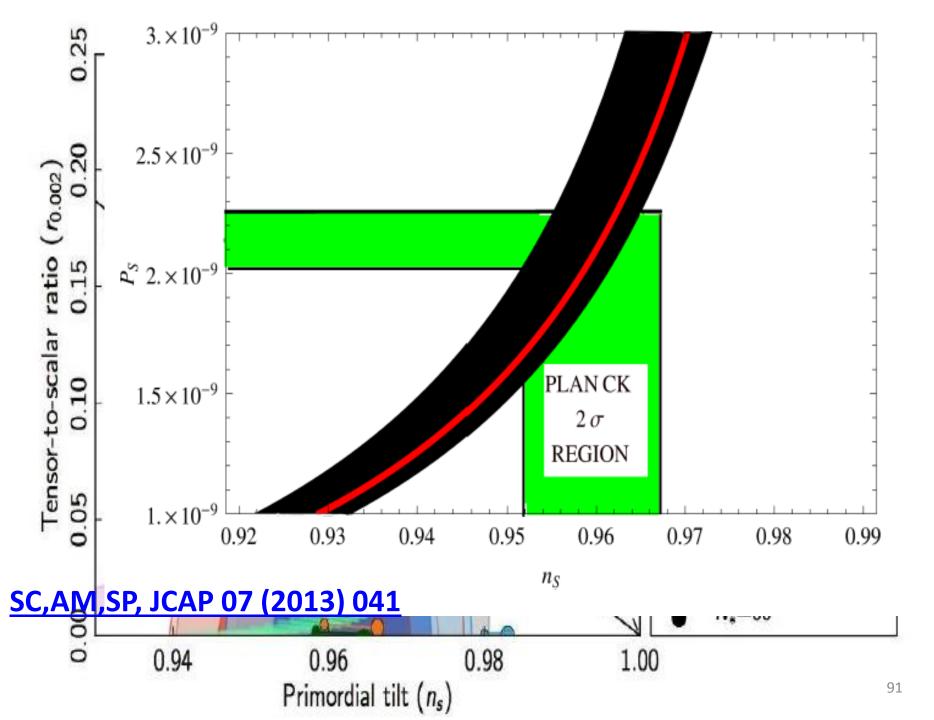


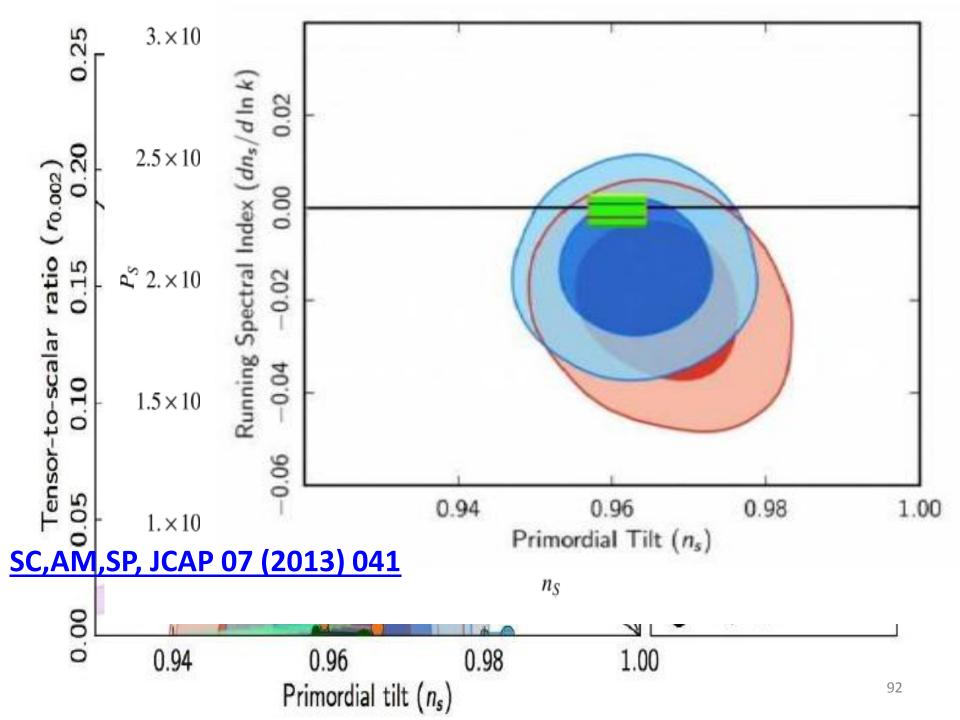


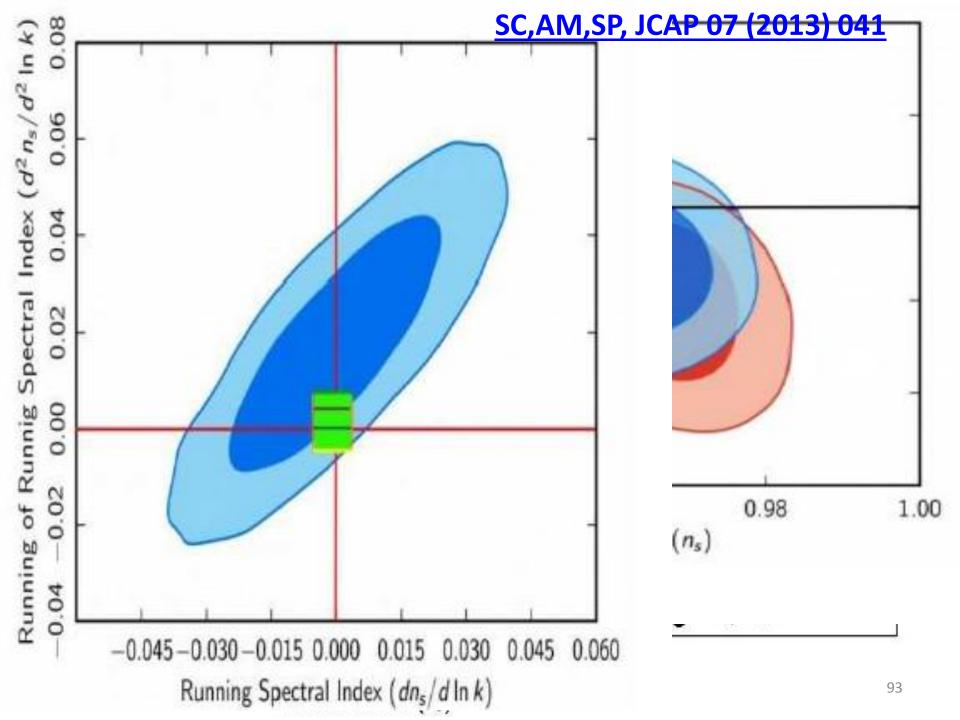
For n=6 flat directions

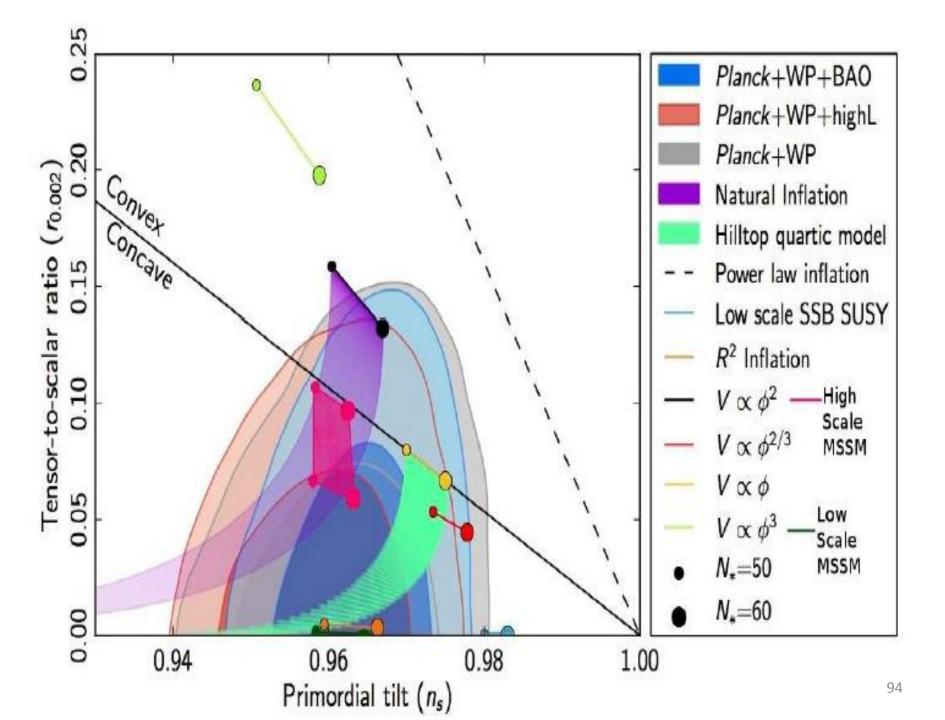
 $\begin{array}{cccc} \underline{SC,AM,SP, JCAP \ 07 \ (2013) \ 041} & + \textbf{HOSL} \\ 2.092 < 10^9 P_S < 2.297 \ , & 0.958 < n_S < 0.963 \ , & r < 0.12 \ , \\ -0.0098 < \alpha_S < 0.0003 \ , & -0.0007 < \kappa_S < 0.006 \end{array} \begin{array}{c} \textit{Inflationary} \\ \textit{observables} \end{array}$







