Displaced multi-leptons at the LHC - probing a 125 GeV new boson in $\mu\nu$ SSM

PG, Daniel E. López-Fogliani, Vasiliki A. Mitsou, Carlos Muñoz and Roberto Ruiz de Austri Phys. Rev. D 88, 015009 (2013) PRD 88, 015009 (2013)

Life after 13/12/2011.....

At last a scalar 🙂

Is this the one?....

• 2⁺ (gg) excluded at 99.9% confidence C.L. (channel $\gamma\gamma$, WW^* , ZZ^*), 0⁻, 1⁺(1⁻) excluded at \gtrsim 97.8%(94%) C.L. from ZZ^* ... ATLAS-CONF-2013-040.013 CMS-PAS-HIG-13-005... • 15-04-2013

• Combined signal strength $\mu = 1.30(0.80) \pm 0.20(0.14)$ agrees with the SM at 2σ ATLAS-CONF-2013-034,CMS PAS-HG-13-005

• $m_{scalar} = 125.2 \pm 0.2 \text{ (stat)} \stackrel{+0.5}{_{-0.6}} \text{ (sys) GeV},$ $m_{scalar} = 125.7 \pm 0.3 \text{ (stat)} \pm 0.3 \text{ (syst) GeV}$ ATLAS-CONF-2013-014, CMS PAS-HG-13-005

Phys. Lett. B716 (2012) 1 [ATLAS] Phys. Lett. B716 (2012) 30 [CMS]

• Apparent excess in $\gamma\gamma$ for ggF and even for VBF..ATLAS-CONF-2013-034

• Need precise measurement of $b\bar{b}.\sim 56\%-58\%$ for 125-126 GeV Higgs like scalar

• Neutrino mass..?, Dark Matter..? Flavour violation..? gi unification..?

Hope survives... 😊

Beyond the SM with SUSY

Need two Higgs doublets.. H_u, H_d

- Fast proton decay through sparticles mediated processes
- Impose R-parity $(R_p) \Longrightarrow$ stable LSP

• $m_{
u} = 0$ unless *R* parity or extra superfields

• μ -problem with bilinear $\epsilon_{ab}\mu\hat{H}^a_d\hat{H}^b_u$

Kim and Nilles, Phys. Lett. B 138, 150 (1984)

- Cure to gauge hierarchy problem of the SM with superpartners....
- \bullet Stable lightest SUSY particle \Longrightarrow DM candidate
- Enhanced FV \implies stringent constraint
- gauge coupling unification

Waking up with the idea.....

- Replace $\mu \hat{H}^a_d \hat{H}^b_\mu$ by $\lambda \hat{S} \hat{H}^a_d \hat{H}^b_\mu$... after EWSB, $\mu_{eff} = \lambda \langle \tilde{S} \rangle$...
- \hat{S} , a SM gauge singlet superfield... \Longrightarrow NMSSM... Extra tree level contribution to $m_{lightest}^{Higgs} \propto 3.62 m_Z^2 |\lambda|^2 \sin^2 2\beta$. Drees 1989, Ellis, Gunion, Haber, Roszkowski, Zwirner, 1989
- However, m_{ν} still zero.. unless \mathcal{R}_{P} or extra superfields added..
 - Simplest is bR_P , i.e. through $\epsilon_i \hat{L}_i \hat{H}_{\mu}$
 - One $m_{\nu} \neq 0$ at the tree level.. need one more at least for three flavour global data Forero, Tortola,

Valle, Phys. Rev. D 86, 073012 (2012); Schwetz,

Tortola, Valle, New. J. Phys. 10, 113011 (2008)

- Loop corrections are essential.....
- Suffers from ϵ -problem Nilles and

Polonsky, Nucl. Phys. B 484, 33 (1997)

- Next possibility is tR_P, free from any naturalness problems
- Neutrino masses appear through loop calculations
- Large number of parameters
- \implies less predictive
- Critically challenged with
- LFV..... Dreiner, Nickel, Staub, Vicente,

Phys. Rev. D 86, 015003 (2012)

