Recent Developments in Neutrino Oscillations & Future Roadmap

Sanjib Kumar Agarwalla sanjib@iopb.res.in

Institute of Physics, Bhubaneswar, India

S. K. Agarwalla, TIFR, Mumbai, India, 22nd August, 2014

The Standard Model: Massless Neutrinos

The Standard Model is a gauge theory & it unifies strong, weak & electromagnetic forces!

 $SU(3)_C \times SU(2)_L \times U(1)_Y \Rightarrow SU(3)_C \times U(1)_{EM}$

$(1,2)_{-\frac{1}{2}}$	$(3,2)_{\frac{1}{6}}$	$(1,1)_{-1}$	$(3,1)_{\frac{2}{3}}$	$(3,1)_{-\frac{1}{3}}$
$\left(\begin{array}{c} \nu_e \\ e \end{array} \right)_L$	$\left(\begin{array}{c} u^i \\ d^i \end{array} ight)_L$	e_R	u_R^i	d_R^i
$\left(\begin{array}{c} \nu_{\mu} \\ \mu \end{array}\right)_{L}$	$\left(\begin{array}{c} c^i\\ s^i\end{array}\right)_L$	μ_R	c_R^i	s_R^i
$\left(\begin{array}{c} \nu_{\tau} \\ \tau \end{array}\right)_{L}$	$\left(\begin{array}{c}t^i\\b^i\end{array} ight)_L$	$ au_R$	t_R^i	b_R^i

3-fold repetition of the same representation!

- 3 *active* neutrinos: v_e , v_{μ} , v_{τ}
- Neutral elementary particles of Spin $\frac{1}{2}$
- Only couple to *weak force* (& gravity)
- Only *left handed* neutrinos
- There are no right-handed neutrinos
- No Dirac Mass term: $m(\bar{\psi}_L \psi_R + \bar{\psi}_R \psi_L)$

Neutrinos are massless in the Basic SM

- □ Over the past decade, marvelous data from world class neutrino experiments firmly established that they change flavor after propagating a finite distance
- □ Neutrino flavor change (oscillation) demands non-zero mass and mixing

Non-zero v mass: first experimental proof for physics beyond the Standard Model

!! An extension of the Standard Model is necessary !!

Big News in Neutrino Sector: Discovery of θ_{13}

We are going through an exciting phase

Exciting results from all the three frontiers

The Energy Frontier: Discovery of Higgs at LHC

The Intensity Frontier: Discovery of θ_{13}

The Cosmic Frontier: High Precision Planck measurements

BICEP2 detected B-mode polarization Smoking gun evidence for Inflation

Intensity Frontier: Neutrino properties: A window to our Universe and New Physics

Discovery of moderately large value of θ_{13} has crucial consequences for future theoretical and experimental efforts

Non-zero θ_{13} is the gateway to discover leptonic CP violation & to measure δ_{CP}

Neutrino Physics: An Exercise in Patience

Three most fundamental questions were being asked in the past century...

1. How tiny is the neutrino mass?(Pauli, Fermi, '30s)Planck + BAO + WMAP polarization data: upper limit of 0.23 eV for the sum of v masses!Planck Collaboration, arXiv:1303.5076 [astro-ph.CO]

2. Can a neutrino turn into its own antiparticle? (Majorana, '30s) Hunt for v-less Double- β decay (Z,A \rightarrow Z+2, A) is still on, demands lepton number violation! Nice Review by Avignone, Elliott, Engel, Rev.Mod.Phys. 80 (2008) 481-516

3. Do different v flavors 'oscillate' into one another? (Pontecorvo, Maki-Nakagawa-Sakata, '60s) B. Pontecorvo, Sov. Phys. JETP 26, 984 (1968) [Zh. Eksp. Teor. Fiz. 53, 1717 (1967)]

Last question positively answered only in recent years. Now an established fact that **neutrinos are massive** and leptonic flavors are not **symmetries of Nature**!

Recent measurement of θ_{13} , a clear first order picture of the 3-flavor lepton mixing matrix has emerged, signifies a major breakthrough in v physics!

This year marks the 60th anniversary since v detector of Reines & Cowan was turned on

Neutrino Oscillations in 3 Flavors

It happens because flavor (weak) eigenstates do not coincide with mass eigenstates

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$
$$\frac{\theta_{23} : P(\nu_{\mu} \rightarrow \nu_{\mu}) \text{ by }}{\text{Atoms. v and v beam}} \quad \begin{array}{l} \theta_{13} : P(\nu_{e} \rightarrow \nu_{e}) \text{ by Reactor v }\\ \theta_{13} \& \delta : P(\nu_{\mu} \rightarrow \nu_{e}) \text{ by v beam} \end{pmatrix} \quad \begin{array}{l} \theta_{12} : P(\nu_{e} \rightarrow \nu_{e}) \text{ by }\\ \text{Reactor and solar v} \end{array}$$
$$\text{Three mixing angles:} \quad \begin{array}{l} \theta_{23} , \theta_{13} , \theta_{12} \\ \theta_{23} , \theta_{13} , \theta_{12} \end{array} \text{ and one CP violating (Dirac) phase } \begin{array}{l} \delta_{CP} \\ \delta_{CP} \\ \end{array}$$
$$\text{Itan}^{2} \theta_{12} \equiv \frac{|U_{e2}|^{2}}{|U_{e1}|^{2}}; \quad \tan^{2} \theta_{23} \equiv \frac{|U_{\mu3}|^{2}}{|U_{\tau3}|^{2}}; \quad U_{e3} \equiv \sin \theta_{13}e^{-i\delta} \\ 3 \text{ mixing angles simply related to flavor components of 3 mass eigenstates} \end{array}$$

Over a distance L, changes in the relative phases of the mass states may induce flavor change!

