	BSM Classification	Low Energy Models	High Scale Model	

Investigating Beyond Standard Model

Joydeep Chakrabortty

Physical Research Laboratory

TPSC Seminar, IOP

5th February, 2013

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへの

1/35

Outline	BSM Classification	Low Energy Models	High Scale Model	

2/35

• Standard Model – A Brief Tour

• Why BSM ?

• BSM Classification - How do we look into this?

• Low Scale & High Scale Models.

Conclusions

Outline	Standard Model	BSM Classification	Low Energy Models	High Scale Model	
	Standard Mode	I (SM) is now well	established as a va	lid theory of Parti	cle

- Physics at low energy \sim 100 GeV (1 GeV \sim mass of proton).
- Precision matching of SM's predictions and experimental observations is spectacular – Discovery of Higgs Scalar (?) (SM is broken spontaneously once Higgs acquires vacuum expectation value – Higgs mechanism).

Symmetry Groups	Quarks	Leptons	Scalars (Higgs)	Gauge Bosons
$SU(3)_C$	$3(\overline{3})$	1	1	Gluon
$SU(2)_L$	2(1)	2(1)	2	W
$U(1)_Y$	NON-ZERO	NON-ZERO	NON-ZERO	В

Is it a complete theory?

What about Neutrino mass, Dark matter, Baryon Asymmetry of the Universe, and other aesthetic issues, like Unification, Fine tuning ?

Standard Model	BSM Classification			
		000000000000000000000000000000000000000		

Some recent important issues

• Both ATLAS and CMS have found a new boson around 122-127 GeV – seems to be SM Higgs.

If it is so then its Stability criterion must be adjudged – RGE of Higgs Quartic Coupling $\lambda.$

New physics includes exotic scalars, fermions, and may have extended gauge sector.

The new particles that couple to SM Higgs will affect the RGE of λ – Vacuum Stability must be reexamined.

• Higgs to di-photon rate - impact on the BSM parameters.

The light charged particles (Fermions or Bosons) that couple to SM Higgs and Photon will lead to extra contribution to $H \rightarrow \gamma \gamma$ process.

• Moderate θ_{13} can have different impact.

Many conclusions in the context of Lepton Flavour Violation (LFV) and Neutrinoless Double Beta Decay $(0\nu\nu\beta)$ might be changed.

	BSM Classification	Low Energy Models	High Scale Model 000000000	

	BSM Classification	Low Energy Models	High Scale Model	

Low Energy Models

• Low energy Model – TeV Scale? Why?

• Within the reach of the present experiments, like LHC.

• Either High Scale motivated or Simple Extension (either by particle or symmetry group(s)) of the SM.

• Left-Right Symmetry – motivated from High scale, where parity symmetry is spontaneously broken.

	BSM Classification	Low Energy Models	High Scale Model	
PLAN				

To start with ...

• What is Left-Right symmetry?

Any connection with high scale physics?

What is the scale of this theory?

• Neutrino Mass generation through Type-(I+II) seesaw

 $0\nu\beta\beta$ in LR model at Neutrino Experiments and at the LHC

• Impact of low energy data on the parameters of this model

	BSM Classification	Low Energy Models	High Scale Model	
Model				

Left-Right Symmetry

- A discrete symmetry that connects Left & Right sector
- Generic Structure is:

 $SU(N)_L \otimes SU(N)_R$

Example: $SU(2)_L \otimes SU(2)_R \subset SO(10)$

 $SU(3)_L \otimes SU(3)_R \subset E(6)$

- We will talk about: $SU(3)_C \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L}$ Gauge group.
- SM Extended by: a right-handed neutrino(ν_R), a bidoublet(Φ), and two triplet Higgs fields($\Delta_{L/R}$)
- $\Phi \equiv (2, 2, 0), \Delta_L \equiv (3, 1, 1), \Delta_R \equiv (1, 3, 1)$

		BSM Classification	Low Energy Models	High Scale Model	
Neutrino Mass in L	R Model				

Neutrino Mass generation

• Few new terms along with the SM Lagrangian:

$$\mathcal{L} = f_L l_L^T C i \sigma_2 \Delta_L l_L + f_R l_R^T C i \sigma_2 \Delta_R l_R + \bar{l}_R (y_D \Phi + y_L \tilde{\Phi}) l_L + V_{scalar} (\Phi, \Delta_{L/R})$$

• Neutral fermion mass matrix:

$$M_{\nu} \equiv \left(\begin{array}{cc} f_L v_L & y_D v \\ y_D^T v & f_R v_R \end{array}\right),$$

where $<\Delta_L>=v_L$, $<\Delta_R>=v_R$.