• Why not the gauge singlet right-handed neutrinos, ν^c ?? Pradipta Ghosh (IFT/UAM)

Introducing $\mu\nu {\rm SSM}$ López-Fogliani, Muñoz

•
$$\lambda \hat{S} \hat{H}_{d}^{a} \hat{H}_{u}^{b}$$
 ... It is $\lambda^{i} \hat{\nu}_{i}^{c} \hat{H}_{d}^{a} \hat{H}_{u}^{b}$
• Natural entry of $Y_{\nu}^{ij} \hat{H}_{2}^{b} \hat{L}_{i}^{a} \hat{\nu}_{j}^{c}$
• Natural entry of $Y_{\nu}^{ij} \hat{H}_{2}^{b} \hat{L}_{i}^{a} \hat{\nu}_{j}^{c}$
• $\lambda \hat{L} = 1$
• $\lambda \hat{L} = 1$
 $W = \epsilon_{ab}(Y_{u}^{ij} \hat{H}_{u}^{b} \hat{Q}_{i}^{a} \hat{u}_{j}^{c} + Y_{d}^{ij} \hat{H}_{d}^{a} \hat{Q}_{b}^{b} \hat{q}_{j}^{c} + Y_{e}^{ij} \hat{H}_{d}^{a} \hat{L}_{b}^{b} \hat{e}_{j}^{c})$
 $W^{MSSM} - \epsilon_{ab} \mu \hat{H}_{d}^{a} \hat{H}_{u}^{b}$
+ $\epsilon_{ab}(Y_{\nu}^{ij} \hat{H}_{u}^{b} \hat{L}_{i}^{a} \hat{\nu}_{j}^{c} - \tilde{\lambda}_{\nu}^{i} \hat{\nu}_{i}^{c} \hat{H}_{d}^{a} \hat{H}_{u}^{b})$
 $\epsilon_{eff}^{i} = Y_{\nu}^{ij} \langle \tilde{\nu}_{j}^{c} \rangle$
 $\mu_{eff}^{i} = \lambda^{i} \langle \tilde{\nu}_{i}^{c} \rangle$
 $m_{\nu_{g}}^{i} = 2 \kappa i j k \langle \tilde{\nu}_{k}^{c} \rangle$

López-Fogliani, Muñoz, PRL 97, 041801 (2006)

Escudero, López-Fogliani, Muñoz, Ruiz de Austri JHEP 12 (2008) 099 $Y_{\nu}^{ij} \hat{H}_{u}^{b} \hat{L}_{i}^{a} \hat{\nu}_{j}^{c}$ is the seed of $\mathcal{R}_{P}...$ with $Y_{\nu} \rightarrow 0...$ $\hat{\nu}^{c} \Leftrightarrow \hat{S}... \Rightarrow \mathcal{R}_{P}$ TeV scale seesaw with right-handed neutrino + $\mathcal{R}_{P} \implies m_{\nu} \neq 0$ PG, Roy JHEP 04 (2009) 069; Fidalgo, López-Fogliani, Muñoz and Ruiz de Austri JHEP 08 (2009) 105; PG, Dey, Mukhopadhyaya and Roy JHEP 05 (2010) 087 $Y_{\nu} \propto \langle \tilde{\nu}_{i} \rangle$, with TeV scale seesaw $Y_{\nu} \sim 10^{-6}$

Similar \mathcal{R}_P in $\mathcal{L}_{soft} \implies \langle \tilde{\nu}_i \rangle = \nu_i$, $\langle \tilde{\nu}_i^c \rangle = \nu_i^c \neq 0$ sneutrino VEVs Three $\hat{\nu}^c$, natural from family symmetry, even with $Y_{\nu}^{ii} \implies$ correct neutrino physics at the tree level PG, Roy JHEP 04 (2009) 069

The neutrinos in $\mu\nu$ SSM

$$a_i = Y_{\nu}^{ii} v_u, b_i = a_i \cot \beta + 3\lambda c_i, c_i = \nu_i$$

PG, S. Roy, JHEP 04, 069 (2009), PG, Dey, Mukhopadhyaya and Roy, JHEP 05 (2010) 087

Goliath meets David.....