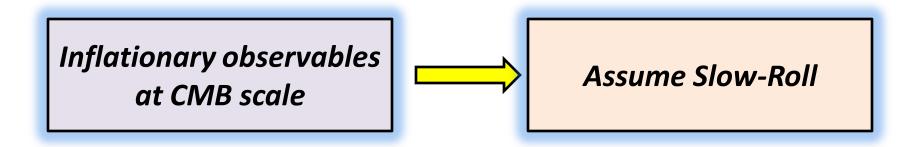




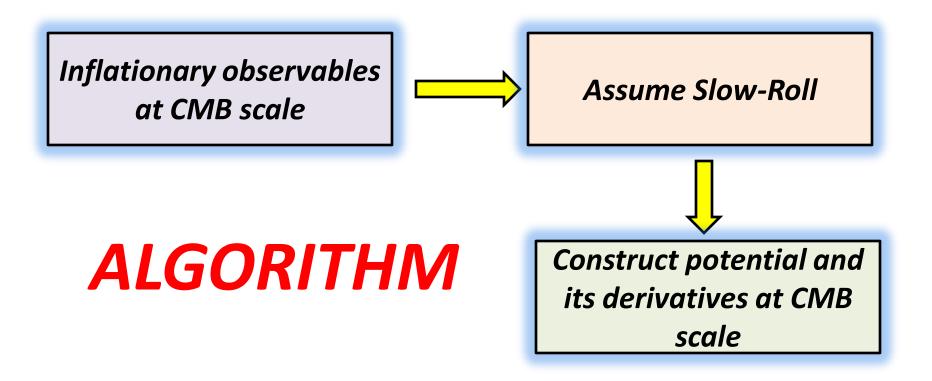
ALGORITHM

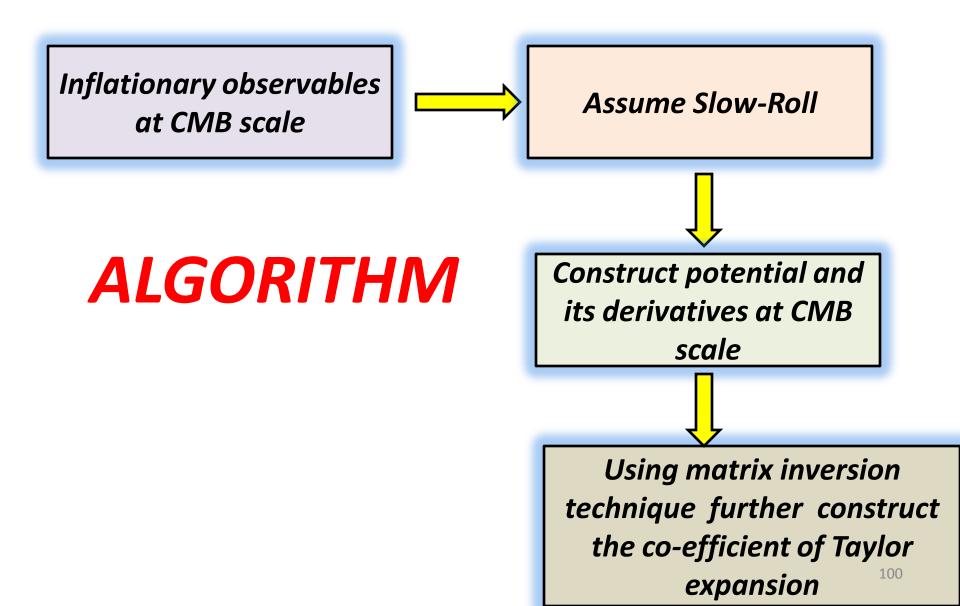
Inflationary observables at CMB scale

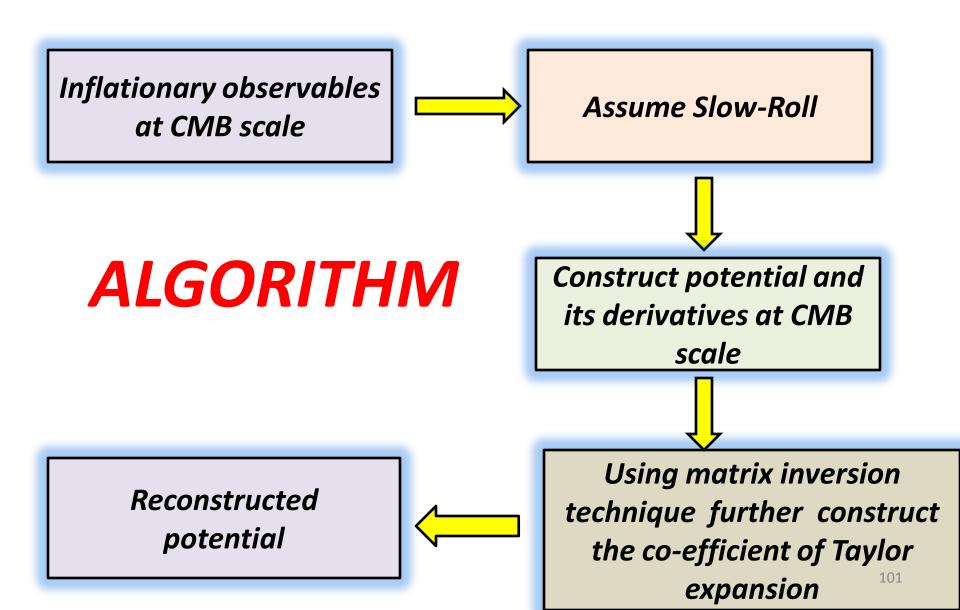
ALGORITHM

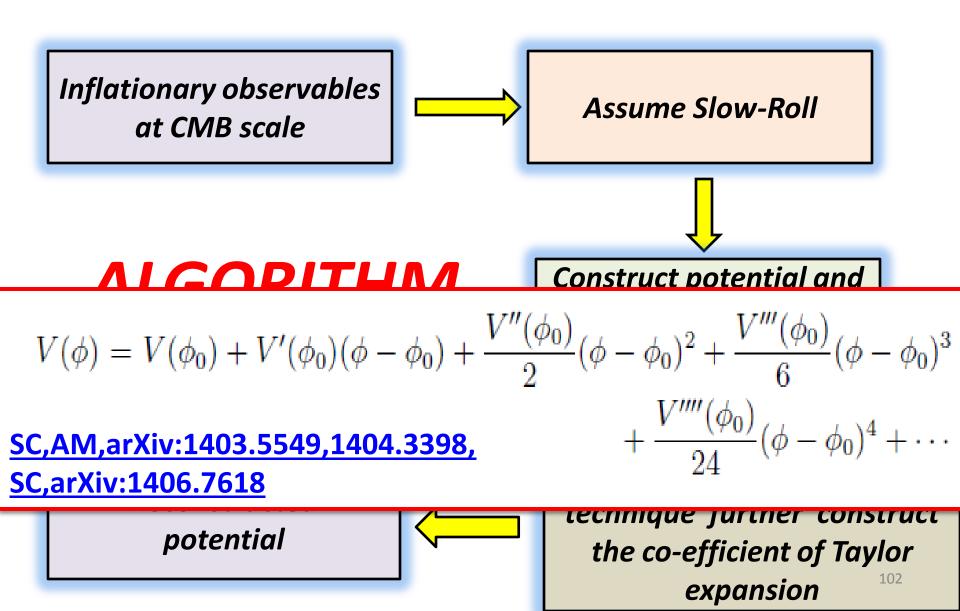


ALGORITHM









$$\begin{split} V(\phi_{\star}) &= \frac{3}{2} P_{S}(k_{\star}) r(k_{\star}) \pi^{2} M_{p}^{4}, & \underbrace{\text{SC,AM,arXiv:1403.5549,1404.3398,}}_{SC,arXiv:1406.7618} \\ V'(\phi_{\star}) &= \frac{3}{2} P_{S}(k_{\star}) r(k_{\star}) \pi^{2} \sqrt{\frac{r(k_{\star})}{8}} M_{p}^{3}, \\ V''(\phi_{\star}) &= \frac{3}{4} P_{S}(k_{\star}) r(k_{\star}) \pi^{2} \left(n_{S}(k_{\star}) - 1 + \frac{3r(k_{\star})}{8} \right) M_{p}^{2}, \\ V'''(\phi_{\star}) &= \frac{3}{2} P_{S}(k_{\star}) r(k_{\star}) \pi^{2} \left[\sqrt{2r(k_{\star})} \left(n_{S}(k_{\star}) - 1 + \frac{3r(k_{\star})}{8} \right) - \frac{1}{2} \left(\frac{r(k_{\star})}{8} \right)^{\frac{3}{2}} - \alpha_{S}(k_{\star}) \sqrt{\frac{2}{r(k_{\star})}} \right] M_{p}, \\ V''''(\phi_{\star}) &= 12 P_{S}(k_{\star}) \pi^{2} \left\{ \frac{\kappa_{S}(k_{\star})}{2} - \frac{1}{2} \left(\frac{r(k_{\star})}{8} \right)^{2} \left(n_{S}(k_{\star}) - 1 + \frac{3r(k_{\star})}{8} \right) + 12 \left(\frac{r(k_{\star})}{8} \right)^{3} + r(k_{\star}) \left(n_{S}(k_{\star}) - 1 + \frac{3r(k_{\star})}{8} \right)^{2} + \left[\sqrt{2r(k_{\star})} \left(n_{S}(k_{\star}) - 1 + \frac{3r(k_{\star})}{8} \right) - \frac{1}{2} \left(\frac{r(k_{\star})}{8} \right)^{\frac{3}{2}} - \alpha_{S}(k_{\star}) \frac{2}{r(k_{\star})} \right] \\ \times \left[\sqrt{\frac{r(k_{\star})}{8}} \left(n_{S}(k_{\star}) - 1 + \frac{3r(k_{\star})}{8} \right) - 6 \left(\frac{r(k_{\star})}{8} \right)^{\frac{3}{2}} \right]_{O}^{\frac{3}{2}} \end{split}$$

