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Langevin equation for the Brownian motion

of a free particle

• The random collisions with the Brownian particle are repre-
sented by a random force (noise) in the evolution equation

ẋ(t) = v(t), v̇(t) + γv(t) =
η(t)

m
.

• The random noise is described by a probability distribution,
the simplest of which is a Gaussian leading to

P (η) = e−
1
4B

∫
dt η2(t), B > 0,

〈η(t1)η(t2) · · · η(t2n+1)〉 = 0, 〈η(t1)η(t2)〉 = 2Bδ(t1 − t2).

• This is known as a Gaussian noise or a “white” noise.
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• The equation for v can be easily solved to give

v(t) = v0e
−γt +

1

m

t∫
0

ds e−γ(t−s)η(s).

which shows that the dynamical variable becomes “stochastic”
because of the presence of the random noise.

• We can now calculate the velocity correlations which lead to

〈v2(t)〉 =

(
v20 −

B

γm2

)
e−2γt +

B

γm2

t→∞−−−→ B

γm2
.

• On the other hand, from equipartition theorem we know that
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in equilibrium (k = 1)

〈v2(t)〉 =
T

m
, ⇒ B = γmT.

• The position can also be obtained by integrating the velocity

x(t) = x0 +

t∫
0

dt′ v(t′).

• This leads to (the Fluctuation-Dissipation theorem)

(∆x)2 = 〈x2(t)〉 − 〈x(t)〉2 t→∞−−−→ 2Bt

γ2m2
=

2Tt

γm
= 2Dt,

D =
T

γm
.
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General Langevin equation

• One can generalize the Langevin equation to describe the
Brownian (random) motion of other physical systems

ẋ = v, v̇ +
∂S(v)

∂v
+

1

m

∂V (x)

∂x
=
η

m
.

• For V (x) = 0 and S(v) = 1
2γv

2, this corresponds to the free
particle motion we have discussed.

• For V (x) = 1
2mω

2x2 and S(v) = 1
2γv

2, this describes the
damped harmonic oscillator.

• For V (x) = 1
2mω

2x2 − 1
3νx

3 and S(v) = 1
2γv

2, the system
corresponds to the nonlinear damped oscillator and so on.
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Markovian and non-Markovian processes

• Langevin equation opens up the branch of study known as
stochastic differential equations. It is a simple way of studying
nonequilibrium phenomena (approaching equilibrium).

• When the noise is Gaussian (“white”), the process is called
Markovian or memoryless. This is the simplest of the nonequi-
librium phenomena.

• When the noise is not Gaussian (“colored”), the process is
called non-Markovian or with memory and describes a general
nonequilibrium phenomenon which is harder to solve.

• We note that when the x, v equations are coupled, the system
develops a “colored” noise induced by the coupling.
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• For example, for the damped harmonic oscillator, the velocity
equation can be integrated to yield

ẋ(t) = v(t) = −ω2

∫ t

ds e−γ(t−s)x(s) +
η

m
,

η(t) =

∫ t

ds e−γ(t−s)η(s).

• This leads to a “colored” noise in the x equation with

〈η(t)η(t′)〉 =
B

γ
e−γ|t−t

′| = K(t− t′).

• Langevin equation can also be extended to field theories and
forms the basis for stochastic quantization.
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Motivation for a path integral description

• In the case of Brownian (random) processes, the dynamical
equations are first solved and then individual correlation func-
tions are calculated by taking the ensemble average. This is a
tedious process.

• We know that the path integrals lead to generating functionals
for correlation functions and indeed contain all the correlation
fuctions. Individual correlation functions are simply calculated
by taking derivatives with respect to appropriate sources and
setting the sources to zero.

• If we have a path integral description of the Langevin equation,
we would have all the correlation functions contained in the
generating functional and do not have to calculate them
individually. Also perturbative calculations can be facilitated
enormously.
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What was known earlier

• There was no generating functional constructed from first prin-
ciples. Rather functional methods were developed as practical
calculational methods using the diagrammatic techniques of
quantum field theory.

• The dynamical equations were studied as functional equations
leading to Schwinger-Dyson equations in order to facilitate
a diagrammatic evaluation of correlation functions. But,
Schwinger-Dyson equations do not define a closed set of
equations.

• To have a manageable closed set, extra fields were introduced
which do not commute with the original dynamical variables
of the theory and satisfy additional equations.
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• The physical meaning of the additional fields and the equations
were not clear and led to some unexpected behavior.

• This method could be further improved by combining with
the renormalization group techniques, but the meaning of the
additional fields continued to remain unclear.

• Some works tried to eliminate the additional fields at the cost
of increasing the nonlinearities in the set of equations which
is not practical.

