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Introduction

• The inclusive hadronic decay width of the τ lepton provides a very clean way to
determine αs at low energies.

• The perturbative QCD contribution is known to O(α4
s ) and is very sensitive to

αs , allowing for an accurate determination of the strong coupling

• The nonperturbative corrections are predicted to be small and are suppressed by
six powers of the τ mass.

• The main uncertainty originates from the treatment of higher-order corrections
and improvement of the perturbative series through renormalization group
method.

• In this talk we discuss the renormalization group improvement of the perturbative
series using Renormalization-Group Summed expansion (RGS).

• We also study the large order behaviour of the perturbative series. We derive a
new kind of expansions, called Renormalization-Group Summed Non-Power
expansions (RGSNP).
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2013
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QCD description

• The inclusive character of the total τ hadronic width provides an accurate
calculation of the ratio R

Rτ,V/A ≡
Γ[τ− → hadrons ντ ]

Γ[τ− → e−νeντ ]
. (1)

• The theoretical analysis involves the two-point correlation functions for the vector
Vµ
ij = ψ̄jγ

µψi and axial-vector Aµ
ij = ψ̄jγ

µγ5ψi colour-singlet quark currents

(i , j = u, d , s):

Πµν
ij,J (q) ≡ i

∫
d4x e iqx 〈0|T (J µ

ij (x)J
ν
ij (0)

†)|0〉, (2)

• The Lorentz decompositions

Πµν
ij,J (q) =

(
−gµνq2 + qµqν

)
Π
(1)
ij,J (q2)

+ qµqν Π
(0)
ij,J (q2) , (3)

where the superscript (J = 0, 1) denotes the angular momentum in the hadronic
rest frame.
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QCD description

• The imaginary parts of Π
(J)
ij,J (q2) are proportional to the spectral functions for

hadrons with the corresponding quantum numbers.

• The hadronic decay rate of the τ can be written as an integral of these spectral
functions over the invariant mass s of the final-state hadrons:

Rτ = 12π

∫ m2
τ

0

ds

m2
τ

(
1−

s

m2
τ

)2

×

[(
1 + 2

s

m2
τ

)
ImΠ(1)(s) + ImΠ(0)(s)

]
. (4)

• The appropriate combinations of correlators are

Π(J)(s) ≡ |Vud |
2
(
Π
(J)
ud,V (s) + Π

(J)
ud,A(s)

)

+ |Vus |
2
(
Π
(J)
us,V (s) + Π

(J)
us,A(s)

)
. (5)

The contributions coming from the first two terms correspond to Rτ,V and Rτ,A

respectively, while Rτ,S contains the remaining Cabibbo-suppressed contributions.
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QCD description

• Rτ can then be written as a contour integral in the complex s-plane running
counter-clockwise around the circle |s| = m2

τ :

Rτ = 6πi

∮

|s|=m2
τ

ds

m2
τ

(
1−

s

m2
τ

)2

×

[(
1 + 2

s

m2
τ

)
Π(0+1)(s)− 2

s

m2
τ

Π(0)(s)

]
. (6)

Braaten-Narison-Pich 1991

• This expression requires the correlators only for complex s of order m2
τ , which is

significantly larger than the scale associated with non-perturbative effects.

• Using the Operator Product Expansion (OPE), Π(J)(s) =
∑

D C
(J)
D /(−s)D/2, to

evaluate the contour integral, Rτ can be expressed as an expansion in powers of
1/m2

τ .

• In the chiral limit (mu,d,s = 0), the vector and axial-vector currents are

conserved. This implies s Π(0)(s) = 0. Therefore, only the correlator Π(0+1)(s)
contributes to Eq. (6).
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QCD description

• The Cabibbo-allowed combination Rτ,V/A can be written as

Rτ,V/A = SEW|Vud |
2

(
1 + δ(0) + δ′EW + δ

(2,mq)

ud,V/A
+

∑

D=4,6,...

δ
(D)
ud,V/A

)
, (7)

with the massless universal perturbative contribution δ(0).

• The dimension D = 2 perturbative contribution δ
(2,mq)

ud,V/A
from massive quarks is

lower than 0.1% for u, d quarks.