PG, S. Roy, JHEP 04, 069 (2009), A. Bartl, M. Hirsch, A. Vicente, S. Liebler, W. Porod, JHEP 05, 120 (2009)

Correlations between neutrino mixing angles and LSP decay

B. Mukhopadhyaya, S. Roy, F. Vissani, Phys. Lett. B 443, 191 (1998) S.Y. Choi, E. J. Chun, S. K. Kang, J. S. Lee, Phys. Rev. D 60, 075002 (1999) J.C. Romao, M.A. Diaz, M. Hirsch, W. Porod, J.W.F Valle, Phys. Rev. D 61, 071703 (2000)

The Spectrum

Significance of Lepton number (L) is lost

- 2 from MSSM + 3 $\tilde{\nu}_i^c$ + 3 $\tilde{\nu}_L^i \Longrightarrow$ 8 CP-even states h_{α}
- 1 from MSSM + 3 $\widetilde{\nu}_i^c$ + 3 $\widetilde{\nu}_L^j \Longrightarrow$ 7 CP-odd states P_α
- 1 from MSSM + 3 \tilde{e}_L^i + 3 $\tilde{e}_R^i \Longrightarrow$ 7 charged states S_{α}^{\pm}
- 4 from MSSM + 3 ν_i^c + 3 $\nu_L^i \Longrightarrow 10$ neutral fermions $\tilde{\chi}_{\alpha}^0$
- 2 from MSSM + 3 $e^{i}_{L,R} \Longrightarrow$ 5 charged fermions $\widetilde{\chi}^{\pm}_{\alpha}$

With small $Y_{\nu} \sim 10^{-6}$ (and ν_i) ... $\widetilde{\nu}_L^i, e_{L,R}^i, \widetilde{e}_{L,R}^i$ are practically decoupled Although decoupled, ν_L^i owe their mass to $Y_{\nu}, \nu_i \dots \in \mathcal{R}_P$ and TeV seesaw λ and $A_{\lambda} \Longrightarrow$ key ingredient for singlet-doublet admixing At the limit $\lambda \to 0$, $\widetilde{\nu}_i^c$ decoupled from the doublets...

> Escudero, López-Fogliani, Muñoz, Ruiz de Austri, *JHEP* 12 (2008) 099 Ellis, Gunion, Haber, Roszkowski, Zwirner, Phys. Rev. D 39, 844 (1989)

A unique signal.....The proposal ...

- Low mass ($\lesssim m_W$) unstable LSP ($\widetilde{\chi}^0$) decays mainly through $\ell^{\pm} W^{\mp^*}$, νZ^* while $l_{DL} \sim 1/m_{\chi^0}^4$...
- \bullet When $m_{\chi}{}_{\rm 0}$ < 20 GeV... I_{DL} > 100 m $\,$
- $d_{
 m ATLAS} \sim 25 \text{ m} \Longrightarrow \text{light } \widetilde{\chi}^0 \text{ (} \lesssim 40 \text{ GeV}\text{)}...$ R_P is an impostor to $R_P C$
- Pronounced for $m_{\widetilde{\chi}}$ o \lesssim 20 GeV

Bartl, Hirsch, Vicente, Liebler, Porod, JHEP 0905, 120

Any new two body decays for $\tilde{\chi}^0$? In $\mu\nu$ SSM three singlet like lighter h_i , P_i are possible.. A light $\tilde{\chi}^0$ through $\tilde{\chi}^0 \rightarrow h_i/P_i + \nu_L^i$ can yield mesoscopic DV (1 $cm \leq l_{DL} \leq 3 m$) A very light $\tilde{\chi}^0$ (≤ 20 GeV) is detectable at the LHC!.. PG, López-Fogliani, Mitsou, Muñoz, Ruiz de Austri, PRD 88, 015009 (2013)

How about Higgs $\rightarrow \widetilde{\chi}^0 \widetilde{\chi}^0$ at the LHC....?

