Detecting TeV-PeV scale dark matter signatures at the IceCube neutrino detector

Atri Bhattacharya

Talk at **Institute Of Physics, Bhubaneswar** 04 August 2014

Plan

- Ultra-High Energies and the IceCube neutrino detector
 - -The IC setup, aims and objectives
 - -Recent results at IC
 - -Issues with standard explanations
- Dark Matter decay and neutrinos at IC
- Direct search for heavy DM at IC
- General prospects for heavy DM searches

The neutrino sky... to the highest energies

The neutrino sky... to the highest energies

The neutrino sky... to the highest energies

Neutrinos @ highest energies: HowCatch'em

Km³ detectors

Main issues with detection

- Extremely low incident fluxes
- Huge incident energies reconstruction requires voluminous detectors
- Flavour discrimination?

Solution? Km³ Detectors

- Trap high fraction of incident neutrino fluxes
- Proper energy and direction (for tracks) reconstruction of large event signature tracks
 - Big enough to contain hadronic/em cascades
 - Possibility of detection of double-bang signatures from incident v_{τ} 's

Present setup for UHE v detection

IceCube

•Operational since 2010

-Full exposure since Dec. 2011

- Capable of flavour discrimination
- -Limited to detection of three distinct event signatures
- Excellent energy reconstruction
- -< 10% for contained cascades
- -~ 30% for tracks with contained vertices
- Good direction reconstruction
- -Up to 1° for tracks
- -~30° for cascades
- Designed to run (minimal op. cost) for 10+ yrs
- -28 UHE events in 662 days of run-time
- -2 events at PeV+ energies

-Recently reported 9 more events, making total event number 37 over 988 days

Flavour @ IC

Muon Track

Cascades

 $u_{\mu}NCC$

Double Bang

 $\nu_{\tau} N CC (\geq 1 \text{ PeV})$

Reconstructing events @ IceCube

Muon Tracks Charged current interaction of the muon-neutrino

Clear tracks and excellent direction reconstruction

Energy reconstruction is indirect - energy loss along track

Cascades

Charged current interaction of the electron-neutrino and tau-neutrino

Neutral current interactions of all flavours

Excellent energy but poorer direction reconstruction

Incident fluxes from std. theory

Diffuse flux from all-sky astrophysical sources

 $\Phi_{\nu} \propto E^{-\alpha}$

- -Expected to follow a power-law spectrum
 - •Fermi 1st order shocks $\rightarrow \alpha = 2.0$ •Normalisation fixed by observational best-fits
- -Neutrinos in sources predominantly from pion decays
 - •Std. oscillation \rightarrow incident flavour 1:1:1 at earth

Incident fluxes from std. theory

Diffuse flux from all-sky astrophysical sources

 $\Phi_{\nu} \propto E^{-\alpha}$

- -Expected to follow a power-law spectrum
 - •Fermi 1st order shocks $\rightarrow \alpha = 2.0$
 - •Normalisation fixed by observational best-fits
- -Neutrinos in sources predominantly from pion decays
 - •Std. oscillation → incident flavour 1:1:1 at earth
- Cosmogenic neutrinos (E ≥ 100 PeV)
 - -Cosmic rays interacting with CMBR photons $p\gamma \rightarrow \Delta^+ \rightarrow \pi^+(n)$

Observations @ IC [662 days]

28 total events

- Two PeV+ cascades
 - -Highest energy neutrino events ever observed
- Additional 19 lower energy cascades
- 7 track events
- •Events from 4π sky

•No event from 300 TeV-1 PeV

Observations @ IC [662 days]

At least 4.7σ signal over atmospheric neutrino background with 90% c.l. charm estimates

Best-fit largely consistent with E-2 power flux up to 1.1 PeV... $E^2 \Phi = 1.2^{1.6}_{0.8} \times 10^{-8} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

...BUT

- → Unexplained sharp drop above 1 PeV
- → Lack of events within
 300 TeV 1 PeV
- → Sub-100 TeV energy event numbers consistently higher than prediction from E⁻² flux

Updated Observations @ IC [988 days]

At least 5.7σ signal over atmospheric neutrino background with 90% c.l. charm estimates