• The term δ(D) denotes the OPE contributions of mass dimension D

δ
(D)
ud,V/A

=
∑

dimO=D

Cud,V/A(s, µ)
〈OD(µ)〉V/A

sD/2
, (8)

• Electroweak radiative corrections SEW = 1.0198± 0.0006
Marciano and Sirlin 1988,
and the residual non-logarithmic electroweak correction
δ′
EW

= 0.0010± 0.0010
Braaten and Li 1990
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QCD description

• Our main interest is in the perturbative corrections δ(0) which can be written

δ(0) =
1

2πi

∮

|s|=M2
τ

ds

s

(
1−

s

M2
τ

)3 (
1 +

s

M2
τ

)
D̂pert(s), (9)

where the reduced function D̂pert(s) ≡ D(1+0)(s)− 1 is called the Adler function.

• The Adler function is defined as

D(1+0)(s) ≡ −s
d

ds

[
Π(1+0)(s)

]
, (10)

Adler 1974

• The Adler function is expanded in power of a ≡ a(µ2) ≡ αs(µ2)/π.

• One has to use a renormalization group equation

β(a) ≡ µ2
da

dµ2
= −a2

∞∑

k=0

βka
k . (11)

• Finally, the integration (9) has to be performed, yielding δ(0) as a function of
αs(m2

τ ) with coefficients cn,1 of the Adler function and βi from the RGE as
parameters.
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QCD description

• A natural approach is to expand αs(s) in a power series in αs(m2
τ ) and truncate

it where the first unknown βi coefficient appears and put µ2 = M2
τ . After

performing the integration this gives δ(0) as a power seires in αs(m2
τ ), where the

coefficients of all terms included are exact and no higher ones are present.
This is called ’Fixed-Order Perturbation Theory’ (FOPT).

D̂FOPT (s) =

∞∑

n=1

an
n∑

k=1

k cn,k L
k−1 . (12)

L ≡ ln −s
µ2

• A different approach would be to keep the full solution of the RGE and perform a
numerical integration and choose µ2 = −s. Now the results includes all the terms
from FOPT and in addition some higher orders in αs(m2

τ ) which are generated by
the running. This is called ’Contour Improved Perturbation Theory’.
Pivovarov 1991, Le Diberder and Pich 1992

D̂CIPT(αs(−s)/π, 0) =
∞∑

n=1

cn,1

(
αs(−s)

π

)n

. (13)
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QCD description

• In the expansion above, the leading known coefficients cn,1 are

c1,1 = 1, c2,1 = 1.640, c3,1 = 6.371, c4,1 = 49.076, c5,1 = 283 (estimated).

Baikov, Chetyrkin and Kuhn 2008

• The β-function was calculated to four loops in the MS-renormalization scheme,
the known coefficients are

β0 = 9/4, β1 = 4, β2 = 10.0599, β3 = 47.228.

Larin, Ritbergen and Vermaseren 1997 and Czakon 2005
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QCD description

δ
(0)
FOPT

δ
(0)
CIPT

n = 1 0.1082 0.1479
n = 2 0.1691 0.1776
n = 3 0.2025 0.1898
n = 4 0.2199 0.1984
n = 5 0.2287 0.2022

Table: Predictions of δ(0) by the standard FOPT, CIPT for various truncation orders n, using
αs (mτ ) = 0.34.

To order n = 4, the difference between FOPT and CIPT is 0.0215.
Beneke and Jamin 2008
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Renormalization Group Summed Expansion

• We use a method based on the explicit summation of all renormalization-group
accessible logarithms.

D̂RGS (a, L) = a(c1,1 + 2c2,2aL+ 3c3,3a
2L2 + · · · ) + a2(c2,1 + 2c3,2aL+ 3c4,3a

2L2 + · · · )

+ a3(c3,1 + 2c4,2aL+ 3c5,3a
2L2 + · · · ) + · · · =

∞∑

n=1

anDn(aL). (14)

Maxwell and A. Mirjalili 2000
Ahmady, Chishtie, Elias, Fariborz, Fattahi, McKeon, Sherry, Steele 2002, 03

Dn(u) ≡

∞∑

k=n

(k − n + 1)ck,k−n+1u
k−n. (15)

u = aL

• The Adler function defined by (14) is scale independent

µ2
d

dµ2

{
D̂RGS(a, L)

}
= 0. (16)

β(a)
∂D̂RGS

∂a
−
∂D̂RGS

∂L
= 0. (17)
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• We derive following RGE equation

0 = −
∞∑

n=1

n∑

k=2

k(k − 1)cn,ka
nLk−2

−
(
β0a

2 + β1a
3 + β2a

4 + . . .+ βla
l+2 + . . .