Pradipta Ghosh (IFT/UAM)

 $\mu\nu$ SSM with multi-leptons

An unique signal.....setting up the convention

• With small λ_i small doublet-singlet mixing $\implies h_i, P_i, \tilde{\chi}_{i+3}^0 \ (i=1,2,3)$ are with leading $\widetilde{\nu}_i^c$ composition

- $\tilde{\chi}_{i}^{0}$ are practically left-chiral neutrinos
- h_4 is the lightest doublet-like Higgs while $\tilde{\chi}_4^0$ is the lightest neutralino

Fidalgo, López-Fogliani, Muñoz, Ruiz de Austri JHEP 1110, 020 (2011)

 Displaced yet detectable multi-leptons at the LHC

- $2m_{\tau} \lesssim m_{h_i,P_i} \lesssim 2m_{b}$...for clean final states
- τ 's are the best... $n_{trk} = 3$ for hadronic τ decay.. (65% of time)

 \odot au detection efficiency varies with $p_{\rm T}^{ au}$

With $m_{h_{*}} \sim 125$ GeV and higher $p_{T}^{\rm jet}$ trigger \Longrightarrow jets are not the best

Our signal.... $gg \to h_4 \to \widetilde{\chi}^0_a \widetilde{\chi}^0_a \to 2h_i/P_i + 2\nu \to 2\tau^+ 2\tau^- 2\nu$

A little price to pay..... correlation lost

- Correlations among χ_4^0 decay and neutrino mixing angle $\implies n_\mu > n_e$ PG, S. Roy, JHEP 04, 069 (2009)
- These correlations are absent in usual trilinear \mathcal{R}_P models...

Choi, Chun, Kang, Lee Phys. Rev. D 60, 075002 (1999)

• The correlations survives even with isolation $(\ell\ell,\ell jet)$ cuts

P. Bandyopadhyay, PG and S. Roy, Phys. Rev. D84, 115022 (2011)

• An unique feature and test of the $\mu\nu$ SSM...

☺ In the current analysis leptons are from h_i/P_i decays... correlations lost ☺ ⇒ n_ℓ is practically independent of Y_{ν}, ν

An unique signal......Looking for the spectrum

A generic idea....

- $\tilde{\chi}^0 \rightarrow h/P + \nu$ with $m_{\tilde{\chi}^0} \lesssim 20 \text{ GeV} \Rightarrow$ we need lighter m_{h_i}/m_{P_i}
- Light $m_{h,P} \Leftarrow \text{small } \lambda \dots$ we fixed $\lambda_i = 0.11$ Ellis et al. Phys. Rev. D 39, 844 (1989)
- Small $\lambda \Rightarrow \nu^{c} \sim 1$ TeV \Leftarrow lighter $\tilde{\chi}^{\pm}$ mass... $\Rightarrow \mu(\sim 3\lambda\nu^{c}) \gtrsim 100$ GeV... we fixed $\nu_{i}^{c} = 780$ GeV

- With $2m_{\tau} \lesssim |m_{\tilde{\chi}^0} (2\kappa\nu^c)| \lesssim 20$ GeV and $\nu_i^c \sim 1$ TeV $\Rightarrow 10^{-3} \lesssim |\kappa| \lesssim 10^{-2}$. we took $\kappa_{111} = -0.0073$, $\kappa_{222} = -0.0075$, $\kappa_{333} = -0.0077$
- Small $\lambda \Rightarrow m_P^2 \sim -3m_{\widetilde{\chi}^0}A_\kappa/2...$ So $2m_\tau \lesssim m_P \lesssim 2m_b \Rightarrow 0.4 \lesssim |A_\kappa({
 m GeV})| \lesssim 30$
- $m_h^2 \sim m_{\widetilde{\chi}^0}^2 + m_{\widetilde{\chi}^0} A_\kappa/2$ in the same limit.. we fixed $A_\kappa = 5$ GeV

Escudero, López-Fogliani, Muñoz, Ruiz de Austri, JHEP 0812, 099 (2008); Ellis et al. Phys. Rev. D 39, 844 (1989)

