Expectations from T2K & NOvA in light of recent Neutrino Data

Sanjib Kumar Agarwalla sanjib@iopb.res.in

Institute Of Physics, Bhubaneswar, India

S. K. Agarwalla, e-NuMI phone meeting, 27th February, 2013

References

Based on the papers:

1) Potential of optimized NOvA for large θ_{13} & combined performance with a LArTPC and T2K

SKA, S. Prakash, S. Raut, S. Uma Sankar, arXiv: 1208.3644

2) Resolving the Octant of θ_{23} with T2K and NOvA

SKA, S. Prakash, S. Uma Sankar, arXiv: 1301.2574

Global Analysis of World Neutrino Data

Reference	Ref. [53]	Ref. [54]	Ref. [55]	
$\Delta m_{21}^2 (10^{-5} \text{eV}^2)$	7.62 ± 0.19	$7.54^{+0.26}_{-0.22}$	$7.50^{+0.205}_{-0.160}$	
$\Delta m_{31}^2 (10^{-3} \text{eV}^2) \text{ (N)}$	$2.55^{+0.06}_{-0.09}$	$2.43^{+0.06}_{-0.10}$	$2.49^{+0.055}_{-0.051}$	
$\Delta m_{13}^2 (10^{-3} \text{eV}^2)$ (I)	$2.43^{+0.07}_{-0.06}$	$2.42^{+0.07}_{-0.11}$	$\Delta m_{23}^2 (10^{-3} \text{eV}^2) = 2.47^{+0.064}_{-0.073}$	
$\sin^2 \theta_{13}$ (N)	$0.0246^{+0.0029}_{-0.0028}$	0.0241 ± 0.0025	0.025 ± 0.0023	
$\sin^2 \theta_{13}$ (I)	$0.0250^{+0.0026}_{-0.0027}$	$0.0244^{+0.0023}_{-0.0025}$		
$\sin^2 \theta_{23}$ (N)	$0.427^{+0.034}_{-0.027} \oplus 0.613^{+0.022}_{-0.040}$	$0.386^{+0.024}_{-0.021}$	$0.41^{+0.030}_{-0.029} \oplus 0.60^{+0.020}_{-0.026}$	
3σ range	0.36 ightarrow 0.68	$0.331 \rightarrow 0.637$	0.34 ightarrow 0.67	
$\sin^2 \theta_{23}$ (I)	$0.600^{+0.026}_{-0.031}$	$0.392^{+0.039}_{-0.022}$		
3σ range	0.37 ightarrow 0.67	$0.335 \rightarrow 0.663$		
$\sin^2 \theta_{12}$	$0.320^{+0.016}_{-0.017}$	$0.307^{+0.018}_{-0.016}$	0.31 ± 0.013	

SkA, Francesco Lombardi, T. Takeuchi, arXiv1207.3492

Ref. 53: Forero, Tortola, Valle, arXiv:1205.4018 Ref. 54: Fogli, Lisi, Marrone, Montanino, Palazzo, Rotunno, arXiv:1205.5254 Ref. 55: Gonzalez-Garcia, Maltoni, Salvado, Schwetz, arXiv:1209.3023

Event/Background Rates in NOvA/LArTPC

Channels	Old NOvA (15 kt)		New NOvA (14 kt)		LArTPC (10 kt)		
App.	Signal	Background	Signal	Background	Signal	Background	
	CC	(Int+Mis-ID+NC)	CC	(Int+Mis-ID+NC)	CC	(Int+Mis-ID+NC)	
$P_{\mu e}(\text{NH})$	62	6+1+4= 11	92	8+5+19= 32	123	18+5+7= 30	
$P_{\mu e}(\text{IH})$	36	6+1+4=11	54	8+5+19= 32	72	19+5+7= 31	
$P_{\mu e}(\text{NH})$	26	6+<1+6=12	30	5+<1+10= 15	28	17+2+2=21	
$P_{\mu e}(IH)$	34	5+<1+6=11	38	5+<1+10= 15	36	14+2+2= 18	
Disapp.	Signal	Background	Signal	Background	Signal	Background	
	CCQE	(NC only)	CCQE	(NC+Wrong-Sign muon)	CCQE	(NC+Wrong-Sign muon)	
$P_{\mu\mu}(\text{NH})$	173	2	134	1+6=7	403	7+20= 27	
$P_{\mu\mu}$ (IH)	173	2	134	1+6=7	402	7+20= 27	
$P_{\mu\mu}(\text{NH})$	102	1	43	<1+18= 18	136	2+54= 56	
$P_{\mu\mu}$ (IH)	103	1	43	<1+18= 18	137	2+54= 56	