• Using the seesaw approximation $(f_R v_R >> y_D v)$ we get

$$(m_{\nu}^{light})_{3\times3} = f_L v_L + \frac{v^2}{v_R} y_D^T f_R^{-1} y_D,$$

 $(m_R^{heavy})_{3\times3} = f_R v_R,$

(JC, ZD, SG, SP; JHEP 1208 (2012) 008)

	BSM Classification	Low Energy Models	High Scale Model	
0 uetaeta				

Neutrinoless Double beta decay $(0\nu\beta\beta)$

- $(A,Z) \longrightarrow (A,Z+2) + 2e^{-}$
- Limit on half-life: $T_{1/2} < 3 \times 10^{25}$ yrs (Heidelberg-Moscow experiment using $^{76}Ge)$

Bound on the effective neutrino mass: $m_{eff} \leq 0.21 - 0.53 \text{ eV}$

- Artifact of process like Lepton Number Violation (LNV) by two units
- Sources: Seesaw models / R-parity Violating SUSY etc.

Signals to the presence of "Majorana" nature of neutrinos

	BSM Classification	Low Energy Models		
		000000000000000000000000000000000000000	0000000000	
$0\nu\beta\beta$				

• In the standard three generation picture the time period for neutrinoless double beta decay is given as,

$$\frac{\Gamma}{\ln 2} = G \left| \frac{\mathcal{M}_{\nu}}{m_e} \right|^2 |m_{\nu}^{ee}|^2,$$

where G contains the phase space factors, m_e is the electron mass, \mathcal{M}_ν is the nuclear matrix element.

$$|m_{\nu}^{ee}| = |U_{ei}^2 m_i|,$$

is the effective neutrino mass that appear in the expression for time period for neutrinoless double beta decay

• The unitary matrix U is the so called PMNS mixing matrix

Diagrams contributing to $0\nu\beta\beta$ in LR model; (JC, ZD, SG, SP; JHEP 1208 (2012) 008)

Contribution from light and heavy Majorana neutrino intermediate states from two W_L exchange

Contribution from light and heavy Majorana neutrinos from two W_R exchange

	BSM Classification	Low Energy Models		
		000000000000000000000000000000000000000		
$0\nu\beta\beta$				

Diagrams contributing contd. (JC, ZD, SG, SP; JHEP 1208 (2012) 008)

Contribution from light and heavy Majorana neutrino intermediate states from W_L and W_R exchange

Contribution from the charged Higgs intermediate states from W_{L} and W_{R} exchange

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

	BSM Classification	Low Energy Models		
		000000000000000000000000000000000000000	0.00000000	
$0 \nu \beta \beta$				

Charged Current interactions of leptons:

$$\mathcal{L}_{CC} = \frac{g}{\sqrt{2}} \sum_{\alpha=e,\mu,\tau} \sum_{i=1}^{3} \left[\overline{\ell}_{\alpha L} \gamma_{\mu} \{ (U_{L})_{\alpha i} \nu_{L i} + (T)_{\alpha i} N_{R i}^{c} \} W_{L}^{\mu} \right. \\ \left. + \overline{\ell}_{\alpha R} \gamma_{\mu} \{ (S)_{\alpha i}^{*} \nu_{L i}^{c} + (U_{R})_{\alpha i}^{*} N_{R i} \} W_{R}^{\mu} \right] + \text{h.c.}$$

where complete unitary mixing matrix, \mathcal{U} is:

$$\mathcal{U} = \begin{pmatrix} (1 - \frac{1}{2}RR^{\dagger})U_L' & RU_R' \\ -R^{\dagger}U_L' & (1 - \frac{1}{2}R^{\dagger}R)U_R' \end{pmatrix} = \begin{pmatrix} U_L & T \\ S & U_R \end{pmatrix}$$

with $R=m_D^\dagger\,M_R^{-1*}$

(JC, ZD, SG, SP; JHEP 1208 (2012) 008)