• $\tan\beta = 3.7$ and $A_{\lambda} = 990$ GeV, can be varied without drastic alteration to the proposed signal... e.g. $980 \lesssim A_{\lambda} \lesssim 1040$ GeV for fixed $\tan\beta, \nu^c, \lambda, \kappa, A_{\kappa}$

• Gaugino unification at GUT scale and $M_2 = 500$ GeV..... singlet like $\tilde{\chi}^0$ with $|2\kappa\nu^c| << |\mu|, |M_{\rm gaugino}|$

• $m_{\tilde{e}^c} = m_{\tilde{u}^c} = m_{\tilde{d}^c} = m_{\tilde{Q}} = 1$ TeV, $A_e = A_d = -A_\nu = 1$ TeV and $A_u = 2.4$ TeV. PG, López-Fogliani, Mitsou, Muñoz, Ruiz de Austri, PRD 88, 015009 (2013)

Looking for the spectrum.....contd...

• Large A_u and $m_{\widetilde{u}^c}, m_{\widetilde{Q}} \Rightarrow m_{h_4} \sim 125$ GeV for smaller λ

 \circledast With smaller $\lambda....$ an extra piece of contribution to tree level m_{h_4} is irrelevant...even with small $\tan\beta$

Drees, Int. J. Mod. Phys. A 4, 3635 (1989)

- Y_{ν}, ν are constrained to reproduce correct neutrino data
- Variation in $Y_{\nu}, \nu \Rightarrow$ change in absolute $m_{\nu}...$ change in $\Gamma_{\widetilde{\chi}^0_4}$... altered I_{DL}

• Flavour information of the signal is practically independent of Y_{ν} , ν since leptons are from h/P decay... missing correlation with neutrino mixing angles \odot

Bandyopadhyay, PG, Roy, Phys. Rev. D 84, 115022 (2011)

• $\kappa > 0$ yields mainly $h_4 \to \widetilde{\chi}_0^6 \widetilde{\chi}_0^6 \dots$ followed by $\widetilde{\chi}_0^6 \to \widetilde{\chi}_{4,5}^0 \mu^+ \mu^- \dots$ hardly detectable soft $\mu \dots$ with small $\Delta m_{\widetilde{\chi}_0^0} \dots \Leftrightarrow \Delta \kappa_{ab} \to 0 \dots$. thus $\kappa > 0$

 $Br(h_4 \to \tilde{\chi}^0_4 \tilde{\chi}^0_4) \approx 6\%$ at chosen benchmark... while $\tilde{\chi}^0_4 \to \tau^+ \tau^- \nu \approx 99\%$

Masses	Values in GeV
m_{h_4}	125.7
$m_{P_1}, m_{P_2}, m_{P_3}$	3.6, 3.8, 5.5
$m_{h_1}, m_{h_2}, m_{h_3}$	7.5, 8.0, 19.6
$m_{\widetilde{\chi}^0_4}, m_{\widetilde{\chi}^0_5}, m_{\widetilde{\chi}^0_6}$	9.6, 11.5, 11.9

PG, López-Fogliani, Mitsou, Muñoz, Ruiz de Austri, PRD 88, 015009 (2013)

Pradipta Ghosh (IFT/UAM)

 $\mu\nu$ SSM with multi-leptons

Following the footsteps..

Self-developed Code

Analysis

PGS4

PGS4

oμ

To kill the backgrounds......

Mesoscopic displaced vertex....

Displaced charge tracks....

• All SM (e.g. ZZ^*)/SUSY backgrounds (e.g. $h_1 \rightarrow P_1P_1 \rightarrow 2\ell^+ 2\ell^- @NMSSM$), with prompt ℓ are effaced ... also long-lived b/c meson decays

• NMSSM with $10^{-3} \lesssim \lambda \lesssim 10^{-2}$... light NLSP \rightarrow LSP + h/P, with $h/P \rightarrow \ell^+ \ell^- \Rightarrow$ a possible impostor.. Elwanger, Hugonie, Eur. Phys. J. C 5, 723 (1998); Eur. Phys. J. C 13, 681 (2000) • NLSP \rightarrow LSP + h/P, never produces mesoscopic decay length... Eur. Phys. J. C 13, 681 (2000)

Pradipta Ghosh (IFT/UAM)

Bandyopadhyay, PG, Roy, PRD84, 115022 (2011)

$\mu\nu$ SSM with multi-leptons

To kill the backgrounds......

