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OUTLINE

• Introduction

• QCD phase digram

• Vacuum with quark condensates in NJL model and phase
diagram

• Ginzburg-Landau expansion and TDGL equation

• Quench through second order transition and domain growth

• Quench through first order transition (bubble nucleation and
spinodal decomposition)

• Summary and Outlook
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QCD UNDER EXTEREME CONDITION

• Extreme conditions exist in the universe. (Compact
astrophysical objects, Cosmology)

• Exploring QCD phase diagram is important to understand
the phase we live in

• Fundamental properties of QCD
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QCD PHASE DIAGRAM (SCHEMATIC)
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INTRO. CONTD . . .

Mostly attention has been focussed on

Critical dynamics (time dependent behaviour in the
vicinity of critical point)

far from equllibrium dynamics(dynamics subsequent to
a quench from the disordered phase with vanishing
quark condensate to the ordered phase)

We shall discuss the far from equllibrium dynamics and
focus on the late stage of the phase separation kinetics of
quark matter and the scaling properties of the correlation
functions.
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CSB AND VAC. STRUCTURE IN NJL MODEL

(HM and S.P. Misra, Phys Rev. D48,(1993)5376)

LNJL = iψ̄∂/ ψ +G[(ψ̄ψ)2 + (ψ̄iγ5τψ)
2]

Two flavor, massless.

|vac〉 = exp(

∫

q0(k)†σ · k̂h(k)q̃0(−k)dk− h.c.)|0〉

q0|0〉 = 0

Determine the condensate function h(k) by minimising energy (T=0,µ=0),/free energy
(T 6= 0,µ = 0)/, thermodynamic potential (T 6= 0, µ 6= 0).

tan 2h(k) =
M

|k| =
−2g〈ψ̄ψ〉

|k|

g = G(1 + 1
4Nc

)
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NJL MODEL CONTD.· · ·
Thermodynamic potential

Ω = − 12

(2π)3

∫

(
√

k2 +M2 − |k|)dk

− 12

(2π)3

∫

[log(1 + exp(−βω−) + log(1 + exp(−βω+)]dk

+
M2

4g
(1)

ω∓ =
√
k2 +M2 ∓ ν, ν = µ−Gρv/Nc.

Mass gap equation

M = 2g
2NcNf

(2π)3

∫

M√
k2 +M2

[1− n−(k, β, µ)− n+(k, β, µ)]dk
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PHASE DIAGRAM; NJL MODEL
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Mass∼ G〈ψ̄ψ〉 as a function of µ for T=0 (Fig a) and as a function of T for µ = 0 (Fig b)
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PHASE DIAGRAM; NJL MODEL CONTD.· · ·
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Phase diagram of the Nambu-Jona-Lasinio model in the
(µ, T )-plane for zero current quark mass. A line of first-order
transitions (I) meets a line of second-order transitions (II) at the
tricritical point (tcp). (µtcp, Ttcp) ≃ (282.58, 78) MeV. The dot-dashed
lines S1 and S2 denote the spinodals or metastability limits for the
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PHASE DIAGRAM; NJL MODEL CONTD.· · ·

2nd order

tricritical pt.

spinodal

1st orderspinodal
(triple line)

T1 > T > Tc, M>0 is a metastable state (superheated liq.)
T2 < T < Tc, M=0 is metastable state (supercooled gas)

IOP HEP SEMINAR, Bhubaneswar June 5, 2013 – p. 11



GINZBURG LANDAU EXPANSION OF FREE ENERGY

In the mean field approx. close to the phase boundary, the
thermodynamic potential may be expanded in power series
of the order parameter M upto logarithmic corrections:
Sasaki,Friman,Redlich,PRD77, 034024 (2008); Iwasaki,PRD 70, 114031(2004) · · ·

Ω̃ (M) = Ω̃ (0) +
a

2
M2 +

b

4
M4 +

d

6
M6 + · · · ≡ f (M) .

a, b, d —functions of (µ, T )
Gap equation:

f ′ (M) = aM + bM3 + dM5 = 0.

Soln.s






M0 = 0,

M2
± =

−b±
√
b2 − 4ad

2d
.
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G L FREE ENERGY–CONTD· · ·
For b > 0 transition is second order.
Stationary pt.s are M = 0(for a > 0) OR M=0,±M+(for a < 0)
For b < 0 phase transition is first order with the soln.s of gap
eq.s

M = 0, a > b2/4d,

M = 0, ±M+, ±M−, b2/4d > a > 0, (2)

M = 0, ±M+, a < 0.