	BSM Classification	Low Energy Models	High Scale Model ວໝໝວວ	
0 uetaeta				

The half-life is,

$$\begin{split} \frac{\Gamma_{0\nu\beta\beta}}{\ln 2} &= G \frac{|\mathcal{M}_{\nu}|^2}{m_e^2} \left| \left(U_{L_{e\,i}}^2 \, m_i \ + \ p^2 \frac{T_{e\,i}^2}{M_i} + p^2 \frac{M_{W_L}^4}{M_{W_R}^4} \frac{U_{R_{e\,i}}^{2e_i}}{M_i} \right. \\ &+ \frac{M_{W_L}^4}{M_{W_R}^4} S_{e\,i}^{*2} \, m_i \ + \ \frac{M_{W_L}^2}{M_{W_R}^2} U_{L_{e\,i}} S_{e\,i}^* m_i \\ &+ p^2 \frac{M_{W_L}^2}{M_{W_R}^2} \frac{T_{e\,i} \, U_{R_{e\,i}}^*}{M_i} + \frac{U_{L_{e\,i}}^2 m_i m_e^2}{M_{\Delta_L}^2} \ + \ p^2 \frac{M_{W_L}^4}{M_{W_R}^4} \frac{U_{R_{e\,i}}^2 M_i}{M_{\Delta_R}^2} \right) \Big|^2 \end{split}$$

 $p^2\ {\rm carries}\ {\rm the}\ {\rm informations}\ {\rm about}\ {\rm the}\ {\rm Nuclear}\ {\rm matrix}\ {\rm elements}\ {\rm and}\ {\rm virtual}\ {\rm momentum}\ {\rm transfer}$

(JC, ZD, SG, SP; JHEP 1208 (2012) 008)

	BSM Classification	Low Energy Models	High Scale Model	
		000000000000000000000000000000000000000	00000000000	
$0\nu\beta\beta$				

For our analysis we consider two cases: (JC, ZD, SG, SP; JHEP 1208 (2012) 008)

• Type-I dominance:

$$m_{\nu}^{light} = \frac{v^2}{v_R} y_D^T f^{-1} y_D$$
$$m_R^{heavy} = f v_R$$

With a harmless choice (y_D is \propto Identity matrix) we have the light & heavy neutrino mass relation: $m_i \propto 1/M_i \Rightarrow$ followed from LR-symmetry

• Type-II dominance:

$$\begin{array}{lll} m_{\nu}^{light} &=& f_L v_L \\ m_R^{heavy} &=& f_R v_R \end{array}$$

As an artifact of LR-symmetry \Rightarrow light & heavy neutrino masses are related as: $m_i \propto M_i$

	BSM Classification	Low Energy Models	High Scale Model	
$0\nu\beta\beta$				

We did consider the following zones (JC, ZD, SG, SP; JHEP 1208 (2012) 008):

• Normal hierarchy (NH) refers to the arrangement which corresponds to $m_1 < m_2 << m_3$ with

$$m_2 = \sqrt{m_1^2 + \Delta m_{\rm sol}^2}, m_3 = \sqrt{m_1^2 + \Delta m_{\rm atm}^2 + \Delta m_{\rm sol}^2}$$

• Inverted hierarchy (IH) implies $m_3 << m_1 \sim m_2$ with

$$m_1=\sqrt{m_3^2+\Delta m_{\rm atm}^2}$$
 , $m_2=\sqrt{m_3^2+\Delta m_{\rm sol}^2+\Delta m_{\rm atm}^2}$

• Quasi degenerate neutrinos correspond to $m_1 pprox m_2 pprox m_3 >> \sqrt{\Delta m_{atm}^2}$