$$P(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} - 4 \sum_{i>j} \operatorname{Re}[U_{\alpha i}^* U_{\alpha j} U_{\beta i} U_{\beta j}^*] \sin^2 \Delta_{ij} - 2 \sum_{i>j} \operatorname{Im}[U_{\alpha i}^* U_{\alpha j} U_{\beta i} U_{\beta j}^*] \sin 2\Delta_{ij}$$

2 independent mass splittings Δm_{21}^2 and Δm_{32}^2 , for anti-neutrinos replace δ_{CP} by $-\delta_{CP}$

 $\Delta_{ij} = \Delta m_{ij}^2 L/4E_{\nu}$ $\Delta m_{ij}^2 = m_i^2 - m_j^2$

Neutrino Oscillations in Matter

 ν_e Neutrino propagation through matter modify the oscillations significantly Coherent forward elastic scattering of neutrinos with matter particles W^{\pm} Charged current interaction of v_e with electrons creates an extra potential for v_e ν_e $A(eV^2) = 0.76 \times 10^{-4} \rho \ (g/cc) E(GeV)$ $A = \pm 2\sqrt{2}G_F N_e E$ Wolfenstein matter term: or N_e = electron number density, + (-) for neutrinos (anti-neutrinos), ρ = matter density in Earth Matter term changes sign when we switch from neutrino mode to anti-neutrino mode even if $\delta_{CP} = 0$, causes fake CP asymmetry $(\nu_{\alpha} \to \nu_{\beta}) - P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}) \neq 0$ Matter term modifies oscillation probability differently depending on the sign of Δm^2 $E_{\rm res}^{\rm Earth} = 6 - 8 \, {\rm GeV}$ $\Delta m^2 \simeq A$ **Resonant conversion – Matter effect** ν **Resonance occurs for neutrinos (anti-neutrinos)** $\Delta m^2 > 0$ MSW if Δm^2 is positive (negative) MSW $\Delta m^2 < 0$

Short Baseline Reactor Neutrino Oscillation

 θ_{13} measured by seeing the deficit of reactor anti-neutrinos at $\sim 2~km$

θ_{13} governs overall size of electron anti-neutrino deficit

Effective mass-squared difference $|\Delta m_{ee}^2|$ determines deficit dependence on L/E

$$P_{\bar{\nu_e} \to \bar{\nu_e}} = 1 - \frac{\sin^2 2\theta_{13} \sin^2 \left(\Delta m_{ee}^2 \frac{L}{4E}\right)}{\text{Short Baseline}} - \frac{\sin^2 2\theta_{12} \cos^4 2\theta_{13} \sin^2 \left(\Delta m_{21}^2 \frac{L}{4E}\right)}{\text{Long Baseline}} + \frac{\sin^2 (\Delta m_{ee}^2 \frac{L}{4E})}{\sin^2 (\Delta m_{ee}^2 \frac{L}{4E})} = \frac{\cos^2 \theta_{12} \sin^2 (\Delta m_{31}^2 \frac{L}{4E})}{+ \sin^2 \theta_{12} \sin^2 (\Delta m_{32}^2 \frac{L}{4E})}$$

 $\left|\Delta m_{ee}^2\right| \simeq \left|\Delta m_{32}^2\right| \pm 5.21 \times 10^{-5} \text{eV}^2$ +: Normal Hierarchy -: Inverted Hierarchy

Hierarchy discrimination requires $\sim 2\%$ precision on both Δm^2_{ee} and $\Delta m^2_{\mu\mu}$

Latest Oscillation Results from Daya Bay

Rate + Shape Oscillation Results [Announced in Neutrino 2014]

Strong confirmation of oscillation-interpretation of observed $\bar{\nu_e}$ deficit

	Normal MH Δm_{32}^2 [10 ⁻³ eV ²]	Inverted MH Δm_{32}^2 [10 ⁻³ eV ²]
From Daya Bay Δm_{ee}^2	$2.39\substack{+0.10 \\ -0.11}$	$-2.49^{+0.10}_{-0.11}$
From MINOS $\Delta m^2_{\mu\mu}$	$2.37^{+0.09}_{-0.09}$	$-2.41^{+0.11}_{-0.09}$

Present Understanding of the 2-3 Mixing Angle

Information on θ_{23} comes from: a) atmospheric neutrinos and b) accelerator neutrinos

In two-flavor scenario:
$$P_{\mu\mu} = 1 - \sin^2 2\theta_{\text{eff}} \sin^2 \left(\frac{\Delta m_{\text{eff}}^2 L}{4E}\right)$$

For accelerator neutrinos: relate effective 2-flavor parameters with 3-flavor parameters:

$$\Delta m_{\text{eff}}^2 = \Delta m_{31}^2 - \Delta m_{21}^2 (\cos^2 \theta_{12} - \cos \delta_{\text{CP}} \sin \theta_{13} \sin 2\theta_{12} \tan \theta_{23})$$
$$\sin^2 2\theta_{\text{eff}} = 4\cos^2 \theta_{13} \sin^2 \theta_{23} \left(1 - \cos^2 \theta_{13} \sin^2 \theta_{23}\right) \quad \text{where} \quad \frac{|U_{\mu 3}|^2}{|U_{\tau 3}|^2} = \tan^2 \theta_{23}$$

Nunokawa etal, hep-ph/0503283; A. de Gouvea etal, hep-ph/0503079

Combining beam and atmospheric data in MINOS, we have:

MINOS Collaboration: arXiv:1304.6335v2 [hep-ex]

 $\sin^2 2\theta_{\text{eff}} = 0.95^{+0.035}_{-0.036} (10.71 \times 10^{21} \text{ p.o.t})$

$$\sin^2 2\bar{\theta}_{\text{eff}} = 0.97^{+0.03}_{-0.08} (3.36 \times 10^{21} \text{ p.o.t})$$

Atmospheric data, dominated by Super-Kamiokande, still prefers maximal value of sin²2θ_{eff} = 1 (≥ 0.94 (90% C.L.))