SkA, Prakash, Raut, Uma Sankar, arXiv1208.3644

NOvA has re-optimized its event selection criteria, with more events in both signal and background R. Patterson, Neutrino 2012 talk

Rise in signal by 50%, background rises by a factor of 3, but we can tolerate that for large θ_{13}

Event/Background distribution in NOvA/LArTPC

SkA, Prakash, Raut, Uma Sankar, arXiv1208.3644

Agarwalla, Prakash, Raut, Uma Sankar, arXiv:1208.3644

Adding data from T2K and NOvA is useful to kill the intrinsic degeneracies **55% CP coverage @ 90% C.L. and 45% CP coverage @ 95% C.L. for MH discovery**

S. K. Agarwalla, e-NuMI phone meeting, 27th February, 2013

Agarwalla, Prakash, Raut, Uma Sankar, arXiv:1208.3644

14kt NOvA is equivalent to 10 kt LArTPC

Add a small LArTPC in the NOvA Beamline

Agarwalla, Prakash, Raut, Uma Sankar, arXiv:1208.3644

Add a small LArTPC (5 to 10 kt) in the NOvA Beamline taking data simultaneously 100% CP coverage @ 90% C.L. and 64% CP coverage @ 95% C.L. w/ 5 kt LArTPC

Agarwalla, Prakash, Raut, Uma Sankar, arXiv:1208.3644

38% CP coverage @ 90% C.L. and 11% CP coverage @ 95% C.L. for CPV discovery

Agarwalla, Prakash, Raut, Uma Sankar, arXiv:1208.3644

For CPV discovery: 14kt NOvA is equivalent to 10 kt LArTPC

Agarwalla, Prakash, Raut, Uma Sankar, arXiv:1208.3644

64% CP coverage @ 90% C.L. and 56% CP coverage @ 95% C.L. w/ 5 kt LArTPC

Snapshot of MH & CPV discovery

$\frac{\sin^2 2\theta_{13}}{\sin^2 \theta_{22}} = 0.5$	Fraction of δ_{CP} (true)			
Setups	MH		CPV	
1	NH true	IH true	NH true	IH true
NOvA (3+3)	0.48(0.43)	0.46(0.41)	0.16 (0)	0.21(0.04)
$NO\nu A (3+3) + T2K (5+0)$	0.55(0.45)	0.54(0.43)	0.38 (0.11)	0.49(0.23)
$NO\nu A (6+6) + T2K (5+0) + 5 kt LArTPC (3+3)$	1(0.64)	1 (0.64)	0.64(0.56)	0.68(0.61)
$NO\nu A (6+6) + T2K (5+0) + 10 \text{ kt LArTPC } (3+3)$	1 (0.71)	1(0.73)	0.67(0.60)	0.71(0.64)

$\frac{\sin^2 2\theta_{13}}{\sin^2 \theta} = 0.412$	Fraction of δ_{CP} (true)			
Sill 023 0.415 Setups	MH		CPV	
	NH true	IH true	NH true	IH true
NOvA (3+3)	0.39(0.33)	0.37(0.31)	0.2(0.1)	0.22(0.13)
$NO\nu A$ (3+3) + T2K (5+0)	0.41(0.34)	0.39(0.31)	0.28(0.22)	0.3(0.25)
$NO\nu A (6+6) + T2K (5+0) + 5 \text{ kt LArTPC } (3+3)$	0.78(0.5)	0.89(0.48)	0.68(0.45)	0.71(0.51)
$NO\nu A (6+6) + T2K (5+0) + 10 \text{ kt LArTPC } (3+3)$	1(0.54)	1(0.54)	0.7(0.53)	0.73(0.63)