 $\frac{\Theta^4_*}{24}
 \frac{\Theta^3_*}{6}
 \frac{\Theta^2_*}{2}
 \frac{\Theta^2_*}{\Theta^2_*}$ $\frac{\Theta^3_*}{6}$ $\frac{\Theta^2_*}{2}$ $\frac{\Theta^2_*}{2}$ 1 Θ_* 0 Θ_* 1 . . . ϕ_0 0 Θ_* 0 1 . 0 0 1 \mathcal{O}_{0} 0 0 ϕ_0 0 0 0

 $\frac{\Theta^3_*}{6}$ Θ^2_* $\frac{\Theta_*^2}{2}$ V Θ_* $\overline{\frac{2}{\Theta}}$ 0 Øn Θ_*] $\overline{2}$ Θ^{6}_{*} ϕ_0 0 0 Θ $\overline{\Theta}^2$ ϕ_0 Φ_* 0 0 1 0 (ϕ_0) (ϕ_*) 0 0 0 0 RE P Θ Θ Θ -Θ***** w $\frac{\Theta_{\bullet}^2}{2}$ V ϕ_0 0 Θ ×. ϕ_0 0 Θ $\frac{2}{\Theta}$ 0 v'''v'''* ϕ_0 ϕ_* 0 0 0 v'''' $v^{\prime\prime\prime\prime}$ (ϕ_0) 0 (ϕ_*) 0 0 0 105

Let us take Planck+WP+High L +BICEP2:

Let us take Planck+WP+High L +BICEP2:

 $5.26 \times 10^{-9} M_p^4 \leq V(\phi_0) \leq 9.50 \times 10^{-9} M_p^4,$ $2.44 \times 10^{-10} M_p^3 \leq V'(\phi_0) \leq 1.74 \times 10^{-9} M_p^3,$ $4.19 \times 10^{-11} M_p^2 \leq V''(\phi_0) \leq 6.44 \times 10^{-10} M_p^2,$ $6.29 \times 10^{-10} M_p \leq V'''(\phi_0) \leq 7.08 \times 10^{-10} M_p,$ $5.56 \times 10^{-10} \leq V''''(\phi_0) \leq 4.82 \times 10^{-9}.$

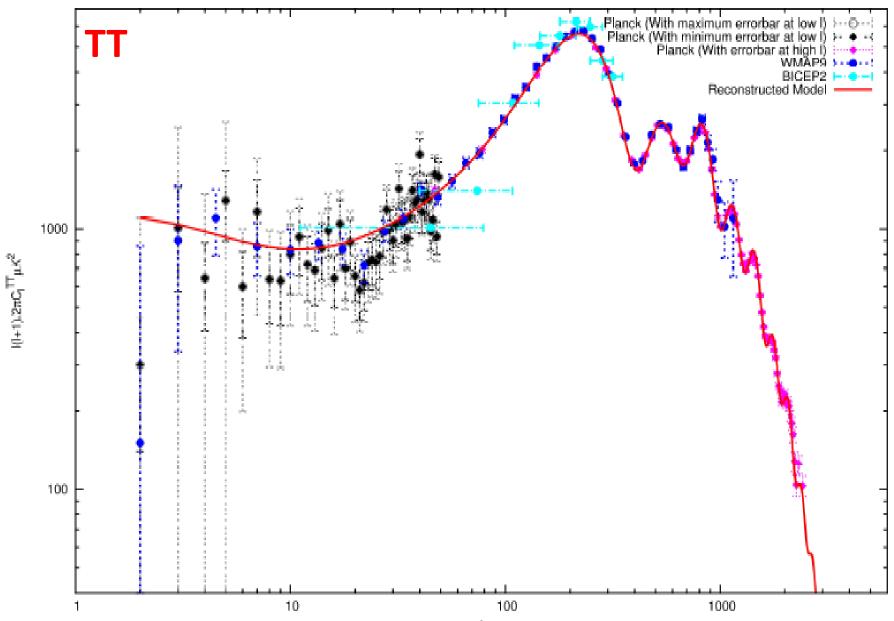
> $\epsilon_V \sim \mathcal{O}(0.10 - 1.69) \times 10^{-2},$ $|\eta_V| \sim \mathcal{O}(9.14 \times 10^{-3} - 0.06),$ $|\xi_V^2| \sim \mathcal{O}(5.60 \times 10^{-3} - 0.014),$ $|\sigma_V^3| \sim \mathcal{O}(2.28 \times 10^{-4} - 0.017).$