Best-fit E-2 power flux now given by

 $E^2 \Phi = 0.95^{1.25}_{0.65} \times 10^{-8} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

...AND YET

- → Unexplained sharp drop above
 2.1 PeV
- → Gap: 400 TeV 1 PeV
- → Sub-100 TeV event numbers consistently higher than prediction from E⁻² flux

Plausible astro explanation

 $E^2 \Phi_{\rm astro} = 1.51 \times 10^{-8} (E/100 \text{TeV})^{-0.3} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

Issues with uniform power-law explanation

Diffuse neutrino flux follows a uniform power law

$$\Phi_{\nu} = A E_{\nu}^{-\alpha} \big|_{\alpha=2}$$

- Gap in events between 400 TeV to 1 PeV unexplained
- Small but notable excess in observed low-energy events (~ 100 TeV)
- Event rate drops to zero beyond 2.1 PeV
 - $-\Phi \propto E^{-2}$ predicts 3-6 events from 3—10 PeV

Proposition I

Diffuse neutrino flux incident at IC as combination of astro and DM-decay neutrinos

Decay of Dark Matter

 For neutrino events in IC range, need DM species of mass ≈ 100 TeV -2 PeV

- -Probably non-thermal in nature
- -Heavier than the typical WIMP
- -Slow decays of DM to Std. Model (SM) particles possible

-Relic abundance requirements force $\tau_{\rm DM} \gtrsim 10^{16} {\rm s}$

- -Further constraints on life-time from observational astronomy
- Two-body decays to various SM channels possible
 - -Charged lepton pairs (e+e-, etc.)

-Neutrinos

- -Quark pairs (uu, etc.)
- -Gauge boson pairs (W+W-, Z0Z0)

Objective: IC events as combination of astro and DM-decay neutrinos

- Main motivation: Explain low-energy excess
- Reasoning
 - -Secondary neutrinos from ~100 TeV massive DM decays to different SM primaries augment diffuse astrophysical neutrino spectrum
 - -The astro flux itself can be then significantly lower, providing a natural explanation for the depletion in event rates beyond 1.1 PeV

Properties of DM Decay

- Assume scalar DM
- Restrict to two-body decays
 - -Simplicity
 - -Decay spectrum well-known (e.g. PYTHIA8, PPPC, etc.)
- Consider all possible SM channels:
 - -Lepton pairs: e+e-, μ+μ-, τ+τ-
 - -Gauge boson pairs: W+W-, Z⁰Z⁰
 - -Quark pairs

Secondary Neutrino Spectrum

Fluxes from heavy DM decay

Total Flux = Galactic Flux + Extra-Galactic Flux •Galactic $-\frac{\mathrm{d}\Phi^{\mathrm{G}}}{\mathrm{d}E_{\nu}} = \frac{1}{4\pi \, m_{\mathrm{DM}} \, \tau_{\mathrm{DM}}} \frac{\mathrm{d}N_{\nu}}{\mathrm{d}E_{\nu}} \int_{0}^{\infty} \rho(r(s,l,b)) \, \mathrm{d}s$ Extragalactic $-\frac{\mathrm{d}\Phi^{\mathrm{EG}}}{\mathrm{d}E} = \frac{\Omega_{\mathrm{DM}}\,\rho_{\mathrm{c}}}{4\pi\,m_{\mathrm{DM}}\,\tau_{\mathrm{DM}}}\int_{0}^{\infty}\frac{1}{H(z)}\frac{\mathrm{d}N_{\nu}}{\mathrm{d}E_{\nu}}\left[(1+z)E_{\nu}\right]\,\mathrm{d}z$ •Comparable contributions from G and EG fluxes, flux obtained from 4π sky -High energy neutrinos attenuated by earth \Rightarrow more downgoing neutrinos than up-going

Total DM + Astro flux at IC

Assume astrophysical flux to be unbroken power-law:

$$\frac{\mathrm{d}\Phi_{\mathrm{Astro}}}{\mathrm{d}E} \equiv \frac{\mathrm{d}}{\mathrm{d}E} \Phi_{\mathrm{Astro}}(k,\alpha) = kE^{-\alpha}$$