Mesoscopic displaced vertex....

Displaced charge tracks....

• All SM (e.g. $ZZ^*)/SUSY$ backgrounds (e.g. $h_1 \to P_1P_1 \to 2\ell^+2\ell^-@\mathrm{NMSSM})$, with prompt ℓ are effaced \ldots also long-lived b/c meson decays

• NMSSM with $10^{-3} \lesssim \lambda \lesssim 10^{-2}$... light NLSP \rightarrow LSP + h/P, with $h/P \rightarrow \ell^+ \ell^- \Rightarrow$ a possible impostor.. Elwanger, Hugonie, Eur. Phys. J. C 5, 723 (1998); Eur. Phys. J. C 13, 681 (2000) • NLSP \rightarrow LSP + h/P, never produces mesoscopic decay length... Eur. Phys. J. C 13, 681 (2000)

Bandyopadhyay, PG, Roy, PRD84, 115022 (2011)

Lepton multiplicity... @8 TeV @20 fb⁻¹

• e, μ s are from leptonic au decay.. although $h_i/P_i \to \mu^+\mu^-$ is possible

- 4e, 4 μ s from $au \sim$ 0.1% while 4 $au^{
 m had} \sim$ 18%
- Highly collimated QCD jets faking $au^{had}.... \implies n^{ au^{had}} > 4...$ disappears with higher $p_T^{ au^{had}}$ cut
- ullet $au^{
 m had'}$'s are clearly the best bet... next one is of course μ

 $\not\!\!E_{T}$, DL, H_{T}^{ℓ}

Moderately high MET ⇐ ≥ 6 neutrinos from \$\tilde{\chi}_4\$ and τ decays...
 c τ\$\tilde{\chi}_4\$ ≈ 30 cm.... large number of events appear inside charge tracker

- $H_{\rm T}^{\ell}$ is moderately high for larger lepton multiplicity • $H_{\rm T}^{\ell} + \not \in_{\rm T}$ can be used as a
- differentiator

$\widetilde{\chi}_4^{\rm 0}$ decay kinematics

Low momentum in the central region, single h₄ at the LHC
High boost leads to collimated tracks ... hard to disentangle from PV

$eta\gamma$ vs η

• A large fraction of DVs appear within $|z_{\rm DV}| \lesssim 2.5$ m and $\rho_{\rm DV} \lesssim 1$ m, i.e, in the range of inner tracker • It is possible to track this

Probing DVs

Charge track mass vs n_{trk}

 $n_{trk}^{vertex}|_{max} =$ 12, four 3-prong au decay

With large track multiplicity similar analysis with jets seem promising.. ...they are usually softer © • A very useful event selection criteria $\ensuremath{\mathfrak{S}}$ Sensitive for $n_{trk} > 4$ and vertex mass > 10 GeV... G. And et al.

[ATLAS], Phys. Lett. B 719, 280 (2013)

• Room for development... sensitivity to low vertex mass

ATLAS-CONF-2012-113

Summary and conclusion..... and beyond

• $\mu\nu {\rm SSM}....$ solves $\mu\text{-problem}$ and reproduce correct neutrino physics

- Novel signals are well expected with enriched mass spectrum and broken R_p
- \bullet Displaced objects at the LHC \Rightarrow lesser backgrounds.. new signs are well envisaged
- Sophisticated analysis of displaced objects are expected in near future
- Unique SUSY signatures are also possible

With new data and up-gradation to 14 TeV..... more phenomenological wonder with $\mu\nu$ SSM are awaiting.....

Dreaming the future ..