Let us take Planck+WP+High L +BICEP2:

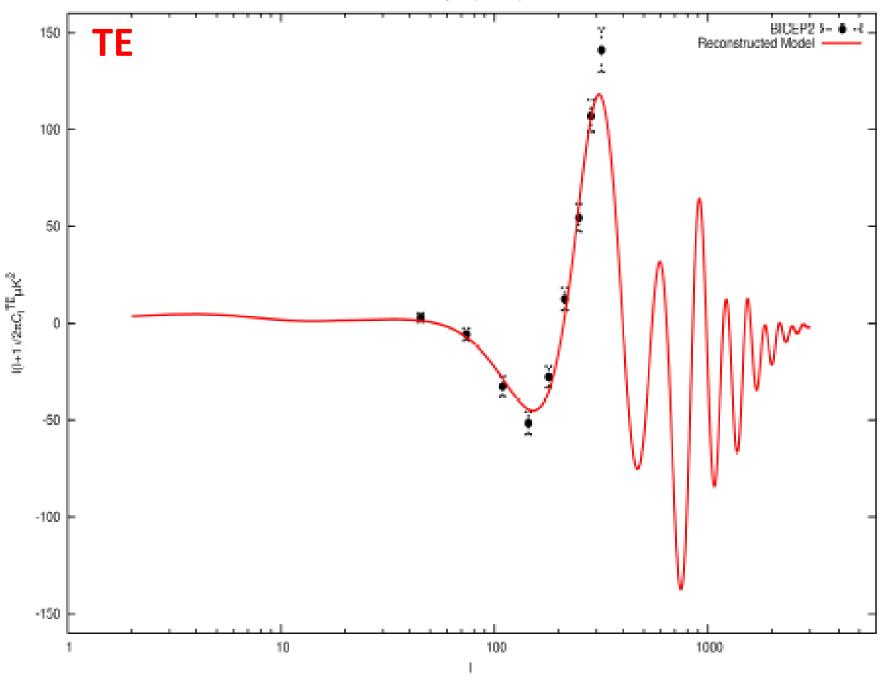
$$\begin{split} n_{T} &= -\frac{r}{8} \left(2 - \frac{r}{8} - n_{S} \right) + \cdots, \qquad \text{New consistency relations} \\ \alpha_{T} &= \frac{dn_{T}}{d \ln k} = \frac{r}{8} \left(\frac{r}{8} + n_{S} - 1 \right) + \cdots, \\ n_{r} &= \frac{dr}{d \ln k} = \frac{16}{9} \left(n_{S} - 1 + \frac{3r}{4} \right) \left(2n_{S} - 2 + \frac{3r}{8} \right) + \cdots, \\ \kappa_{T} &= \frac{d^{2}n_{T}}{d \ln k^{2}} = \frac{2}{9} \left(n_{S} - 1 + \frac{3r}{4} \right) \left(2n_{S} - 2 + \frac{3r}{8} \right) \left(\frac{r}{8} + n_{S} - 1 \right) \\ &+ \frac{r}{8} \left[\alpha_{S} + \frac{2}{9} \left(n_{S} - 1 + \frac{3r}{4} \right) \left(2n_{S} - 2 + \frac{3r}{8} \right) \right] + \cdots, \\ \kappa_{r} &= \frac{d^{2}r}{d \ln k^{2}} \\ &= \frac{16}{9} \left(2n_{S} - 2 + \frac{3r}{8} \right) \left\{ \alpha_{S} + \frac{4}{3} \left(n_{S} - 1 + \frac{3r}{4} \right) \left(2n_{S} - 2 + \frac{3r}{8} \right) \right\} \\ &+ \frac{16}{9} \left(n_{S} - 1 + \frac{3r}{4} \right) \left\{ 2\alpha_{S} + \frac{2}{3} \left(n_{S} - 1 + \frac{3r}{4} \right) \left(2n_{S} - 2 + \frac{3r}{8} \right) \right\} \end{split}$$

Let us take Planck+WP+High L +BICEP2: Estimated , inflationary $\alpha_T = \frac{1}{d \ln k} = \frac{1}{8} \left(\frac{1}{8} + n_S - 1 \right) + \cdots,$ parameters SC,AM,arXiv:1403.5549 $-0.019 < n_T < -0.033$ $\kappa_T = \frac{d^2 n_T}{d \ln k^2} = \frac{2}{6}$ $-2.97 \times 10^{-4} < \alpha_T < 2.86 \times 10^{-5},$ $2.28 \times 10^{-4} < |n_r| < 0.010,$ $\kappa_r = \frac{d^2r}{d\ln k^2}$ $-0.11 \times 10^{-4} < \kappa_T < -3.58 \times 10^{-4}$ $=\frac{16}{9}\left(2n_{S}-\right)$ $+\frac{16}{9}$ $-5.25 \times 10^{-3} < \kappa_r < -6.27 \times 10^{-3}$