)
×

∞∑

n=1

n∑

k=1

nkcn,ka
n−1Lk−1. (18)

• By extracting the aggregate coefficient of anLn−p one obtains the recursion
formula (n ≥ p)

0 = (n − p + 2)cn,n−p+2 +

p−2∑

ℓ=0

(n − ℓ− 1)βℓcn−ℓ−1,n−p+1. (19)

• Multiplying both sides of (19) by (n − p + 1)un−p and summing from n = p to
∞, we obtain a set of first-order linear differential equation for the functions
defined in (15), written as

dDn

du
+

n−1∑

ℓ=0

βℓ

(
u

d

du
+ n − ℓ

)
Dn−ℓ = 0, (20)

for n ≥ 1, with the initial conditions Dn(0) = cn,1 which follow from (15). The
solution of the above Eq (20) can be found iteratively in an analytical closed form.
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• The first two solutions are

D1(u) =
c1,1

y
, D2(u) =

c2,1

y2
−
β1c1,1 ln y

β0w2
, y = 1 + β0u. (21)

• The RGS expansion of the Adler function is

D̂RGS(a, L) =

N∑

n=1

anDn(aL), (22)

δ
(0)
RGS

=
∞∑

n=1

a(M2
τ )

ndn , (23)

where

dn =
1

2πi

∮

|s|=M2
τ

ds

s

(
1−

s

M2
τ

)3 (
1 +

s

M2
τ

)
Dn(a, L). (24)
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δ
(0)
FOPT

δ
(0)
CIPT

δ
(0)
RGS

n = 1 0.1082 0.1479 0.1455
n = 2 0.1691 0.1776 0.1797
n = 3 0.2025 0.1898 0.1931
n = 4 0.2199 0.1984 0.2024
n = 5 0.2287 0.2022 0.2056

Table: Predictions of δ(0) by the standard FOPT, CIPT and the RGS, for various truncation orders
n using αs = 0.34.

For n = 4, the difference between the results of the RGS and the standard FOPT is
0.01754, and the difference from the RGS and CIPT is 0.0039, which confirms that
the new expansion gives results close to those of the CIPT.
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Adler function in the complex s-plane
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Figure: Adler function expansions, summed up to the order N = 5, along the circle
s = M2

τ exp(iθ).
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Higher order behaviour of RGS expansion

• We consider the model where the Adler function is defined in terms of its Borel
transform B(u) by the principal value prescription

D̂(s) =
1

β0
PV

∞∫

0

e
− u

β0a(−s) B(u)du, (25)

where the function B(u) is expressed in terms of a few ultraviolet (UV) and
infrared (IR) renormalons

BBJ(u) = BUV
1 (u) + BIR

2 (u) + BIR
3 (u) + dPO

0 + dPO
1 u. (26)

Beneke and Jamin 2008
• These terms were written as

BIR
p (u) =

dIR
p

(p − u)γp

[
1 + b̃1(p − u) + . . .

]
,

BUV
p (u) =

dUV
p

(p + u)γ̄p

[
1 + b̄1(p + u) + . . .

]
,

• The parameters were obtained by imposing RG invariance at four loops. Finally,
the free parameters of the model were fixed by the requirement of reproducing
the perturbative coefficients cn,1 for n ≤ 4 and the estimate c5,1 = 283, and read:

dUV
1 = − 1.56×10−2, dIR

2 = 3.16, dIR
3 = −13.5, dPO

0 = 0.781, dPO
1 = 7.66×10−3.