Talk by Y. Itow in Neutrino 2012 conference, Kyoto, Japan

Bounds on θ_{23} from the global fits

In v_{μ} survival probability, the dominant term mainly sensitive to $\sin^2 2\theta_{23}$ If $\sin^2 2\theta_{23}$ differs from 1 (as indicated by recent data), we get two solutions for θ_{23} : one in lower octant (LO: $\theta_{23} < 45$ degree), other in higher octant (HO: $\theta_{23} > 45$ degree)

In other words, if $(0.5 - \sin^2 \theta_{23})$ is +ve (-ve) then θ_{23} belongs to LO (HO)

This is known as the octant ambiguity of θ_{23}

Fogli and Lisi, hep-ph/9604415

Conferences	After Neutrino 2012	After NeuTel 2013	After TAUP 2013
$\sin^2 \theta_{23}$	$0.41^{+0.037}_{-0.025} \oplus 0.59^{+0.021}_{-0.022}$	$0.437^{+0.061}_{-0.031}$	$0.446^{+0.007}_{-0.007} \oplus 0.587^{+0.032}_{-0.037}$
3σ range	0.34 ightarrow 0.67	$0.357 \rightarrow 0.654$	$0.366 \rightarrow 0.663$
1σ precision (relative)	13.4%	11.3%	11.1%

Based on Gonzalez-Garcia, Maltoni, Salvado, Schwetz, http://www.nu-fit.org

Global fit disfavors maximal 2-3 mixing at 1.4σ confidence level (mostly driven by MINOS)

 v_{μ} to v_{e} oscillation data can break this degeneracy

The preferred value would depend on the choice of the neutrino mass hierarchy

New Measurements of Atmospheric Parameters

Talk by C. Walter in Neutrino 2014

Oscillation Parameters After Neutrino 2014

	bfp $\pm 1\sigma$	3σ range	Relative
$\sin^2 \theta_{12}$	$0.304\substack{+0.012\\-0.012}$	$0.270 \rightarrow 0.344$	10 1 1 1011
$\theta_{12}/^{\circ}$	$33.48^{+0.77}_{-0.74}$	$31.30 \rightarrow 35.90$	4%
$\sin^2 \theta_{23}$ maximal	$\left[0.451^{+0.001}_{-0.001} ight] \oplus 0.577^{+0.02}_{-0.03}$	$0.385 \to 0.644$	0.60/
$\theta_{23}/^{\circ} \frac{Non}{71.40}$	$\left[42.2^{+0.1}_{-0.1} ight] \oplus 49.4^{+1.6}_{-2.0}$	$38.4 \rightarrow 53.3$	9.0%
$\sin^2 \theta_{13}$ Non-zero	$0.0219\substack{+0.0010\\-0.0011}$	$0.0188 \rightarrow 0.0251$	1 80/
$\theta_{13}/^{\circ}$	$8.52^{+0.20}_{-0.21}$	$7.87 \rightarrow 9.11$	4.0 /0
$\delta_{CP}/^{\circ} \sin \delta_{CP} C.L.$	251 ⁺⁶⁷ -59 D.V. F	the work by pozzi etal $0 \rightarrow 360$ orero etal	(Not Known)
$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.50^{+0.19}_{-0.17}$	$7.03 \rightarrow 8.09$	2.4%
$\frac{\Delta m_{31}^2}{10^{-3} \text{ eV}^2} \text{ (N)}$	$\left[+2.458^{+0.002}_{-0.002}\right]$	$+2.325 \rightarrow +2.599$	1 00/
$\frac{\Delta m_{32}^2}{10^{-3} \text{ eV}^2} \text{ (I)}$	$-2.448^{+0.047}_{-0.047}$	$-2.590 \rightarrow -2.307$	1.770

Based on the data available after Neutrino 2014 conference Gonzalez-Garcia, Maltoni, Salvado, Schwetz, http://www.nu-fit.org

Role of Atmospheric Neutrinos in Global Fit

Based on the data available after Neutrino 2014 conference

Gonzalez-Garcia, Maltoni, Salvado, Schwetz, http://www.nu-fit.org

The Two Fundamental Questions

Why are neutrinos so light? The origin of Neutrino Mass!

	Neutrinos (PMNS)	Quarks (CKM)
θ_{12}	35°	13°
θ_{32}	43°	2°
θ_{13}	9°	0.2°
δ	unknown	68°

Why are lepton mixings so different from quark mixings?

The Flavor Puzzle!

Latest Results on θ_{13} : What happened to Mass models?

Survey of 63 v mass models in June 2006 by Carl H. Albright and Mu-Chun Chen

Future high precision measurements of mixing angles, new information on neutrino mass ordering and CP phase will severely constrain these presently allowed models

Implications of Recent Measurement of θ_{13}

Simplest models that are ruled out!

Bimaximal mixing: [Vissani (97), Barger, Pakvasa, Weiler, Whisnant (98)]

It predicts: $\theta_{12} = 45^\circ$, $\theta_{23} = 45^\circ$, and $\theta_{13} = 0^\circ$

• Tri-bimaximal mixing: [Vissani (97), Harrison, Perkins, Scot (02)]

predicted in flavor symmetry models with symmetry groups like A4, S4, A5

$$U_{\text{TBM}} = R_{32} \left(\theta_{32} = \frac{\pi}{4} \right) R_{13} (\theta_{13} = 0) R \left(\theta_{21} = \tan^{-1} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{6}} \begin{pmatrix} 2 & \sqrt{2} & 0 \\ -1 & \sqrt{2} & \sqrt{3} \\ 1 & -\sqrt{2} & \sqrt{3} \end{pmatrix}$$

• Golden ratio: [Datta, Ling, Ramond (03), Kajiyama, Raidal, Strumia (07)] It predicts: $\theta_{12} = 31.7^{\circ}$, $\theta_{23} = 45^{\circ}$, and $\theta_{13} = 0^{\circ}$

Simplest models that are still alive!