Condn. of degeneracy of two minima
(Ω(M = 0)=Ω(M = M+) or ac = 3b2/(16d)) determines Tc.
T1 (T2) is determined by a = b2/4d (a = 0).
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GINZBURG LANDAU PHASE DIAGRAM

in the (b,a) space
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Phase diagram in (b, a)-space for the GL free energy. A line of first-order transitions (I) meets

a line of second-order transitions (II) at the tricritical point (tcp), which is located at the origin.

The equation for I is ac = 3|b|2/(16d), and that for II is ac = 0. The dashed lines denote the

spinodals S1 and S2
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DYNAMICAL EQUATIONS (TDGL EQNS)

Consider a system which is rendered thermodynamically
unstable by a rapid quench from the disordered (symmetric)
phase to the ordered (broken-symmetric) phase.
The unstable homogeneous state (with M ≃ 0) evolves via
the emergence and growth of domains rich in the preferred
phase (with M 6= 0).
Such far-from-equilibrium evolution, is termed phase
ordering dynamics or domain growth or coarsening. Most
problems in this area historically arise from condensed
matter systems.
Equally fascinating is the kinetics of chiral transition!
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TDGL CONTD.· · ·
Since coarsening system is inhomogeneous one includes a gradient term in the GL free
energy

Ω [M ] =

∫

d~r

[

F (M) +
K

2

(

~∇M
)2

]

The evolution of the system is described by the Langevin equation with an inertial term:

∂2

∂t2
M(~r, t) + γ̄

∂

∂t
M (~r, t) = − δΩ [M ]

δM
+ θ (~r, t)

which models the relaxational dynamics of M (~r, t) to the minimum of Ω [M ] (dissipative
which damps the system towards the equillibrium configuration). γ: damping coefficient.

θ(~r, t) represents the Langevin noise force assumed to be Gaussian and white satisfying the

fluctuation-dissipation relation 〈θ (r, t)〉 = 0 and

〈θ(r′, t′)θ(r′′, t′′)〉 = 2γ̄T δ(r′ − r
′′)δ (t′ − t′′)
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TDGL CONTD· · ·
Rescaling

M = M0M
′, M0 =

√

|a|/|b|,
~r = ξ~r′, ξ =

√

K/|a|,
t = t0t

′, t0 = 1/
√

|a|,
θ = |a|M0 θ

′. (3)

Dropping primes, we obtain the dimensionless TDGL equation:

∂2

∂t2
M (~r, t) + γ

∂

∂t
M (~r, t) = −sgn (a)M − sgn (b)M3 − λM5 +∇2M + θ (~r, t) ,

where λ = |a|d/|b|2 > 0.
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Early time behavior

Consider the deterministic equation (θ = 0) around an extremum pt. (M(~r) = M̄ + φ(~r)) in
the Fourier space

∂2

∂t2
φ(~k, t) + γ

∂

∂t
φ(~k, t) + (−α+ k2)φ(~k, t) = 0,

α = −f ′′(M), (α > 0M̄ - local Max; α < 0– local Min.)
General soln.

φ(~k, t) = A1e
Λ+(~k)t +A2e

Λ
−
(~k)t

Λ±(~k) =
−γ ±

√

γ2 + 4(α− k2)

2
.

For α > 0 - instability for long wavelength (k <
√
α)(exponential growth of fluctuations)

For α < 0, no instability: fluctuations are exponentially damped. The damping is relaxational
for k2 < (γ2 − 4|α|)/4 and oscillatory for k2 > (γ2 − 4|α|)/4
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Quenching through second order line b > 0

For b > 0, the chiral transition occurs when a < 0. The
relevant evolution equation for order parameter is

∂2M

∂t2
+ γ

∂M

∂t
= M −M3 − λM5 +∇2M + θ (~r, t) .

Numerically solve this equation using a simple Euler discretization scheme on a 3d lattice of
size 2563 with periodic boundary condn.For numerical stabilty,

∆t <
2∆x2

4d+ α1∆x2
α1 = 4 + (1−

√
1 + 4λ)/λ,

Mesh size ∆x = 1 ∆t = 0.1 obtained from a linear stability analysis. Euler discretized
numerical scheme must respect the stabilty properties of the homogeneous solution.

Initial cond. :Small amplitude random fluctuation about M = 0. The system rapidly evolves

with domains with nonzero value of the order parameter. Interface of these domains have

M = 0. Dissipation coefficient controls the rapid growth of domains.
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DOMAIN GROWTH (b > 0)

Domain evolution of the preferred massive phase: M =M+ (marked black), after a deep
temperature quench through the second-order line (II) . We show evolution pictures at
t = 10, 100, 200 for three different values of γ. The frames are the cross-sections at z = N/2

of the 3-d snapshots obtained by numerically solving the inertial TDGL Eq. with λ = 0.14.
The noise strength is ǫ = 0.008.
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CORRELATION FUNCTIONS

Domains have a characteristic length scale L(t), which grows with time.