Total flux incident at IC:

$$\frac{\mathrm{d}}{\mathrm{d}E}\Phi_{\mathrm{Total}}^{\lambda}\left(m_{\mathrm{DM}},\tau_{\mathrm{DM}},k\right) = \frac{\mathrm{d}}{\mathrm{d}E}\Phi_{\mathrm{DM}}^{\lambda}\left(m_{\mathrm{DM}},\tau_{\mathrm{DM}}\right) + \frac{\mathrm{d}}{\mathrm{d}E}\Phi_{\mathrm{Astro}}^{\lambda}\left(k,\alpha\right)\Big|_{\alpha=2}$$

Best-fit IC power-law:

$$E^2 \frac{\mathrm{d}\Phi_{\mathrm{IC}}}{\mathrm{d}E} = 1.2 \times 10^{-8} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$$

Determining Best-fit to Observed Events

- Use bin-by-bin event rates observed at IC
- Determine total incident flux by varying parameters:
- $100 \leqslant \left(\frac{m_{\rm DM}}{1 \text{ TeV}}\right) \leqslant 1000 \qquad 1 \leqslant \left(\frac{\tau_{\rm DM}}{10^{26} \text{ s}}\right) \leqslant 1000 \qquad 10^{-10} \leqslant \frac{k}{\text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}} \leqslant 10^{-7}$
- -Compare with predicted event rates from total incident flux by evaluating total χ^2
 - -Lower $\chi^2/d.o.f$ indicates better fit
- Use IC best-fit as null-statistic to determine goodness of fit from model flux by F-test

Best-fits and goodness-of-fit

Decay mode	$m_{\rm DM}^{\rm b.f.}({\rm TeV})$	$\tau_{\rm DM}^{\rm b.f.}/10^{27}\rm s$	$\frac{E^2 \Phi_{\rm Astro}^{b.f.}}{(10^{-9} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1})}$	χ^2	p-value
$\mathrm{DM} \to Z^0 Z^0$	191.82	1.27	5.86	4.209	0.061
$DM \rightarrow W^+W^-$	199.32	1.18	5.82	4.209	0.061
$DM \to \tau^+ \tau^-$	176.61	3.11	6.29	4.188	0.060
$DM \rightarrow \mu^+ \mu^-$	197.97	5.01	6.14	4.445	0.072

Best-fits and goodness-of-fit

Decay mode	$m_{\rm DM}^{\rm b.f.}({\rm TeV})$	$\tau_{\rm DM}^{\rm b.f.}/10^{27}\rm s$	$\frac{E^2 \Phi_{\rm Astro}^{b.f.}}{(10^{-9} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1})}$	χ^2	p-value	
$\mathrm{DM} \to Z^0 Z^0$	191.82	1.27	5.86	4.209	0.061	
$DM \rightarrow W^+W^-$	199.32	1.18	5.82	4.209	0.061	
$DM \rightarrow \tau^+ \tau^-$	176.61	3.11	6.29	4.188	0.060	
$DM \rightarrow \mu^+ \mu^-$	197.97	5.01	6.14	4.445	0.072	
						7

The low values of the p-value indicate that the fit to the data in the DM + Astro model with a reduced astrophysical flux improves upon the IC best-fit significantly.

Conventionally, p <= 0.05 indicates strong presumption against the null hypothesis, which in this case refers to the hypothesis that the fit does not improve statistically significantly.

"Hidden" component: v from DM decay?

Compare with IC best-fit $\chi^2_{IC} = 10.7$

IC events as neutrinos from DM + Astro

MORE DATA REQUIRED

- •Within the purview of limited statistics, reduced astrophysical flux + low energy neutrinos from DM decay fits observed data significantly better than the IC best-fit with a power-law astrophysical flux alone
 - -Consistency with lack of events in the "well"
 - -Better match to the sub-100 TeV events
- •Event spectrum favours TeV scale DM, and astro E-2 flux at roughly half that of IC 662-day best-fit.