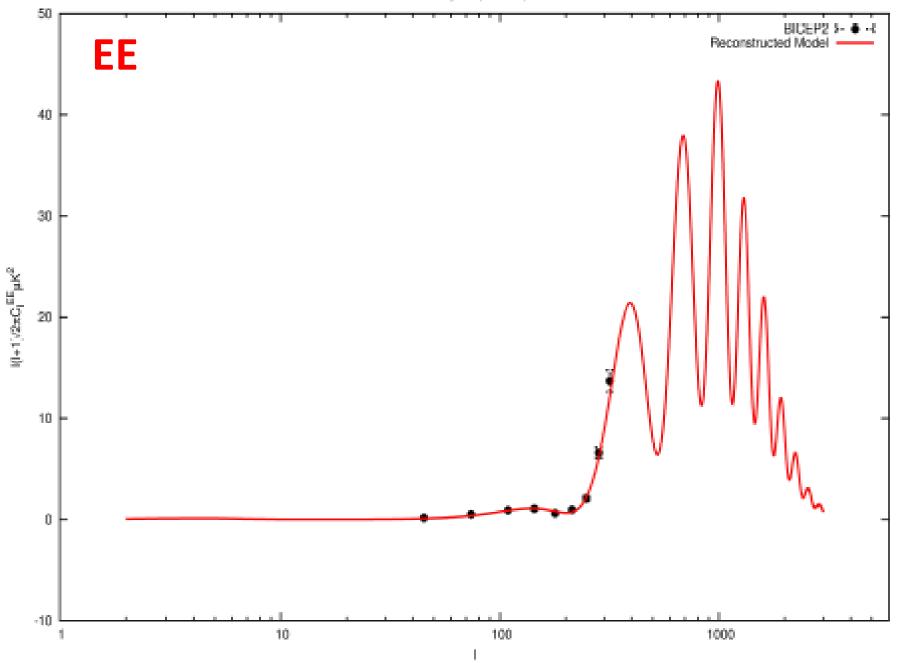
CMB TT Angular power spectrum



CMB TE Angular power spectrum



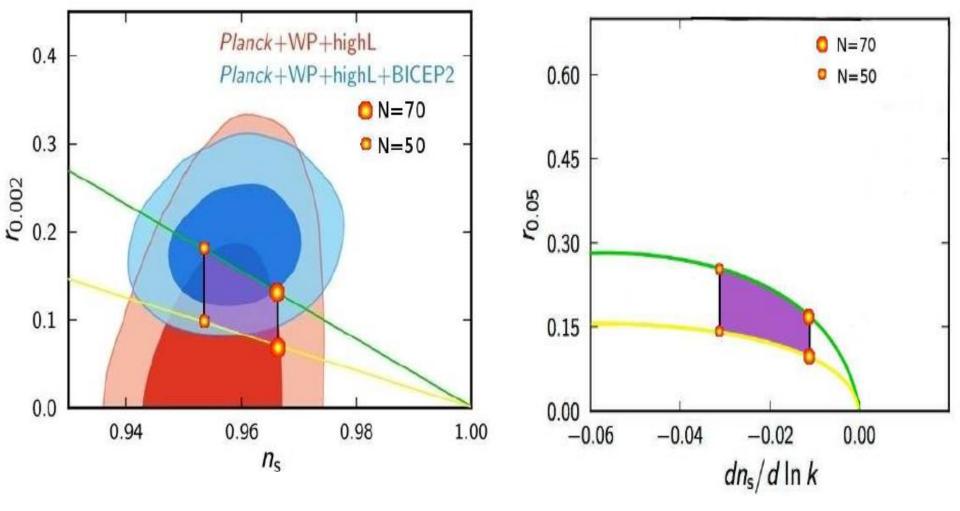
CMB EE Angular power spectrum

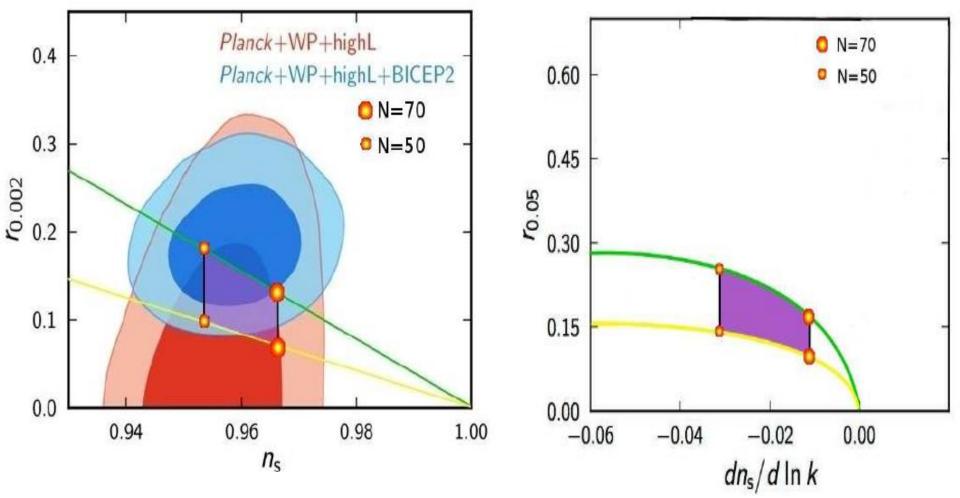




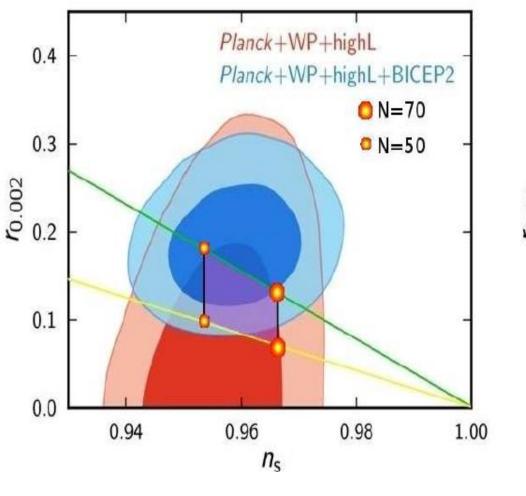
Ifs and Buts in the formalism.....

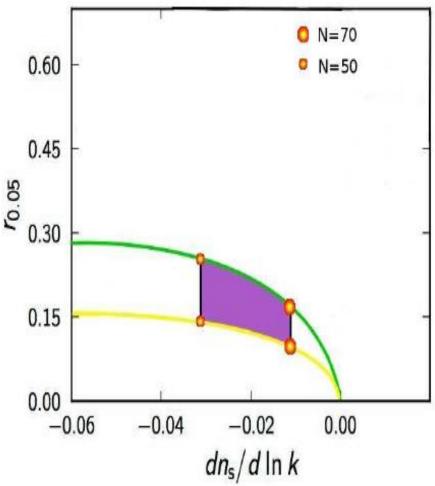
- 1. Need to further determine the values of the cosmological parameters....
- 2. Need to check the proper thermal history can be explained....
- 3. Need to check which class of models are favoured.....
- 4. To rule out models need to increase the statistical accuracy level by upgrading the tool.....
- 5. Need to break the degeneracy between the cosmological parameters....