- Anarchy (ν mass matrix completely random): [Hal, Murayama, Weiner (99), de Gouvea, Murayama (03, 12)]
 It predicts: large θ₁₃, okay with observed value of θ₁₃
- Quark-Lepton Complementarity: [Minakata, Smirnov (94), Raidal (04)] Based on observation: θ₁₂ (PMNS) + θ₁₂ (CKM) = 45° It predicts: sinθ₁₃ ≈ sinθ_C /√2 ≈ 0.16 (close to the observed value, other relations needs to be tested!)

Fundamental Unknowns in Neutrino Oscillation

<u>1. What is the hierarchy of the neutrino mass spectrum, normal or inverted?</u></u>

- The sign of $\Delta m_{31}^2 = m_3^2 m_1^2$ is not known!
- Currently do not know which neutrino is the heaviest?
- Only have a lower bound on the mass of the heaviest v!

 $\sqrt{2.5 \cdot 10^{-3} {\rm eV^2}} \sim 0.05 \; {\rm eV}$

2. What is the octant of the 2-3 mixing angle, lower ($\theta_{23} < 45^\circ$) or higher ($\theta_{23} > 45^\circ$)?

Measure θ_{23} *precisely, Establish deviation from maximality at higher C.L. Then look for Octant*

<u>2. Is there CP violation in the leptonic sector, as in the quark sector</u>?

Mixing can cause CP violation in the leptonic sector (if δ_{CP} *differs from* 0° *and* 180°) *Need to measure the CP-odd asymmetries:* $\Delta P_{\alpha\beta} \equiv P(\nu_{\alpha} \rightarrow \nu_{\beta}; L) - P(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}; L)$ ($\alpha \neq \beta$)

With current knowledge of θ_{13} , resolving these unknowns fall within our reach Sub-leading 3 flavor effects are extremely crucial in current & future oscillation expts

Analytical Understanding of Neutrino Oscillation Probability

Published for SISSA by 2 Springer

RECEIVED: March 27, 2013 REVISED: February 28, 2014 ACCEPTED: March 12, 2014 PUBLISHED: April 7, 2014

Analytical approximation of the neutrino oscillation matter effects at large θ_{13}

Sanjib Kumar Agarwalla,^{*a*,1} Yee Kao^{*b*} and Tatsu Takeuchi^{*c*,*d*}

- ^aInstitute of Physics, Sachivalaya Marg, Sainik School Post, Bhubaneswar 751005, Orissa, India
- ^bDepartment of Chemistry and Physics, Western Carolina University, Cullowhee, NC 28723, U.S.A.
- ^cCenter for Neutrino Physics, Physics Department, Virginia Tech, Blacksburg, VA 24061, U.S.A.

^dKavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa-shi, Chiba-ken 277-8583, Japan

E-mail: sanjib@iopb.res.in, ykao@email.wcu.edu, takeuchi@vt.edu

ABSTRACT: We argue that the neutrino oscillation probabilities in matter are best understood by allowing the mixing angles and mass-squared differences in the standard parametrization to 'run' with the matter effect parameter $a = 2\sqrt{2}G_F N_e E$, where N_e is the electron density in matter and E is the neutrino energy. We present simple analytical approximations to these 'running' parameters. We show that for the moderately large JHEP04 (2014)047

Matter Effect Parameter a

$$a = 2\sqrt{2}G_F N_e E = 7.63 \times 10^{-5} (\text{eV}^2) \left(\frac{\rho}{\text{g/cm}^3}\right) \left(\frac{E}{\text{GeV}}\right)$$

Agarwalla, Kao, Takeuchi, JHEP 1404, 047 (2014)

- Matter effects play an important role
- Mixing angles and and mass-squared differences run with the matter effect parameter 'a'
- We present simple analytical approximations to these running parameters using the Jacobi method
- We show that for large θ_{13} , the running of θ_{23} and δ_{CP} can be neglected, simplifying the probability expression
- We need to rotate only θ_{12} and θ_{13}

Our Approach

Use the expressions for the vacuum oscillation probabilities as it is, but make the following replacements:

$$\theta_{12} \rightarrow \theta'_{12}, \quad \theta_{13} \rightarrow \theta'_{13}, \quad \delta m^2_{jk} \rightarrow \lambda_j - \lambda_k$$

where

$$\tan 2\theta_{12}' = \frac{(\delta m_{21}^2 / c_{13}^2)\sin 2\theta_{12}}{(\delta m_{21}^2 / c_{13}^2)\cos 2\theta_{12} - a}, \qquad \tan 2\theta_{13}' = \frac{(\delta m_{31}^2 - \delta m_{21}^2 s_{12}^2)\sin 2\theta_{13}}{(\delta m_{31}^2 - \delta m_{21}^2 s_{12}^2)\cos 2\theta_{13} - a},$$

$$\lambda_1 = \lambda'_{-} \qquad \lambda'_{\pm} = \frac{(\delta m_{21}^2 + ac_{13}^2) \pm \sqrt{(\delta m_{21}^2 - ac_{13}^2)^2 + 4ac_{13}^2 s_{12}^2 \delta m_{21}^2}}{2}$$

$$\lambda_2 = \lambda''_{\mp} \qquad \lambda'_{\pm} = \frac{\left[\lambda'_{+} + (\delta m_{31}^2 + as_{13}^2)\right] \pm \sqrt{\left[\lambda'_{+} - (\delta m_{31}^2 + as_{13}^2)\right]^2 + 4a^2 s_{12}'^2 c_{13}^2 s_{13}^2}}{2}$$

upper (lower) sign is for the normal (inverted) hierarchy

Agarwalla, Kao, Takeuchi, JHEP 1404, 047 (2014)

a-dependence of effective mixing angles

Agarwalla, Kao, Takeuchi, JHEP 1404, 047 (2014)

a-dependence of effective mass-squared differences

Normal Hierarchy

Inverted Hierarchy

Agarwalla, Kao, Takeuchi, JHEP 1404, 047 (2014)