• The issues with the nonlinearities have been addressed by
appealing to the methods of stochastic quantization, but
they, too, have their own difficulties.
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The Lagrangian and the Hamiltonian

• The main obstacle in a first principle construction of the
generating functional appears to have been the absence of a
Lagrangian or Hamiltonian description for a (second order)
dissipative system.

• Consider the Lagrangian (x, v are independent variables)

L = λ

(
v̇ +

∂S

∂v
+

1

m

∂V

∂x
− η

m

)
+ ξ(ẋ− v),

where ξ, λ are (naively) Lagrange multiplier fields. The dy-
namical equations result from varying ξ and λ.

• This is a first order Lagrangian (like the Dirac theory) and,
therefore, there are constraints. The constraint analysis leads
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to the (nontrivial) Dirac brackets and the Hamiltonian

{x, ξ}D = 1 = {v, λ}D ,

H = −λ
(
∂S

∂v
+

1

m

∂V

∂x
− η

m

)
+ ξv.

• ẋ = {x,H}D and v̇ = {v,H}D lead to the dynamical equa-
tions, but now we also have

ξ̇ = {ξ,H}D =
λ

m

∂2V

∂x2
,

λ̇ = {λ,H}D = −ξ + λ
∂2S

∂v2
.
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• If we identify the doublet of dynamical variables as ψα = (x, v)

and introduce a second doublet as ψ̂α = (ξ, λ), then we can
write (α, β = 1, 2) {

ψα, ψ̂β

}
D

= δαβ.

• The doublet of fields ψ̂α coincides with the additional fields
introduced earlier in the functional analysis together with
the correct quantization condition as well as the additional
equations.

• However, now their physical meaning is clear, they correspond
to the pair of conjugate field variables and their dynamical
equations.
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Generating functional

• The generating functional can now be constructed in a
straightforward manner.

• We define the Lagrangian with sources for the dynamical
variables as

LJ = L+ J̃x+ Jv,

which leads to the generating functional of the form

UJ = N

∫
DηDλDξDvDx eiS

J− 1
4B

∫
dt η2.

• If we are calculating correlation functions, it has to be re-
membered that the η integration needs to be done at the
end in order to get the ensemble average. Otherwise, the
integrations can be done in any order convenient.
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• For example, in the case of the general Langevin equation, if
we do the ξ and λ integrations, they lead to delta function
constraints which impose the dynamical equations of motion
for x, v respectively.

• The x equation can always be solved as (∂−1t v) and x can be
integrated out. If the v equation can also be solved exactly
(as in the case of the free particle or the harmonic oscillator),
one can also integrate out v and then the noise variable η to
yield a generating functional depending only on the sources.
If the v equation is not exactly soluble (as will be the case
for highly nonlinear V (x)), one has to solve the delta function
constraint perturbatively and integrate out v order by order.

• In either case, the generating functional will depend only on
sources and lead to any correlation function directly through
functional derivation.
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Fokker-Planck equation

• Fokker-Planck equation is another approach for handling
nonequilibrium phenomena. Here one tries to determine
directly the time evolution of the function P (x, v, t) which de-
scribes the probability that a particle will have the coordinate
x and velocity v at time t.

• This can also be determined from the path integral represen-
tation in a simple manner much like the Schrödinger equation
is obtained from the path integral since time evolution is
obtained from the difference in probabilities for infinitesimal
time intervals.

• Here we are not calculating correlations and, therefore, sources
can be set to zero and the probability at a later time (and
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coordinates) is given by the transition amplitude as

P (x, v, t) = N

∫
dx′dv′U(x, v, t;x′, v′, t′)P (x′, v′, t′).

• We are interested in infinitesimal time intervals

t = t′ + ε,

so that time derivatives inside the integral can be written as
infinitesimal differences and the x equation requires

ẋ =
x− x′

ε
= v.

• Therefore, making a Taylor expansion we can integrate out

Ashok Das 18



x′, v′ to obtain the Fokker-Planck equation

∂P

∂t
= −v∂P

∂x
+

1

m

∂V

∂x

∂P

∂v
+

∂

∂v

(
B

m2

∂P

∂v
+
∂S

∂v
P

)
.
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Future directions

• Our goal is to set up a formalism for studying general nonequi-
librium phenomena within the context of quantum field theo-
ries.

• Having a path integral description of the Langevin equation is
just the first step in this direction.

• Here temperature dependence is still brought in through the
fluctuation-dissipation theorem.

• The next step is to define this path integral in a closed time
path setting and see if the fluctutation-dissipation theorem
will naturally result.

• If it does not, one has to incorporate this into the formalism
in a natural way before any realistic application can be made.
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