(ロ) (同) (目) (日) (日) (の)

	BSM Classification	Low Energy Models	High Scale Model	
$0 \nu \beta \beta$				

The 3 σ ranges of the mass squared differences and mixing angles from global analysis of oscillation data

parameter	best-fit	3σ
$\Delta m_{ m sol}^2 [10^{-5} { m eV}^2]$	7.58	6.99-8.18
$ \Delta m^2_{\rm atm} [10^{-3} {\rm eV}^2]$	2.35	2.06-2.67
$\sin^2 \theta_{12}$	0.306	0.259-0.359
$\sin^2 \theta_{23}$	0.42	0.34-0.64
$\sin^2 \theta_{13}$	0.021	0.001-0.044
$\begin{array}{c} {} {} {} {} {} {} {} {} {} {} {} {} {}$	best-fit 7.58 2.35 0.306 0.42 0.021	3σ 6.99-8.18 2.06-2.67 0.259-0.359 0.34-0.64 0.001-0.044

 $\sin^2 \theta_{13}$ for:

◆□ → < 団 → < 臣 → < 臣 → 臣 → ○ Q (~ 18/35

	BSM Classification	Low Energy Models		
		000000000000000000000000000000000000000	0 00000000	
$0\nu\beta\beta$				

With suitable choices of Majorana phases we achieve the following cancellation conditions in $|m_{\nu}^{ee}|$ in different hierarchical regime:

$$\tan^2 \theta_{13} = \sqrt{r} \sin^2 \theta_{12}$$
$$= \sqrt{r} \cos 2\theta_{12}$$
$$= \sqrt{r}$$
$$= 1/\sqrt{r}$$

where $r = \left|\frac{\Delta m_{sol}^2}{\Delta m_{atm}^2}\right|$

	\sqrt{r}	$\sqrt{rs_{12}^2}$	$\sqrt{rc}2\theta_{12}$	t_{13}^2	$\sqrt{r}t_{13}^2$
Max	0.2	.072	.096	.046 (.037)	$10^{-3} \times 9(7)$
Min	0.16	.042	.046	.001 (.009)	$10^{-3} \times 0.1(2)$

(JC, ZD, SG, SP; JHEP 1208 (2012) 008)

	BSM Classification	Low Energy Models	High Scale Model	
$0\nu\beta\beta$				

Plots for Type-I dominance

20/35

	BSM Classification	Low Energy Models	High Scale Model ວໝໝວວ	
$0\nu\beta\beta$				

Plots for Type-II dominance

< E> E のQで 21/35

	BSM Classification	Low Energy Models	High Scale Model	
$0 \nu \beta \beta$				

Contributions from Charged Higgs

• Effective mass from doubly charged Higgs exchange diagrams:

$$|m_{\Delta}^{ee}| = \left| p^2 \frac{M_{W_L}^4}{M_{W_R}^4} \frac{2 M_N}{M_{\Delta_R}^2} \right|$$

• LFV constraint: $M_N/M_{\Delta_R} < 0.1$

Thus contribution is small compare to the RH-contribution.

• Further limit from 1-loop low energy data demands $M_{\Delta_{L/R}}$ to be very heavy \sim 10 TeV.

(JC, ZD, SG, SP; JHEP 1208 (2012) 008)

		BSM Classification	Low Energy Models	High Scale Model	
Constraining LR me	odel				

1-loop muon decay data:

• Including Radiative Corrections in Δr :

$$\frac{G_F}{\sqrt{2}} = \frac{e^2}{8(1 - M_W^2/M_Z^2)M_W^2}(1 + \Delta r)$$

• Experimental fits to Δr :

$$\Delta r \equiv \Delta r_0 \pm \Delta r_\sigma = 0.0362 \pm 0.0006$$

イロン イボン イヨン イヨン 二日

23/35

• This puts correlated bounds on M_N, v_R, M_{W_2}, M_H . (JC, JG, RS, RS; JHEP 1207 (2012) 038)