Accuracy of Our Method and Comparison with Existing Literature

L=8770 km, δ =0, Normal Hierarchy

Agarwalla, Kao, Takeuchi, JHEP 1404, 047 (2014)

Other analytical expressions suffer in accuracy due to their reliance on expansion in θ_{13} , or in simplicity when higher order terms in θ_{13} included

Our method gives accurate probability for all channels, baselines and energies

Superbeams

Traditional approach: Neutrino beam from pion decay

Current Generation Experiments:

Tokai to Kamioka (T2K) : 295 km (2.5° off-axis, 1st Osc. Max = 0.6 GeV) J-PARC Beam: 0.75 MW, Total 7.8 × 10²¹ protons on target, 5 years v run Detector: Super-Kamiokande (22.5 kton fiducial volume)

FNAL to Ash River (NOvA) : 810 km (0.8° off-axis, 1st Osc. Max = 1.7 GeV) NuMI Beam: 0.7 MW, Total 3.6×10^{21} protons on target, 3 yrs v + 3 yrs anti-v Detector: 14 kton Totally Active Scintillator Detector (TASD)

Three Flavor Effects in $v_{\mu} \rightarrow v_{e}$ oscillation probability

The appearance probability $(\nu_{\mu} \rightarrow \nu_{e})$ in matter, upto second order in the small parameters $\alpha \equiv \Delta m_{21}^2 / \Delta m_{31}^2$ and $\sin 2\theta_{13}$, $\frac{\sin^2 2\theta_{13} \sin^2 \theta_{23}}{(1-\hat{A})^2} \longrightarrow_{\theta_{13}} \text{Driven}$ 0.09 $\alpha \sin 2\theta_{13} \xi \sin \delta_{CP} \sin(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})} \Longrightarrow CP \text{ odd}$ Resolves 0.009 octant + $\alpha \sin 2\theta_{13} \xi \cos \delta_{CP} \cos(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})} \Longrightarrow CP \text{ even}$ + $\alpha^2 \cos^2 \theta_{23} \sin^2 2\theta_{12} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2}$; \implies Solar Term where $\Delta \equiv \Delta m_{31}^2 L/(4E)$, $\xi \equiv \cos \theta_{13} \sin 2\theta_{21} \sin 2\theta_{23}$, and $\hat{A} \equiv \pm (2\sqrt{2}G_F n_e E)/\Delta m_{31}^2$ Cervera etal., hep-ph/0002108 Freund etal., hep-ph/0105071 changes sign with sgn(Δm_{31}^2) changes sign with polarity See also, Agarwalla etal., arXiv:1302.6773 [hep-ph] key to resolve hierarchy! causes fake CP asymmetry!

This channel suffers from: (Hierarchy – δ_{CP}) & (Octant – δ_{CP}) degeneracy! How can we break them?

Physics Potential of T2K & NOvA in light of large θ_{13}

Published for SISSA by Deringer

Received: August 23, 2012 Revised: November 10, 2012 Accepted: November 22, 2012 Published: December 14, 2012

Potential of optimized NO ν A for large θ_{13} & combined performance with a LArTPC & T2K

Sanjib Kumar Agarwalla, a Suprabh Prakash, b Sushant K. Raut b,c and S. Uma Sankar b,d
^a Instituto de Física Corpuscular, CSIC-Universitat de València, Apartado de Correos 22085, E-46071 Valencia, Spain
^b Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India
^c Physical Research Laboratory, Ahmedabad 380009, India
^d Department of Theoretical Physics, Tata Institute of Fundamental Research, Mumbai 400005, India
E-mail: Sanjib.Agarwalla@ific.uv.es, suprabh@phy.iitb.ac.in, sushant@phy.iitb.ac.in, uma@phy.iitb.ac.in
ABSTRACT: NO ν A experiment has reoptimized its event selection criteria in light of the re-

ABSTRACT: NOVA experiment has reoptimized its event selection criteria in light of the recently measured moderately large value of θ_{13} . We study the improvement in the sensitivity to the neutrino mass hierarchy and to leptonic CP violation due to these new features. For favourable values of δ_{CP} , NOvA sensitivity to mass hierarchy and leptonic CP violation is

Published for SISSA by Deringer

Received: January 22, 2013 Revised: May 16, 2013 Accepted: June 24, 2013 Published: July 22, 2013

Resolving the octant of $heta_{23}$ with T2K and NOuA

Sanjib Kumar Agarwalla,^{a,b} Suprabh Prakash^c and S. Uma Sankar^c ^a Institute of Physics, Sachivalaya Marg, Sainik School Post, Bhubaneswar 751005, India ^b Instituto de Física Corpuscular, CSIC-Universitat de València, Apartado de Correos 22085, E-46071 Valencia, Spain ^c Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India *E-mail:* sanjib@iopb.res.in, suprabh@phy.iitb.ac.in, uma@phy.iitb.ac.in ABSTRACT: Preliminary results of MINOS experiment indicate that θ_{23} is not maximal. Global fits to world neutrino data suggest two nearly degenerate solutions for θ_{23} : one in the lower octant (LO: $\theta_{23} < 45^{\circ}$) and the other in the higher octant (HO: $\theta_{23} > 45^{\circ}$). $\nu_{\mu} \rightarrow \nu_{e}$ oscillations in superbeam experiments are sensitive to the octant and are capable of resolving this degeneracy. We study the prospects of this resolution by the current T2K and

upcoming NO ν A experiments. Because of the hierarchy- δ_{CP} degeneracy and the octant-

 $\delta_{\rm CP}$ degeneracy, the impact of hierarchy on octant resolution has to be taken into account.