C (~r, t) ≡ 1

V

∫

d~R
[〈

M(~R, t)M(~R+ ~r, t)
〉

−
〈

M(~R, t)
〉〈

M(~R+ ~r, t)
〉]

,
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Scaling of correlation function for λ = 0.14 for different values of dissipation parameters .

OJK function (as for usual M4-free energy) has good agreement with simulation data.

IOP HEP SEMINAR, Bhubaneswar June 5, 2013 – p. 21



CORRELATION FUNCTIONS CONTD· · ·
The existence of characteristic scale results in the dynamical scaling of C(~r, t)

C (~r, t) = g (r/L) =
2

π
sin−1

(

e−r2/L2
)

.

Ohta-Jasnow-Kawasak (PRL49,1223 (1982)) scaling function.
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Time-dependence of domain size, L(t) vs. t. The growth proceeds by the amplification of

initial fluctuations, their saturation by the nonlinearity, and subsequent domain coarsening.

There is a crossover from an early-time inertial growth [L(t) ∼ t(lnt)1/2] to a late-time

Cahn-Allen (CA) growth [L(t) ∼ t1/2].
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QUENCH THROUGH FIRST ORDER LINE (b < 0)

First order transition occurs for a < ac = 3|b|2/16d (λ < λc = 3/16)
For a < 0, double well structure for the free energy; the domain growth structure and
ordering dynamics is similar to quenching through the 2nd order transition.
We confine our attention to 0 < a < ac (λ < λc)

∂2M

∂t2
+ γ

∂M

∂t
= −M +M3 − λM5 +∇2M + θ (~r, t) .

Evolve this equation with the initial state with M = 0 which is a metastable state. The chiral

transition proceeds via the nucleation and growth of droplets of the preferred phase

(M = ±M+). The thermal noise θ must be sufficiently large to enable the system to escape

from the metastable state. Evolution begins with nucleation of droplets at the early stages.

Droplets larger than a critical size Rc grow while R < Rc shrink. Rc decided by the balance

between free energy decrease due to bulk droplet and the free energy increase due to

surface tension at the droplet boundary. Droplets grow with time and coalesce into domains.
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NUCLEATION AND SPINODAL DECOMPOSITION

Domain growth after a shallow temperature quench through the first-order line (I) for

γ = 0.25, 0.4, 0.5. The frames show the evolution of the preferred phase with M = +M+

(marked black) at times t = 20, 50 and 100, respectively. Nucleation is fastest for moderate

values of γ.
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Corrln. function and domain growth
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Domain growth
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SUMMARY

We considered the equllibrium phase diagram in a two flavor NJL model.

In the mean field approximation and near the chiral phase transition, the
thermodynamic potential can be Ginzburg Landau effective theory.

The kinetics of the transition is considered using the TDGL equations including the
inertial terms.

We studied the ordering dynamics resulting from a sudden quench of system
parameters through both first order and second order transition lines. For quenches
through the second order line the phase conversion is via spinodal decomposition.
For quenches through the first order line, phase transition proceeds via nucleation and
growth of droplets of the massive phase. Subsequent merger of these droplets results
in late stage domain growth.
Domain growth shows self similar dynamical scaling.

Asymptotic growth law for domains is L(t) ∼ t1/2 The inertial terms gives a
pre-asymptotic regime for a faster growth with L(t) ∼ t(lnt)1/2.
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DROPLET GROWTH DYNAMICS

Rc: Critical size of the droplet defined by the balance of free
energy reduction due to the bulk of droplet and free energy
increase due to the surface tension at the boundary. Droplet
size R > Rc, grow while R < Rc shrink. Solve the equation

∂2M

∂t2
+ γ

∂M

∂t
= −M +M3 − λM5 +

M ′

r
+M”(r).

with an initial configuration of a 2 d bubble of radius R0 > Rc

s.t,
M(r) = M+(r < R) M(r) = 0(r > R)

.
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DROPLET GROWTH DYNAMICS CONTD· · ·
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(a) Growth of a droplet of the preferred phase (M =M+) in a background of the metastable
phase (M = 0) for λ = 0.14. We show the boundary of the droplet at three different times,

as specified. (b) Plot of the bubble growth velocity vB vs. λ.
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