Agarwalla, Prakash, Raut, Uma Sankar, arXiv:1208.3644

Non-maximal 2-3 mixing & Issue of Octant

Preliminary results of MINOS indicate that θ_{23} is not maximal

Global fits to world neutrino data suggest two nearly degenerate solutions for θ_{23} : one in the lower octant (LO: $\theta_{23} < 45$ degree) and the other in the higher octant (HO: $\theta_{23} > 45$ degree)

S. K. Agarwalla, e-NuMI phone meeting, 27th February, 2013

Octant-\delta_{CP} degeneracy

 $P_{\mu e}(\mathrm{LO}, \delta_{\mathrm{CP}}^{\mathrm{LO}}) = P_{\mu e}(\mathrm{HO}, \delta_{\mathrm{CP}}^{\mathrm{HO}})$

For L=810 km and E=2 GeV, we get for NH and v $\cos(\hat{\Delta} + \delta_{CP}^{LO}) - \cos(\hat{\Delta} + \delta_{CP}^{HO}) = 1.7$

Agarwalla, Prakash, Uma Sankar, arXiv:1301.2574

 $P_{\mu e}(\text{LO}, -116^{\circ} \leq \delta_{\text{CP}} \leq -26^{\circ})$ is degenerate with $P_{\mu e}(\text{HO}, 64^{\circ} \leq \delta_{\text{CP}} \leq 161^{\circ})$

Octant-Hierarchy combinations: T2K and NOvA

Agarwalla, Prakash, Uma Sankar, arXiv:1301.2574

Octant Resolution: T2K and NOvA

Agarwalla, Prakash, Uma Sankar, arXiv:1301.2574

15/20

Agarwalla, Prakash, Uma Sankar, arXiv:1301.2574

S. K. Agarwalla, e-NuMI phone meeting, 27th February, 2013

16/20

Octant Discovery: T2K and NOvA

Agarwalla, Prakash, Uma Sankar, arXiv:1301.2574

Octant Discovery: T2K and NOvA

Agarwalla, Prakash, Uma Sankar, arXiv:1301.2574

Octant Discovery: T2K and NOvA

- \circ If LO is the true octant, then NOvA can rule out HO at 2σ C.L., irrespective of the hierarchy and CP phase
- Addition of T2K data improves the octant sensitivity
- If HO and normal hierarchy are the true choices, then the combined data from NOvA & T2K with its designed five years run in neutrino mode, is incapable of a 2σ resolution of the octant for all CP phases
- \circ A 2 σ resolution of the octant, for all combinations of neutrino parameters, becomes possible if T2K has balanced neutrino and anti-neutrino runs of 2.5 years each

Thank you!

Platinum Channel (P_{µe})

The appearance probability $(\nu_{\mu} \rightarrow \nu_{e})$ in matter, upto second order in the small parameters $\alpha \equiv \Delta m_{21}^{2} / \Delta m_{31}^{2}$ and $\sin 2\theta_{13}$,

$$P_{\mu e} \simeq \underbrace{\sin^2 2\theta_{13} \sin^2 \theta_{23}}_{0.05} \frac{\sin^2[(1-\hat{A})\Delta]}{(1-\hat{A})^2} \Longrightarrow \theta_{13} \text{ Driven}$$

$$5.2 \text{ times} \qquad - \underbrace{\frac{\alpha \sin 2\theta_{13} \xi}{0.0096}}_{0.0096} \frac{\sin \delta_{CP} \sin(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})} \Longrightarrow \text{ CP odd}$$

$$+ \alpha \sin 2\theta_{13} \xi \cos \delta_{CP} \cos(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})} \Longrightarrow \text{ CP even}$$

$$+ \alpha^2 \cos^2 \theta_{23} \sin^2 2\theta_{12} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2}; \Longrightarrow \text{ Solar Term}$$

where $\Delta \equiv \Delta m_{31}^2 L/(4E)$, $\xi \equiv \cos \theta_{13} \sin 2\theta_{21} \sin 2\theta_{23}$, and $\hat{A} \equiv \pm (2\sqrt{2}G_F n_e E)/\Delta m_{31}^2$

> Cervera etal., hep-ph/0002108 Freund etal., hep-ph/0105071