Combined data from T2K and NOvA are expected to provide the first hint for neutrino mass hierarchy, leptonic CP violation, and octant of θ_{23}

E

 \bigtriangledown

S. K. Agarwalla, TIFR, Mumbai, India, 22nd August, 2014

Octant – δ_{CP} degeneracy in $v_{\mu} \rightarrow v_{e}$ oscillation channel

Unfavorable CP values for neutrino are favorable for anti-neutrino & vice-versa

Agarwalla, Prakash, Sankar, arXiv: 1301.2574

Mass Hierarchy & CP Violation Discovery with T2K and NOvA

Agarwalla, Prakash, Raut, Sankar, arXiv: 1208.3644 See also, Huber, Lindner, Schwetz, Winter, arXiv: 0907.1896; Machado, Minakata, Nunokawa, Funchal, arXiv: 1307.3248; Ghosh, Ghosal, Goswami, Raut, arXiv: 1401.7243

Adding data from T2K and NOvA is useful to kill the intrinsic degeneracies

CP asymmetry $\infty 1/\sin 2\theta_{13}$, large θ_{13} increases statistics but reduces asymmetry, Systematics are important

Important Synergy between Reactor and Accelerator data

First hint of δ_{CP} combining Reactor and Accelerator data

Best overlap is for Normal hierarchy & $\delta_{CP} = -\pi/2$

- ★ Is Nature very kind to us?
- ★ Are we very lucky?
- ★ Is CP violated maximally?

Strong motivation for anti-neutrino run in T2K

In these plots, atmospheric parameters are marginalized over

Courtesy C. Walter (T2K Collaboration) Talk at Neutrino 2014

Resolving Octant of θ_{23} with T2K and NOvA

Agarwalla, Prakash, Sankar, arXiv:1301.2574 [hep-ph] See also, Chatterjee, Ghoshal, Goswami, Raut, arXiv:1302.1370 [hep-ph]

If $\theta_{23} < 41^{\circ}$ or $\theta_{23} > 50^{\circ}$, we can resolve the octant issue at 2σ irrespective of δ_{CP} If $\theta_{23} < 39^{\circ}$ or $\theta_{23} > 52^{\circ}$, we can resolve the octant issue at 3σ irrespective of δ_{CP} **Important message: T2K must run in anti-neutrino mode in future**

Future Facilities for Long Baseline Neutrino Experiments

LBNE: FNAL to Homestake : 1300 km (1st Osc. Max = 2.52 GeV)

Beam: 120 GeV, 0.7 MW, 6×10^{20} POT/yr, 5 yrs v + 5 yrs anti-v

Detector: 10 kton LArTPC (Phase1), 35 kton LArTPC (Phase2)

LBNO: CERN to Phyasalmi : 2300 km (1st Osc. Max = 4.54 GeV)

Beam: 400 GeV, 0.77 MW, 1.5×10^{20} POT/yr, 5 yrs v + 5 yrs anti-v

Detector: 20 kton LArTPC (Phase1), 70 kton LArTPC (Phase2)

PUBLISHED FOR SISSA BY 2 SPRINGER RECEIVED: December 3, 2013 REVISED: February 7, 2014 ACCEPTED: February 18, 2014 PUBLISHED: March 20, 2014

Exploring the three flavor effects with future superbeams using liquid argon detectors

Sanjib Kumar Agarwalla,^a Suprabh Prakash^b and S. Uma Sankar^b

^a Institute of Physics, Sachivalaya Marg, Sainik School Post, Bhubaneswar 751005, India

^b Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India

E-mail: sanjib@iopb.res.in, suprabh@phy.iitb.ac.in, uma@phy.iitb.ac.in

ABSTRACT: Recent measurement of a moderately large value of θ_{13} signifies an important breakthrough in establishing the standard three flavor oscillation picture of neutrinos. It has provided an opportunity to explore the sub-dominant three flavor effects in present and future long-baseline experiments. In this paper, we perform a comparative study of the physics reach of two future superbeam facilities, LBNE and LBNO in their first phases of run, to resolve the issues of neutrino mass hierarchy, octant of θ_{23} , and leptonic CP violation. We also find that the sensitivity of these future facilities can be improved significantly by adding the projected data from T2K and NO ν A. Stand-alone LBNO setup These powerful future facilities are capable enough to settle the remaining fundamental unknowns in neutrino oscillation at high C.L., needed to claim the discovery

Projected data from T2K and NOvA will play a crucial role in the first phases of LBNE and LBNO

Н

 \mathbb{N}

 \vdash

Event Spectrum in LBNE and LBNO Experiments

Review on long-baseline phenomenology, S.K. Agarwalla, arXiv: 1401.4705

Future Superbeam Expts with LAr Detector: LBNE & LBNO

Agarwalla, Prakash, Sankar, arXiv:1304.3251 [hep-ph]

Wide Band Beam \rightarrow Higher statistics \rightarrow Cover several L/E values \rightarrow Kill clone solutions

LAr Detector → Excellent Detection efficiency at 1st & 2nd Osc. maxima, good background rejection

High $L \rightarrow$ High $E \rightarrow$ High cross-section \rightarrow Less uncertainties in cross-section at high E

Median Hierarchy Discovery Potential with LBNE and LBNO

Agarwalla, Prakash, Sankar, arXiv:1304.3251 [hep-ph] See also, arXiv:1312.6520 [hep-ph] from LAGUNA-LBNO Collaboration

LBNO w/ 10 kt > 7 σ median hierarchy discovery irrespective of the choice of θ_{23} - δ_{CP} -hierarchy LBNE w/ 10 kt + T2K + NOvA > 3 σ median hierarchy discovery for any parameter choice

Probing 2-3 Mixing Angle with LBNE and LBNO

Agarwalla, Choubey, Prakash, arXiv:1406.2219 [hep-ph]

If $\sin^2\theta_{23} \le 0.39$ or $\sin^2\theta_{23} \ge 0.62$, octant can be resolved at 5 σ irrespective of δ_{CP}

CP violation Discovery with LBNE and LBNO

mixing as true choice

Agarwalla, Prakash, Sankar, arXiv:1304.3251 [hep-ph]

0.43

0.23

0.46

0.63

0.51

0.69

 $LBNE10 + T2K + NO\nu A$

LBNO (20 kt)

 $LBNO + T2K + NO\nu A$

Study Atmospheric neutrinos w/ a wide range of Baselines & Energies

Recent discovery of large θ_{13} : A good news for ICAL-INO

What do we want to achieve?