Loop corrections in SUSY

New one-loop radiative corrections to Higgs boson in SUSY

- $\bullet\,$ Certain restrictions on masses and couplings of new states $\Longrightarrow\,$ radiative correction vanishes
- Symmetry between states of different spin quantum numbers \implies Higgs (scalar) mass is protected

R-Parity

- R_p , a discrete symmetry \implies prevents too fast proton decay through sparticle mediated process
- $R_p = (-1)^{L+3B+2S}$ with L(B) as lepton(baryon) and S as spin

 R_p conserved

 R_p violated

- R_p conservation \implies stable Lightest Supersymmetric Particle (LSP)
- Most general MSSM superpotential with bilinear and trilinear R_P

$$W = \epsilon_{ab} \left(Y_u^{ij} \hat{H}_u^b \hat{Q}_i^a \hat{u}_j^c + Y_d^{ij} \hat{H}_d^a \hat{Q}_i^b \hat{d}_j^c + Y_e^{ij} \hat{H}_d^a \hat{L}_i^b \hat{e}_j^c - \mu \hat{H}_d^a \hat{H}_u^b \right)$$
$$-\epsilon_{ab} \left(\underbrace{\epsilon^i \hat{L}_i^a \hat{H}_u^b}_{\Delta L=1,\Delta B=0} + \frac{1}{2} \lambda^{ijk} \hat{L}_i^a \hat{L}_j^b \hat{e}_k^c + \underbrace{\lambda^{ijk} \hat{L}_i^a \hat{Q}_j^b \hat{d}_k^c}_{\Delta L=1,\Delta B=0} + \underbrace{\lambda^{ijk} \hat{u}_i^c \hat{d}_j^c \hat{d}_j^c}_{\Delta L=1,\Delta B=0} + \underbrace{\lambda^{ijk} \hat{u$$

 $m_{\nu} \neq 0$

Pradipta Ghosh (IFT/UAM)

 $\mu\nu$ SSM with multi-leptons

MSSM superpotential

$$W = \epsilon_{ab} (Y^{ij}_u \hat{H}^b_u \hat{Q}^a_i \hat{u}^c_j + Y^{ij}_d \hat{H}^a_d \hat{Q}^b_i \hat{d}^c_j + Y^{ij}_e \hat{H}^a_d \hat{L}^b_i \hat{e}^c_j) - \underline{\epsilon_{ab} \mu \hat{H}^a_d \hat{H}^b_u}$$

• Since $\mu \ \epsilon$ superpotential $\longrightarrow \mu$ respects supersymmetry (SUSY)

- μ appears in EWSB, generates TeV-scale higgsino masses
- SUSY respecting $\mu \sim$ SUSY breaking TeV-scale soft terms $\implies \mu$ -problem

J. E. Kim and H. P. Nilles, Phys. Lett. B 138, 150 (1984)

• Alternatively,

$$\left| \frac{1}{2}m_Z^2 = \frac{m_{H_d}^2 - m_{H_u}^2 \tan^2\beta}{\tan^2\beta - 1} - |\mu^2|. \right.$$

The soft terms

 $\bullet~$ The Lagrangian $\mathcal{L}_{\text{soft}},$ containing the soft-supersymmetry-breaking terms is given by