(27)
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Higher order behaviour of RGS expansion
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Figure: In the figure we show the dependence on the perturbative order of δ(0) in FOPT, CIPT and
RGS in the BJ model. The gray band is the true value obtained from Borel integral in this model.
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Determination of αs from RGS expansion

• We use as input the recent phenomenological value of the pure perturbative
correction to the hadronic τ width

δ
(0)
phen

= 0.2037± 0.0040exp ± 0.0037PC. (28)

Beneke & Jamin 2011, Workshop on Precision Measurements of αs 2011

• With this input we obtained from the above phenomenological value of δ(0) the
prediction

αs(M
2
τ ) = 0.3378± 0.0046exp ± 0.0042PC

+0.0062
−0.0072(c5,1)

+0.0005
−0.0004(scale)

+0.000085
−0.000082(β4). (29)

• Combining errors in quadrature

αs(M
2
τ ) = 0.338± 0.010. (30)

αs(M
2
τ ) = 0.320+0.012

−0.007 FOPT

αs(M
2
τ ) = 0.342± 0.012 CIPT (31)
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RGS Non-Power Expansions

• We improve the convergence of the RGS expansion by the analytical continuation
in the Borel plane.

• We introduce the Borel transform of the RGS expansion of the Adler function

BRGS(u, y) = B(u)+
∞∑

n=0

un

βn
0 n!

n∑

j=1

cj,1dn+1,j (y), B(u) =
∞∑

n=0

cn+1,1
un

βn
0 n!

. (32)

• The function D̂RGS(s) is recovered by the Laplace-Borel integral

D̂RGS(s) =
1

β0
PV

∞∫

0

exp

(
−u

β0ãs(−s)

)
BRGS(u, y)du,

• The function B(u) has singularities on the real axis in the u-plane, namely along
the rays u ≥ 2 and u ≤ −1.
Mueller 1985, Beneke 1999

• However the dominant singularities of BRGS(u, y), i.e. the singularities closest to
the origin u = 0, are those at u = −1 and u = 2 contained in B(u).
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RGS Non-Power Expansions

• Moreover, the dominant singularities are branch points, near which B(u) behaves,
respectively, as

B(u) ∼ (1 + u)−γ1 , B(u) ∼ (1− u/2)−γ2 ,

where the exponents γ1 and γ2, calculated using renormalization-group
invariance, have known positive values

γ1 = 1.21, γ2 = 2.58 . (33)

Mueller 1985, Beneke, Brown & Kivel 1997, Beneke & Jamin 2008
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RGS Non-Power Expansions

• We consider the functions

w̃lm(u) =

√
1 + u/l −

√
1− u/m√

1 + u/l +
√

1− u/m
, l ≥ 1,m ≥ 2 (34)

where l ,m are positive integers satisfying l ≥ 1 and m ≥ 2. The function w̃lm(u)
maps the u-plane cut along u ≤ −l and u ≥ m onto the disk |wlm| < 1 in the
plane wlm ≡ w̃lm(u).

• We define further the class of compensating factors of the simple form

Slm(u) =

(
1−

w̃lm(u)

w̃lm(−1)

)γ(l)
1
(
1−

w̃lm(u)

w̃lm(2)

)γ(m)
2

, (35)

• where the exponents are

γ
(l)
1 = γ1(1 + δl1), γ

(m)
2 = γ2(1 + δm2),

are chosen such that Slm(u) cancel the dominant singularities on the real axis in
the u-plane.
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RGS Non-Power Expansions

• We further expand the product Slm(u)BRGS(u, y) in powers of the variable
w̃lm(u), as

Slm(u)BRGS(u, y) =
∑

n≥0

c
(lm)
n,RGS

(y) (w̃lm(u))
n. (36)

• We are led to the class of RGSNP expansions

D̂RGSNP(s) =
∑

n≥0

c
(lm)
n,RGS

(y)W
(lm)
n,RGS

(s), (37)

where

W
(lm)
n,RGS

(s) =
1

β0
PV

∞∫

0

exp

(
−u

β0ãs(−s)

)
(w̃lm(u))

n

Slm(u)
du, (38)

and the coefficients c
(lm)
n,RGS

(y) are defined by the expansion (36).