- **Reconfirm neutrino oscillations using neutrinos and anti-neutrinos separately**
- ***** *Improved precision of atmospheric oscillation parameters*
- ***** Determine neutrino mass hierarchy using matter effects via charge discrimination
- ***** Measure the deviation of 2-3 mixing angle from its maximal value and its octant
- ***** Test bed for various new physics like NSI, CPT violation, long range forces
- ***** Detect Ultra High Energy Neutrinos, Cosmic Muons, Indirect searches of DM

Event Display Inside the ICAL Detector

Devi, Thakore, Agarwalla, Dighe, arXiv:1406.3689 [hep-ph] (INO Collaboration)

Muon Efficiencies and Resolutions

Animesh Chatterjee, Meghna K.K., Kanishka Rawat, Tarak Thakore etal., arXiv:1405.7243 [physics.ins-det]

Hadron Energy Response of ICAL

 $E'_{h} = E_{v} - E_{\mu}$ (from hadron hit calibration)

Hadron energy resolution: 85% at 1 GeV and 36% at 15 GeV

Moon Moon Devi, Anushree Ghosh, Daljeet Kaur, Lakshmi S. Mohan etal., JINST 8 (2013) P11003

The χ^2 Analysis

We define the Poissonian χ^2_- for μ^- events as :

$$\chi_{-}^{2} = \min_{\xi_{l}} \sum_{i=1}^{N_{E_{\text{had}}}} \sum_{j=1}^{N_{E_{\mu}}} \sum_{k=1}^{N_{\cos\theta_{\mu}}} \left[2(N_{ijk}^{\text{theory}} - N_{ijk}^{\text{data}}) - 2N_{ijk}^{\text{data}} \ln\left(\frac{N_{ijk}^{\text{theory}}}{N_{ijk}^{\text{data}}}\right) \right] + \sum_{l=1}^{5} \xi_{l}^{2} ,$$

where

$$N_{ijk}^{\text{theory}} = N_{ijk}^0 \left(1 + \sum_{l=1}^5 \pi_{ijk}^l \xi_l \right).$$

Observable	Range	Bin width	Total	bins
	[1,4)	0.5	6	
E_{μ} (GeV)	[4, 7)	1	3	10
	[7, 11)	4	1	
	[-1.0, -0.4)	0.05	12	
$\cos \theta_{\mu}$	[-0.4, 0.0)	0.1	4	21
	[0.0, 1.0]	0.2	5)
	[0, 2)	1	2	
E'_{had} (GeV)	[2, 4)	2	1	4
	[4, 15)	11	1	J

- 1) Overall 5% systematic uncertainty
- 2) Overall flux normalization: 20%
- 3) Overall cross-section normalization: 10%
- 4) 5% uncertainty on the zenith angle dependence of the fluxes
- 5) Energy dependent tilt factor:
 - $\Phi_{\delta}(E) = \Phi_0(E) [E/E_0]^{\delta} \approx \Phi_0(E) [1+\delta \ln E/E_0]$

where $E_0 = 2$ GeV and

 δ is the 1σ systematic error of 5%

Neutrino Mass Hierarchy Discrimination

Distribution of $\Delta \chi^2 [\chi^2 (IH) - \chi^2 (NH)]$ for mass hierarchy discrimination considering μ^2 events

- Further subdivide the events into four hadron energy bins
- Hadron energy carries crucial information
- Correlation between hadron energy and muon momentum is very important

Identifying Neutrino Mass Hierarchy with ICAL

MH Discovery with ICAL+T2K+NOvA

Devi, Thakore, Agarwalla, work in progress (INO Collaboration)

 3σ median sensitivity can be achieved in 6 years

Precision of Atmospheric Oscillation Parameters

Devi, Thakore, Agarwalla, Dighe, arXiv:1406.3689 [hep-ph] (INO Collaboration)

Significant improvement in the precision measurement of atmospheric mass splitting by adding hadron energy information with muon momentum

Precision Measurement of Atmospheric Parameters

Devi, Thakore, Agarwalla, Dighe, arXiv:1406.3689 [hep-ph] (INO Collaboration)

ICAL's expected precision on atmospheric mass splitting is far superior than SK

Octant of θ_{23} with ICAL-INO

Concluding Remarks

Recent discovery of θ_{13} signifies an important breakthrough in establishing the standard three flavor oscillation picture of neutrinos

It has opened up exciting possibilities for current & future oscillation experiments

At present, we have:

	$(0.799 \rightarrow 0.844)$	0.515 ightarrow 0.581	$0.129 ightarrow 0.173$ \
$ U _{\text{LEP}(3\sigma)} =$	0.212 ightarrow 0.527	0.426 ightarrow 0.707	0.598 ightarrow 0.805
	$0.233 \rightarrow 0.538$	0.450 ightarrow 0.722	$0.573 \rightarrow 0.787$

Satisfactory progress in last 15 years but still very far from the 'dream' precision:

	(0.97427 ± 0.00015)	0.22534 ± 0.0065	$(3.51 \pm 0.15) \times 10^{-3}$
$ V _{\rm CKM} =$	0.2252 ± 0.00065	0.97344 ± 0.00016	$(41.2^{+1.1}_{-5}) \times 10^{-3}$
	$(8.67^{+0.29}_{-0.31}) imes 10^{-3}$	$(40.4^{+1.1}_{-0.5}) imes10^{-3}$	$0.999146^{+0.000021}_{-0.000046}$ /

!! Let us work together and achieve it **!!**

Thank you!