Field excursion is super-Planckian or Sub-Planckian???





Field excursion is super-Planckian or Sub-Planckian???

Effective field theory prescription Valid???

EFT with Large "r" 2222

Tensor-to scalar ratio:

$$r_{b}(k) = \begin{cases} r_{b}(k_{*}) \\ r_{b}(k_{*}) \left(\frac{k}{k_{*}}\right)^{n_{T}(k_{*})-n_{S}(k_{*})+1} \\ r_{b}(k_{*}) \left(\frac{k}{k_{*}}\right)^{n_{T}(k_{*})-n_{S}(k_{*})+1+\frac{\alpha_{T}(k_{*})-\alpha_{S}(k_{*})}{2!}\ln\left(\frac{k}{k_{*}}\right)} \\ r_{b}(k_{*}) \left(\frac{k}{k_{*}}\right)^{n_{T}(k_{*})-n_{S}(k_{*})+1+\frac{\alpha_{T}(k_{*})-\alpha_{S}(k_{*})}{2!}\ln\left(\frac{k}{k_{*}}\right)+\frac{\kappa_{T}(k_{*})-\kappa_{S}(k_{*})}{3!}\ln^{2}\left(\frac{k}{k_{*}}\right)} \end{cases}$$

Tensor-to scalar ratio:

$$r_{b}(k) = \begin{cases} r_{b}(k_{*}) \\ r_{b}(k_{*}) \left(\frac{k}{k_{*}}\right)^{n_{T}(k_{*}) - n_{S}(k_{*}) + 1} \\ r_{b}(k_{*}) \left(\frac{k}{k_{*}}\right)^{n_{T}(k_{*}) - n_{S}(k_{*}) + 1 + \frac{\alpha_{T}(k_{*}) - \alpha_{S}(k_{*})}{2!} \ln\left(\frac{k}{k_{*}}\right)} \\ r_{b}(k_{*}) \left(\frac{k}{k_{*}}\right)^{n_{T}(k_{*}) - n_{S}(k_{*}) + 1 + \frac{\alpha_{T}(k_{*}) - \alpha_{S}(k_{*})}{2!} \ln\left(\frac{k}{k_{*}}\right) + \frac{\kappa_{T}(k_{*}) - \kappa_{S}(k_{*})}{3!} \ln^{2}\left(\frac{k}{k_{*}}\right)} \end{cases}$$

 $\frac{\text{SC,AM,NPB 882 (2014) 386}}{\text{SC,AM,arXiv:1403.5549,1404.3398,}} \\ \frac{\text{SC,arXiv:1406.7618}}{\text{Field} - \text{excursion (in GR)}} : \quad \left| \frac{\Delta \phi}{M_{\text{P}}} \right| = \begin{cases} \mathcal{O}(2.7 - 5.1) \\ \mathcal{O}(2.7 - 4.6) \\ \mathcal{O}(0.6 - 1.8) \\ \mathcal{O}(0.2 - 0.3) \end{cases}$

Tensor-to scalar ratio:

$$r_{b}(k) = \begin{cases} r_{b}(k_{*}) \\ r_{b}(k_{*}) \left(\frac{k}{k_{*}}\right)^{n_{T}(k_{*})-n_{S}(k_{*})+1} \\ r_{b}(k_{*}) \left(\frac{k}{k_{*}}\right)^{n_{T}(k_{*})-n_{S}(k_{*})+1+\frac{\alpha_{T}(k_{*})-\alpha_{S}(k_{*})}{2!}\ln\left(\frac{k}{k_{*}}\right)} \\ r_{b}(k_{*}) \left(\frac{k}{k_{*}}\right)^{n_{T}(k_{*})-n_{S}(k_{*})+1+\frac{\alpha_{T}(k_{*})-\alpha_{S}(k_{*})}{2!}\ln\left(\frac{k}{k_{*}}\right)+\frac{\kappa_{T}(k_{*})-\kappa_{S}(k_{*})}{3!}\ln^{2}\left(\frac{k}{k_{*}}\right)} \end{cases}$$

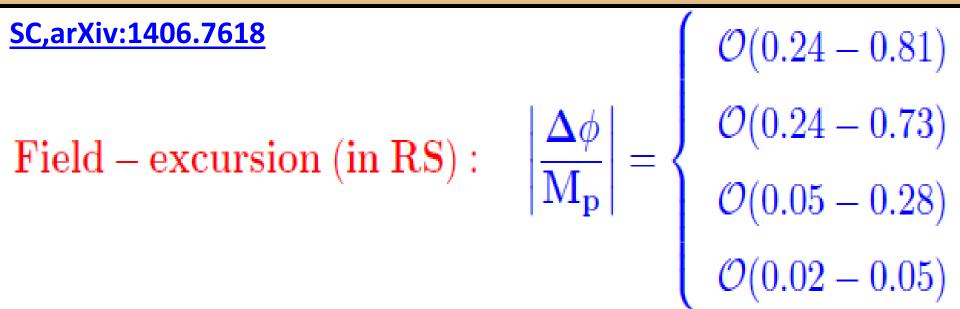
 $\frac{\text{SC,AM,NPB 882 (2014) 386}}{\text{SC,AM,arXiv:1403.5549,1404.3398,}} \\ \frac{\text{SC,arXiv:1406.7618}}{\text{Field - excursion (in GR)}} : \quad \left|\frac{\Delta\phi}{M_{\text{P}}}\right| = \begin{cases} \mathcal{O}(2.7 - 5.1) \\ \mathcal{O}(2.7 - 4.6) \\ \mathcal{O}(0.6 - 1.8) \\ \mathcal{O}(0.2 - 0.3) \end{cases}$

Note:

Large (detectable) r+ $|\Delta \phi| < M_p$ (EFT)= running/Beyond GR (RS)/muiltifield/.121.

$$\begin{array}{ll} \textit{In RS} & H^2 \approx \frac{V(\phi)}{3M_p^2} \left(1 + \frac{V(\phi)}{2\sigma}\right) & M_5^3 = \sqrt{\frac{4\pi\sigma}{3}} M_p \\ \textit{Model:} & \sigma = \sqrt{-\frac{3}{4\pi} M_5^3 \Lambda_5} > 0 \end{array}$$

$$\begin{array}{ll} \textit{In RS} & \text{H}^2 \approx \frac{V(\phi)}{3M_p^2} \left(1 + \frac{V(\phi)}{2\sigma}\right) & \text{M}_5^3 = \sqrt{\frac{4\pi\sigma}{3}} \text{M}_p \\ \textit{Model:} & \sigma = \sqrt{-\frac{3}{4\pi} \text{M}_5^3 \Lambda_5} > 0 \end{array}$$



$$\begin{array}{lll} \textit{In RS} & \mathrm{H}^2 \approx \frac{\mathrm{V}(\phi)}{3\mathrm{M}_{\mathrm{p}}^2} \left(1 + \frac{\mathrm{V}(\phi)}{2\sigma}\right) & \mathrm{M}_5^3 = \sqrt{\frac{4\pi\sigma}{3}}\mathrm{M}_{\mathrm{p}} \\ & \sigma = \sqrt{-\frac{3}{4\pi}\mathrm{M}_5^3\Lambda_5} > 0 \end{array}$$

$$\begin{array}{lll} \frac{\mathrm{SC}, \mathrm{arXiv:1406.7618}}{\mathrm{Field} - \mathrm{excursion}\left(\mathrm{in RS}\right): & \left|\frac{\Delta\phi}{\mathrm{M}_{\mathrm{p}}}\right| = \begin{cases} \mathcal{O}(0.24 - 0.81) \\ \mathcal{O}(0.24 - 0.73) \\ \mathcal{O}(0.05 - 0.28) \\ \mathcal{O}(0.02 - 0.05) \end{cases}$$

$$\begin{array}{lll} \mathrm{Brane\ tension:} & \sigma \leq \mathcal{O}(10^{-9})\ \mathrm{M}_{\mathrm{p}}^4, \\ \mathrm{5D\ Scale:} & \mathrm{M}_5 \leq \mathcal{O}(0.04)\ \mathrm{M}_{\mathrm{p}}, \\ \mathrm{5D\ Cosmological\ Constant:} & \Lambda_5 \geq -\mathcal{O}(10^{-15}) \pm \mathrm{M}_{\mathrm{p}}^5 \end{array}$$

- High scale models of inflations are favoured after BICEP2.
- Validity of EFT prescription requires: running +HOSL,Mutifield, RS or more sophisticated parametrization for powspec to get large "r".

- High scale models of inflations are favoured after BICEP2.
- Validity of EFT prescription requires: running +HOSL,Mutifield, RS or more sophisticated parametrization for powspec to get large "r".
- Proposed semi-analytical reconstruction technique is valid for any preferred choice of input observational data.

- High scale models of inflations are favoured after BICEP2.
- Validity of EFT prescription requires: running +HOSL,Mutifield, RS or more sophisticated parametrization for powspec to get large "r".
- Proposed semi-analytical reconstruction technique is valid for any preferred choice of input observational data.
- High scale MSSM model fits well with CMB TT spectra within 2<l<2500 (Planck).</p>

- High scale models of inflations are favoured after BICEP2.
- Validity of EFT prescription requires: running +HOSL,Mutifield, RS or more sophisticated parametrization for powspec to get large "r".
- Proposed semi-analytical reconstruction technique is valid for any preferred choice of input observational data.
- High scale MSSM model fits well with CMB TT spectra within 2<l<2500 (Planck).</p>
- New sets of infla consistency relations and values of the tensor mode parameters are proposed.

To comment on the correct value of "r" from any observation requires new tools for separating various components of CMB B-modes (=Infla+PMF+NG+Lensing etc.).

- To comment on the correct value of "r" from any observation requires new tools for separating various components of CMB B-modes (=Infla+PMF+NG+Lensing etc.).
- Fitting any model at a pivot scale is not enough. Need to check whether the models thoroughly fits well CMB spectra. (For Planck 2<l<2500).</p>

- To comment on the correct value of "r" from any observation requires new tools for separating various components of CMB B-modes (=Infla+PMF+NG+Lensing etc.).
- Fitting any model at a pivot scale is not enough. Need to check whether the models thoroughly fits well CMB spectra. (For Planck 2<l<2500).</p>
- If BICEP results are correct then need to clarify the issue of getting blue tilted gravity waves.

• The primordial non-Gaussianity is not yet been detected with high statistical accuracy ($f_{NL}^{local} = 2.7 \pm 5.8$ & $\tau_{Nl}^{local} \le 2800$). But if it is detected in near future experiments then using this tool it is possible to rule out various inflationary models.

- The primordial non-Gaussianity is not yet been detected with high statistical accuracy ($f_{NL}^{local} = 2.7 \pm 5.8$ & $\tau_{Nl}^{local} \le 2800$). But if it is detected in near future experiments then using this tool it is possible to rule out various inflationary models.
- To increase the numerical convergence of the proposed reconstruction technique need to incorporate the numerically integrated powspec by solving MS eqn using various numerical methods.

Need to check which class of potentials are more favoured by the proposed reconstruction technique.

- Need to check which class of potentials are more favoured by the proposed reconstruction technique.
- Need to work on thermal features. Ex: Reheating, Dark matter etc.

- Need to check which class of potentials are more favoured by the proposed reconstruction technique.
- Need to work on thermal features. Ex: Reheating, Dark matter etc.
- Need to propose an unified approach through which it is possible to unify inflation, dark matter & dark energy. Need also to check how Reconstruction business works here.

Thanks for your time.....