$$\begin{aligned} -\mathcal{L}_{\text{soft}} &= (m_{\tilde{Q}}^{2})^{ij} \tilde{Q}_{i}^{a^{*}} \tilde{Q}_{j}^{a} + (m_{\tilde{\nu}^{c}}^{2})^{ij} \tilde{u}_{i}^{c^{*}} \tilde{u}_{j}^{c} + (m_{\tilde{d}^{c}}^{2})^{ij} \tilde{d}_{i}^{c^{*}} \tilde{d}_{j}^{c} + (m_{\tilde{L}}^{2})^{ij} \tilde{L}_{i}^{a^{*}} \tilde{L}_{j}^{a} \\ &+ (m_{\tilde{e}^{c}}^{2})^{ij} \tilde{e}_{i}^{c^{*}} \tilde{e}_{j}^{c} + m_{H_{d}}^{2} H_{d}^{a^{*}} H_{d}^{a} + m_{H_{u}}^{2} H_{u}^{a^{*}} H_{u}^{a} + (m_{\tilde{\nu}^{c}}^{2})^{ij} \tilde{\nu}_{i}^{c^{*}} \tilde{\nu}_{j}^{c} \\ &+ \epsilon_{ab} \left[(A_{u} Y_{u})^{ij} H_{u}^{b} \tilde{Q}_{i}^{a} \tilde{u}_{j}^{c} + (A_{d} Y_{d})^{ij} H_{d}^{a} \tilde{Q}_{i}^{b} \tilde{d}_{j}^{c} + (A_{e} Y_{e})^{ij} H_{d}^{a} \tilde{L}_{i}^{b} \tilde{e}_{j}^{c} + \text{H.c.} \right] \\ &+ \left[\epsilon_{ab} (A_{\nu} Y_{\nu})^{ij} H_{u}^{b} \tilde{L}_{i}^{a} \tilde{\nu}_{j}^{c} - \epsilon_{ab} (A_{\lambda} \lambda)^{i} \tilde{\nu}_{i}^{c} H_{d}^{a} H_{u}^{b} + \frac{1}{3} (A_{\kappa} \kappa)^{ijk} \tilde{\nu}_{i}^{c} \tilde{\nu}_{j}^{c} \tilde{\nu}_{k}^{c} + \text{H.c.} \right] \end{aligned}$$

 The neutral fields develop non zero VEVs while minimizing the neutral scalar potential,

$$\langle H_d^0 \rangle = v_d , \quad \langle H_u^0 \rangle = v_u , \quad \langle \tilde{\nu}_i \rangle = \nu_i , \quad \langle \tilde{\nu}_i^c \rangle = \nu_i^c .$$

"TeV - scale" Type I + Type III seesaw, even with flavour diagonal neutrino Yukawa couplings ⇒ tree level masses for all three neutrinos

PG and Roy, JHEP 04, 069 (2009)

$$m_{\nu} \sim rac{Y_{\nu}^2 \langle H_2^0 \rangle^2}{m_{\nu} c}$$
 TYPE-I $m_{\nu} \sim rac{g^2 \langle ilde{
u} \rangle^2}{m_{\chi^0}}, \ m_{\chi^0} = M_1, M_2$ TYPE-I+III

Approximate analytical expression for entries of M^{tree}_{seesaw} matrix

$$\left(M_{\text{seesaw}}^{\text{tree}}\right)_{ij} \approx \frac{a_i a_j}{6\kappa\nu^c} \left(1 - 3\delta ij\right) - \frac{1}{2M_{\text{eff}}} \left[c_i c_j + \frac{(a_i c_j + a_j c_i)}{3\lambda \tan\beta} + \frac{a_i a_j}{9\lambda^2 \tan^2\beta}\right]$$

PG and Roy, JHEP 04, 069 (2009)

where
$$M_{eff} = \left[1 - \frac{v^2}{2M(\kappa\nu^{c^2} + \lambda v_d v_u)\mu} \left(\kappa\nu^{c^2}\sin 2\beta + \frac{\lambda v^2}{2}\right)\right], \frac{1}{M} = \frac{g_1^2}{M_1} + \frac{g_2^2}{M_2}$$

 $v^2 = v_d^2 + v_u^2, \ tan\beta = \frac{v_u}{v_d}, \ a_i = Y_{\nu}^{ii}v_u, \ c_i = \nu_i, \ i = e, \mu, \tau$

• In the limit $\nu^c \to \infty$ and $\nu \to 0$, equation one reduces to

 $(M^{tree}_{seesaw})_{ij} pprox - \overline{rac{c_i c_j}{2M}} \Longrightarrow$ Gaugino seesaw or Type - III seesaw

• In the limit $M \to \infty$, same equation reduces to

 $(M_{seesaw}^{tree})_{ij} \approx \frac{a_i a_j}{6\kappa\nu^c} (1 - 3\delta ij) \Longrightarrow \text{Ordinary seesaw or Type - }$