Backup Slides: Currently Running Reactor θ_{13} Experiments

S. K. Agarwalla, TIFR, Mumbai, India, 22nd August, 2014

Backup Slides: Key Features of three Reactor Experiments

Experiment	Double Chooz	Daya Bay	RENO
# of reactors (total power)	2 (9.4 GW)	3 (17.4 GW)	6 (16.8 GW)
Reactor configuration	2	3	6 inline
Detector configuration	1 near + 1 far	2 near + 1 far	1 near + 1 far
Baseline [m]	(400, 1050)	(364, 480, 1912)	(290, 1380)
Overburden [m.w.e.]	(120, 300)	(280, 300, 880)	(120, 450)
Target mass [ton]	(8.3, 8.3)	(40, 40, 80)	(16, 16)
Detector geometry	Cylindrical detector (Gd-LS, γ-catcher, buffer)		
Outer shield	0.5m of LS & 0.15 m of steel	2.5m water	1.5m of water
Muon veto system	LS & Scinti-Strip	Water Cerenkov & RPC	Water Cerenkov
Designed sensitivity (90% C.L.)	~0.03	~0.01	~0.02

Daya Bay Strategy: Go strong, big and deep!

Backup Slides: CPV Discovery in T2HK Setup (w/ MH known)

Hyper-Kamiokande, Letter of Intent, arXiv:1109.3262 [hep-ex]

Backup Slides: MH Discovery in T2HK combining Atmospheric v

 3σ hierarchy discrimination for $\sin^2\theta_{23} > 0.42$ in case of normal hierarchy

Hyper-Kamiokande, Letter of Intent, arXiv:1109.3262 [hep-ex]

Backup Slides

The New Minimal Standard Model

- Minimal Extensions to give Mass to the Neutrino:
 - * Introduce ν_R AND impose L conservation \Rightarrow Dirac $\nu \neq \nu^c$: $\mathcal{L} = \mathcal{L}_{SM} - M_{\nu} \overline{\nu_L} \nu_R + h.c.$
 - * NOT impose L conservation \Rightarrow Majorana $\nu = \nu^c$

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{2}M_{\nu}\overline{\nu_L}\nu_L^C + h.c.$$

• The charged current interactions of leptons are not diagonal (same as quarks)

Courtesy to Concha Gonzalez-Garcia

S. K. Agarwalla, TIFR, Mumbai, India, 22nd August, 2014

Backup Slides

Neutrino Mass Scale

Single β decay : Dirac or Majorana ν mass modify spectrum endpoint

$$m_{\nu_e}^2 = \sum m_j^2 |U_{ej}|^2 = c_{13}^2 c_{12}^2 m_1^2 + c_{13}^2 s_{12}^2 m_2^2 + s_{13}^2 m_3^2$$

Courtesy to Concha Gonzalez-Garcia

Backup Slides (Neutrinoless double beta decay)

Experimental Limits

Isotope	0vββ half life	Experiment	<m> eV</m>
⁴⁸ Ca	> 1.4*10 ²² (90%CL)	ELEGANT-VI	< 7 - 44
⁷⁶ Ge	> 1.9*10 ²⁵ (90%CL)	Heidelberg-Moscow	< 0.35
⁷⁶ Ge	2230+440 ₋₃₁₀ (90%CL)	Subset of HM coll.	0.32 +/- 0.03
⁷⁶ Ge	> 2.1*10 ²⁵ (90%CL)	GERDA [†]	< 0.2 - 0.4
⁸² Se	> 2.1*10 ²³ (90%CL)	NEMO-3	<1.2 - 3.2
¹⁰⁰ Mo	> 5.8*10 ²³ (90%CL)	NEMO-3	< 0.6 - 2.7
¹¹⁶ Cd	> 1.7*10 ²³ (90%CL)	Solotvino	< 1.7
¹³⁰ Te	> 2.8*10 ²⁴ (90%CL)	Cuoricino	< 0.41 - 0.98
¹³⁶ Xe	> 1.9*10 ²⁵ (90%CL)	KamLAND-Zen ^{††}	< 0.12 - 0.25
¹³⁶ Xe	> 1.6×10 ²⁵ (90%CL)	EXO-200 ^{†††}	< 0.14 - 0.38
¹⁵⁰ Nd	> 1.8*10 ²² (90%CL)	NEMO-3	

Courtesy to Liang Yang

[F. Avignone, S. Elliot, J. Engel, arXiv:0708: 1033v2 (2007)]

† [GERDA Collaboration, arXiv:1307.4720 (2013]

†† [KamLAND-Zen Collaboration, Phys. Rev. Lett. 110, 062502(2013)]

††† [EXO Collaboration, Phys. Rev. Lett.109, 0322505 (2012)]

New results within the last year!

Backup Slides (Neutrino Mass)

Experimental Sensitivity to Neutrino Mass

S. K. Agarwalla, TIFR, Mumbai, India, 22nd August, 2014

Backup Slides (See-Saw & Neutrino Mass)

Mass matrix for one family of ordinary and heavy r.h. neutrinos

$$(\overline{\nu}_L, \overline{N}_R) \begin{pmatrix} \mathbf{0} & m_D \\ m_D & \mathbf{M} \end{pmatrix} \begin{pmatrix} \nu_L \\ N_R \end{pmatrix}$$

Diagonalization

$$(\overline{\nu}_L, \overline{N}_R) \begin{pmatrix} m_D^2/M & 0 \\ 0 & M \end{pmatrix} \begin{pmatrix} \nu_L \\ N_R \end{pmatrix}$$

One light and one heavy Majorana neutrino

Courtesy to George Raffelt