• The coefficient, ãs(−s), entering in the Laplace-Borel integral is the one-loop
solution of the RGE, a novel feature given by RGS.
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Adler function in the complex plane
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Clockwise from the left: The first figure is real part up to N = 5 terms. The same in
the second with imaginary part. The third figure shows real part up to terms N = 18.
The same in fourth figure with imaginary part.
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• The RGSNP expansions provide a good description of the exact function along
the whole circle, including the points near the timelike axis, which correspond to
θ = 0, and near the spacelike axis, where θ = π.

• The worse approximation provided by the mapping w23 for N = 18 can be
explained by the effect of the residual mild cut between u = −1 and u = −2,
which limits the convergence radius of the expansion (36) in powers of w23 to
u < 1.

• For other mappings, the divergence due to the residual cuts is manifest only for
u > 2, and this region is more suppressed by the exponent in the Laplace-Borel
integrals (38) defining the expansion functions .
Caprini & Fischer, 2011
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The convergence of RGSNP expansions

• The difference δ(0) − δ
(0)
exact for the model BBJ proposed in BJ model for

αs(M2
τ ) = 0.34 with the standard CI, FO and RGS expansions, and the new

RGSNP expansions for various conformal mappings wlm, truncated at order N.

Exact value δ
(0)
exact = 0.2371

N CI FO RGS RGSNP w12 RGSNP w13 RGSNP w1∞ RGSNP w23
2 -0.0595 -0.0679 -0.0574 -0.0347 -0.0239 -0.0417 -0.0177
3 -0.0473 -0.0345 -0.0440 -0.0333 -0.0301 -0.0349 -0.0303
4 -0.0388 -0.0171 -0.0347 -0.0089 -0.0142 -0.0067 -0.0132
5 -0.0349 -0.0083 -0.0315 -0.0070 -0.0086 -0.0058 -0.0070
6 -0.0325 -0.0043 -0.0284 -0.0073 -0.0071 -0.0064 -0.0072
7 -0.0325 -0.0029 -0.0298 -0.0059 -0.0057 -0.0056 -0.0044
8 -0.0354 -0.0018 -0.0309 -0.0041 -0.0035 -0.0041 -0.0011
9 -0.0367 -0.0004 -0.0363 -0.0023 -0.0019 -0.0028 -0.0010
10 -0.0529 0.0019 -0.0483 0.0014 -0.0012 -0.0020 0.0004
11 -0.0409 0.0031 -0.0458 0.0036 -0.0008 -0.0016 -0.0009
12 -0.1248 0.0065 -0.1335 0.0031 -0.0006 -0.0015 0.0005
13 0.0258 0.0037 0.0534 0.0026 -0.0004 -0.0015 -0.0005
14 -0.5286 0.0204 -0.7850 0.0018 -0.0003 -0.0015 -0.0011
15 0.8640 -0.0201 1.7734 0.0006 -0.0002 -0.0015 0.0044

16 -3.5991 0.1447 -7.7043 0.0001 −7 · 10−6 -0.0015 -0.0131

17 9.3560 -0.4252 24.8586 -0.0004 4 · 10−6 -0.0014 0.0238
18 -31.76 1.907 -94.26 -0.0013 -0.0001 -0.0013 -0.0310
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Determination of αs from RGSNP expansions

• We obtain with RGSNP expansions

αs(M
2
τ ) = 0.3189± 0.0034exp ± 0.0031PC

+0.0138
−0.0105(c5,1) ± 0.0010β4

, (39)

after combining the errors in quadrature,

αs(M
2
τ ) = 0.3189 +0.0145

−0.0115 . (40)

• By evolving to the scale of MZ our prediction reads

αs(M
2
Z ) = 0.1184 +0.0018

−0.0015 , (41)
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Summary

• This work is motivated by the well-known discrepancy between the predictions of
αs(M2

τ ) from the standard fixed-order and RG-improved CIPT expansions.

• The main result is that the summation of leading logarithms provides a
systematic expansion with good convergence properties in the complex plane.

• The results of the new RGS expansion is similar to those obtained by the CI
expansion.

• The divergent character of the perturbative series is improved by analytic
continuation in the Borel plane.

• The RGSNP exapansions lead to prediction for αs which is similar to standard
FOPT and CINP.
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