		BSM Classification	Low Energy Models	High Scale Model	
Constraining LR	model				

Low energy data and Phenomenological Aspects

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

		BSM Classification	Low Energy Models	High Scale Model	
Constraining LR m	odel				

Impact of Low energy data

• K_L-K_S mass difference (< $(3.483\pm0.006)\times10^{-12}$ MeV) puts bound on $M_{W_R}>$ 2.5 TeV

(Soni *et.al.* PRL48 (1982) 848, Mohapatra *et.al.* Nucl.Phys. B802 (2008) 247-279)

• Assuming $M_{W_R} > M_N$: $M_{W_R} > 1.8-2.5$ TeV

The heavy neutrino mass limit: $M_N > 700-1000$ GeV

• From 1-loop muon decay data: Correlated bounds on v_R, M_{W_R}, M_N, M_H .

(JC, JG, RS, RS; JHEP 1207 (2012) 038)

		BSM Classification	Low Energy Models	High Scale Model	
Constraining LR model					

Other sources..

Mohapatra *et.al.* Nucl.Phys. B802 (2008) 247-279; Frank *et.al.* Phys. Rev. D82 (2010) 033012

• Flavour Changing Neutral Higgs (FCNH) contribution

•
$$B_d - \bar{B}_d < ((117.0 \pm 0.8) \times 10^{-10} \text{ MeV});$$

$$B_s - \bar{B}_s < ((3.337 \pm 0.033) \times 10^{-10} \text{ MeV})$$

- Direct & Indirect CP violation
- Neutron Electric Dipole Moment (EDM)

		BSM Classification	Low Energy Models	High Scale Model	
Constraining LR mo	odel				

Phenomenological aspects

• Full LR symmetric model is implemented in FeynRules.

Now in MADGRAPH-5, CalcHEP, LanHEP, FeynArts Left-Right Symmetric Model is available to us ©.

This code is not yet publicly available 🙁

Will be made soon ©

- Interfacing with GoSam is in process.
- The decays of W_R, Z_2, N_R are studied considering different light & heavy neutrino mixings.

```
(JC, JG, RS, RS; JHEP 1207 (2012) 038)
```

		BSM Classification	Low Energy Models	High Scale Model	
Constraining LR m	odel				

To do..

We are making a *Catalog* that includes:

Productions of different processes involving

 W_R, Z_2, N_R , and charged Scalars

considering different light & heavy neutrino mixings.

(JC, JG, RS; in preparation)

	BSM Classification	Low Energy Models	High Scale Model	

High Scale Models

- High Scale: $10^{16} 10^{19}$ GeV.
- Grand Unified Theory Unification of Fundamental Forces.
- Larger Symmetry Groups to accommodate SM.
- May be Supersymmetric or not.
- Main issues: Symmetry Breaking, Gauge Coupling Unification, Fermion masses etc.
- Non-Universal Gaugino Masses.

		BSM Classification	Low Energy Models	High Scale Model	
Non-universal Gaug	tino Masses				

- Gauginos are SUSY partners of Gauge Bosons Fermions by nature.
- Gaugino mass (at high scale) can arise from the operator: $\mathcal{L} \sim [Tr(F_{\mu\nu} \Phi_{\mathbf{D}} F^{\mu\nu})].$
- $\Phi_{\rm D}$ is the *D*-dimensional Higgs belongs to the symmetric product of the adjoint representation.
- For *Singlet* scalar field all the gauginos are degenerate.

The GUT breaking scalars (non - singlet) lead to no-universal gaugino masses.

(JC, AR; Phys.Lett.B673:57-62,2009)

		BSM Classification	Low Energy Models	High Scale Model	
Non-universal Gaug	tino Masses				

$SU(5) \supset SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$

- Rank = 4, Number of generators = 24 (Dimension of the adjoint representation)
- $5 \otimes \overline{5} = 1 \oplus 24.$

 $5 \otimes 5 = 10_a \oplus 15_s$.