Proposition II

PeV events from scattering of relativistic DM against ice-nucleon

Motivation and Model

- Main motivation: Explain PeV events and cut-off
- Hypothesise existence of a two-component DM sector
- -Very heavy scalar DM species (ϕ , PDM), $m_{\phi} \sim 5$ PeV
 - •Non-thermal in origin
 - •Frozen out of interactions with SM particles completely
 - •Only decays to a lighter DM within the sector
- -Lighter DM species ($\chi,$ TDM), m_{χ} (~ TeV) $\ll m_{\phi}$
 - •Stable, Fermionic
 - •Predominantly produced via two-body decay of PDM: $\phi \rightarrow \chi \overline{\chi}$
 - Weak interactions with nuclei mediated by heavy (BSM) neutral gauge boson Z'

Properties of DM species

•PDM

- -Large decay lifetime, $\tau > 10^{20}$ s
- -Makes up almost entire relic abundance of universe

•TDM

- -Produced monochromatically, energy of $m_{\phi}/2$
- -Neutral current interaction with nuclei, mediated by Z'
 - •Analogous to vN neutral current interaction
- -Does not contribute to co-moving DM, e.g. galaxy rotation curves, etc.

Cross-section and Avg. y

DM Parameters Fixed by Observations

PDM mass determined by high-energy cutoff

-Requires event rates peaking at ~ 1.1 PeV, therefore peak TDM flux at

$$E_{\text{peak}} = 1.1 / \left[\langle y \rangle \big|_{E=1.1 \text{ PeV}} \right] = 2.53 \text{ PeV}$$

-Fixes PDM mass at $2E_{peak} = 5.06$ PeV

 Normalisation determined by number of PeV+ events

-
$$\Phi \propto \tau_{\phi}^{-1}$$
, $d\sigma/dy \propto G^2$ implies, event rate at IC $\propto G^2/\tau_{\phi}$

3 PeV+ events in 988-day data

Fix $\tau_{0} = 10^{24}$ s, $G^{2} = 0.45$

The Sub-PeV Event Spectrum

- Steeply falling E-3 spectrum explains sub-PeV events $\Phi_{astro} = 1.21 \times 10^{-3} E^{-3.0} \text{ GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$
- Source of neutrinos: extra-galactic objects like GRB's, AGN's, etc.
- Consistent with 400—1000 TeV "gap"
- Softer flux naturally drops below threshold above PeV's

Putting the two together The Full Event Spectrum

- PeV+ events exclusively from TDM scattering on ice-nucleus within IC
 - -Soft astrophysical neutrino spectrum ensures no contribution at PeV+
- Hard-cutoff at 2.5 PeV expected
 - -Max energy set by PDM mass
- Soft E-³ diffuse astrophysical flux spectrum ensures compatibility with 20—400 TeV event rates
 - -Also explains gap from 400—1000 TeV

Probable Tell-tale Signatures ...or definite falsifiability?

- IC expects to run for the next decade
 - -Event rates of about 10 yr-1
- •With statistically significant data (say, 5 yrs), if
 - -Complete lack of events persists above some PeV+ threshold
 - •Definite pointer to a hard cutoff, DM-like?
 - -Gap between 400—1000 TeV persists
 - •Power-law flux cannot explain
 - •Probably points to two different components in the neutrino flux
 - -Some galactic bias expected in PeV+ events
 - •Pure astro flux would be strongly isotropic

Generalisation & Side-effects

Different interactions for different natures of TDM

-Scalar or fermionic?

- -Additional symmetries?
- Prospective method to discover existence of ultra-fast DM in next-gen neutrino telescopes

-Complementary to DM direct searches sensitive to lower energy DM

- -Probably only currently viable way to look for fast (non-comoving) DM
- •TDM contributes additional light degrees of freedom in the early universe

- $N_{\rm rel}$ from PLANCK (3.34 ± 0.32) vs $N_{\rm eff}$ from SM (3.04)

Conclusions

Conclusions

- IC events a window to interesting possibilities
- **MORE DATA REQUIRED**
- Present event rates (37 over 988 days) too low
- Possibility of being explained by std. astrophysical phenomena...
- ...but tantalising hints of non-conformity
- If non-std. features persist, will call for innovative suggestions for explanations
- Possibility of flux coming from disparate sources
 - -DM-decay contributing one component
 - -Astrophysical sources the other