- $(24 \otimes 24)_{sym} = 1 \oplus 24 \oplus 75 \oplus 200$
- The simplest illustrative example is that of SU(5) with a Φ_{24} scalar

$$\mathcal{L}_{dim-5} = -\frac{\eta}{M_{Pl}} \left[\frac{1}{4c} Tr(F_{\mu\nu} \Phi_{24} F^{\mu\nu}) \right].$$

•
$$5 = (3,1)_{-2} \oplus (1,2)_3$$

• $\langle \Phi_{24} \rangle = \frac{v_{24}}{\sqrt{15}} \operatorname{diag}(1,1,1,-3/2,-3/2)$
• $\delta_1 = \delta_2/3 = -\delta_3/2 = 3/\sqrt{15}$

		BSM Classification	Low Energy Models	High Scale Model	
Non-universal Gaug	gino Masses				

 $SU(5) \supset SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$

•
$$10 \otimes \overline{10} = 1 \oplus 24 \oplus 75.$$

 $10 = (\overline{3},1)_{-\frac{4}{3}} \oplus (3,2)_{\frac{1}{3}} \oplus (1,1)_2.$

•
$$<\Phi_{24}>=\frac{v_{24}}{\sqrt{90}}$$
 diag $(-4,-4,-4,1,1,1,1,1,1,6)$

Gives same δ_i s, calculated before.

•
$$< \Phi_{75} >$$
 is traceless and orthogonal to $< \Phi_{24} >$:
 $< \Phi_{75} >= \frac{v_{75}}{\sqrt{12}} \operatorname{diag}(1, 1, 1, -1, -1, -1, -1, -1, -1, 3)$

•
$$\delta_1 = -5\delta_2/3 = -5\delta_3 = 4/\sqrt{3}$$

•
$$15 \otimes \overline{15} = 1 \oplus 24 \oplus 200$$

 $15 = (6,1)_{-\frac{4}{3}} \oplus (3,2)_{\frac{1}{3}} \oplus (1,3)_2.$

• $<\Phi_{200}>$ is traceless and orthogonal to $<\Phi_{24}>$, and $<\Phi_{75}>$:

$$<\Phi_{200}>=\frac{v_{200}}{\sqrt{21}} \operatorname{diag}(\underbrace{1,...,1}_{6},\underbrace{-2,...,-2}_{6},2,2,2)$$
• $\delta_1 = 5\delta_2 = 10\delta_3 = 1/\sqrt{21}$

		BSM Classification	Low Energy Models	High Scale Model	
Non-universal Ga	ugino Masses				

- Gaugino Mass ratio $M_i: M_j: M_k = \delta_i: \delta_j: \delta_k$
- Ratios are computed interms of the intermediate gauge groups.

SM gaugino masses can be reconstructed

• Gaugino mass relation (for intermediate breaking chain G_{422D}):

$$M_{4C} = M_3, M_{2R} = M_{2L} = M_2, M_1 = \frac{2}{5} M_{4C} + \frac{3}{5} M_{2R}$$

33/35

Non-universal Gaugino Mass ratios are calculated for other breaking patterns of SO(10) and E(6)

(JC, AR; Phys.Lett.B673:57-62,2009, arXiv:1006.1252) (SB, JC; Phys.Rev.D81:015007,2010)

		BSM Classification	Low Energy Models	High Scale Model ○ 00000 ●	
Non-universal Gau	gino Masses				

Low Scale Phenomenology of High Scale model – Bridging with RGEs

 m_0 vs M_3 , indicating one of the Best Signals and SUSY particle mass hierarchy. This non-universal Gaugino mass ratio is achieved for $SO(10) \xrightarrow{210} SU(5)' \otimes U(1)$. (JC, TM, PK in preparation.)

	BSM Classification	Low Energy Models	High Scale Model	Remarks

So in brief..

- The precise knowledge of low energy data is very important
- Studies are going on to understand the compatibility of different parameters of TeV and High scale models.

The correlations among them are being studied more precisely considering higher order contributions.

- Constraints from LFV, 1-loop muon decay, $K_L K_S$ mass difference along with the LHC data are leaving little room for exploring phenomenological aspects within the present collider reach.
- High Scale Models are not "*untouchables*" one can have indirect impact on low scale observables.
- Model discriminations are other issues we need to look at.
 We may have to look for Data driven Theory.