# Mass Hierarchy in Future Long-baseline Experiments

Sanjib Kumar Agarwalla Sanjib.Agarwalla@ific.uv.es

IFIC/CSIC, University of Valencia, Spain







#### **Global Analysis of World Neutrino Data**



S. K. Agarwalla, NOW 2012, Otranto, Lecce, Italy, 15th September, 2012

#### Missing Link in v Oscillation: Neutrino Mass Ordering

In The sign of  $\Delta m_{31}^2$   $(m_3^2 - m_1^2)$  is not known



### Why do we care about Neutrino Mass Ordering?



Albright and Chen, hep-ph/0608137

- \* Dictates the structure of v mass matrix
- \* Can give vital clues towards the underlying theory of v masses and mixing
- \* Acts as a powerful discriminator between various v mass models

#### Connection between 0vßß and Neutrino Mass Ordering



Lindner, Merle, Rodejohann , hep-ph/0512143

If hierarchy is inverted, and yet no  $0\nu\beta\beta$  is observed in the very far future, strong hint that neutrinos are not Majorana particles

S. K. Agarwalla, NOW 2012, Otranto, Lecce, Italy, 15<sup>th</sup> September, 2012

#### **Neutrino Oscillations in Matter**

- > Interactions in matter modify the oscillation probability significantly
- **Coherent forward elastic scattering of neutrinos with matter particles**
- $\blacktriangleright$  Charged current interaction of  $v_e$  with electrons creates a potential for  $v_e$

$$A = \pm 2\sqrt{2}G_F \cdot E \cdot n_e$$



 $n_e$  = electron number density and + (-) for neutrinos (anti-neutrinos) Creates an additional phase for  $v_e$  and changes the oscillation probability

 $P(\nu_{\alpha} \to \nu_{\beta}) - P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}) \neq 0 \implies \text{ even if } \delta = 0, \text{ causes fake CP asymmetry}$  $\Delta m^{2} \simeq A \quad \Leftrightarrow \quad E_{\text{res}}^{\text{Earth}} = 6 - 8 \text{ GeV} \implies \text{Resonant conversion} - \text{the MSW effect}$ 



**Resonance occurs for neutrinos (anti-neutrinos)** if  $\Delta m^2$  is positive (negative)

S. K. Agarwalla, NOW 2012, Otranto, Lecce, Italy, 15th September, 2012

#### **Platinum Channel** (P<sub>ue</sub>)

The appearance probability  $(\nu_{\mu} \rightarrow \nu_{e})$  in matter, upto second order in the small parameters  $\alpha \equiv \Delta m_{21}^2 / \Delta m_{31}^2$  and  $\sin 2\theta_{13}$ ,  $P_{\mu e} \simeq \frac{\sin^2 2\theta_{13} \sin^2 \theta_{23}}{0.05} \frac{\sin^2 [(1-\hat{A})\Delta]}{(1-\hat{A})^2} \Longrightarrow \theta_{13} \text{ Driven}$ 5.2 times  $- \frac{\alpha \sin 2\theta_{13} \xi}{0.0096} \sin \delta_{CP} \sin(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})} \Longrightarrow CP \text{ odd}$ +  $\alpha \sin 2\theta_{13} \xi \cos \delta_{CP} \cos(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})} \Longrightarrow CP \text{ even}$ +  $\alpha^2 \cos^2 \theta_{23} \sin^2 2\theta_{12} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2}$ ;  $\Longrightarrow$  Solar Term

where  $\Delta \equiv \Delta m_{31}^2 L/(4E)$ ,  $\xi \equiv \cos \theta_{13} \sin 2\theta_{21} \sin 2\theta_{23}$ , and  $\hat{A} \equiv \pm (2\sqrt{2}G_F n_e E)/\Delta m_{31}^2$ 

> Cervera etal., hep-ph/0002108 Freund etal., hep-ph/0105071

### **Transition Probability** (P<sub>µe</sub>)



S. K. Agarwalla, NOW 2012, Otranto, Lecce, Italy, 15th September, 2012

#### **Present Generation Experiments: T2K and NOvA**



Agarwalla, Prakash, Raut, Uma Sankar, arXiv:1208.3644 See also the talk by S. Prakash in this workshop

Adding data from T2K and NOvA is useful to kill the intrinsic degeneracies 55% CP coverage @ 90% C.L. and 45% CP coverage @ 95% C.L. for MH discovery

#### Add a small LArTPC in the NOvA Beamline



Agarwalla, Prakash, Raut, Uma Sankar, arXiv:1208.3644

Add a small LArTPC (5 to 10 kt) in the NOvA Beamline taking data simultaneously 100% CP coverage @ 90% C.L. and 64% CP coverage @ 95% C.L. w/ 5 kt LArTPC

# What large $\theta_{13}$ buys for us?

- \* Newly discovered large value of  $\theta_{13}$  enhanced the chances of present generation experiments to provide a strong hint of mass hierarchy discovery around  $2\sigma$
- \* Combining data from T2K and NOvA will be very useful to kill the clones
- \* To have a > 5 $\sigma$  direct determination of MH for all values of  $\delta_{CP}$ , we need next generation LBL expts (> 1000 km) enriched with Earth Matter effects
- **\*** Thanks to large  $\theta_{13}$ , we do not need  $\beta$ -beam or v-Factory for MH discovery
- A reasonably upgraded Superbeam with a power of around 1 MW coupled with a small 10 to 20 kt LArTPC detector can do it provided the baseline is > 1000 km
- \* Large  $\theta_{13}$  allowed to adopt an incremental approach for next generation expts
- \* The determination of MH can be considered as a first step towards the Leptonic CP violation discovery which is quite tough even for large value of  $\theta_{13}$

#### **Option for Next Generation LBL Expts (Baselines < 1000 km)**

1) CERN to Frejus : 130 km (1<sup>st</sup> Osc. Max = 0.26 GeV) Beam: 4.5 GeV, 4 MW, 56 × 10<sup>21</sup> POT/yr, 2 yrs v + 8 yrs  $\overline{v}$ Detector: 500 kton Water Cherenkov (MEMPHYS)

See the talk by Thomas Patzak

2) J-PARC to Kamioka : 295 km (1<sup>st</sup> Osc. Max = 0.6 GeV) Beam: 30 GeV, 1.66 MW,  $5 \times 10^{21}$  POT/yr, 1.5 yrs v + 3.5 yrs  $\overline{v}$ Detector: 560 kton Water Cherenkov (Hyper-Kamiokande)

See the talk by Masato Shiozawa

- 3) CERN to Canfranc : 630 km (1<sup>st</sup> Osc. Max = 1.27 GeV) Beam: 50 GeV, 1.6 MW,  $3 \times 10^{21}$  POT/yr, 5 yrs v + 5 yrs  $\overline{v}$ Detector: 500 kton Water Cherenkov
- 4) CERN to Gran Sasso : 730 km (1<sup>st</sup> Osc. Max= 1.47 GeV) Beam: 50 GeV, 1.6 MW,  $3 \times 10^{21}$  POT/yr, 5 yrs v + 5 yrs  $\overline{v}$ Detector: 500 kton Water Cherenkov See the talk by Lucia Votano

Earth Matter effect is not enough at these baselines to provide >  $5\sigma$  discovery of MH for 100% values of  $\delta_{CP}$  even with high power beam and very large detector

See the talk by Silvia Pascoli

#### **Option for Next Generation LBL Expts (Baselines > 1000 km)**

1) FNAL to Homestake : 1300 km (1<sup>st</sup> Osc. Max = 2.52 GeV)

Beam: 120 GeV, 0.7 MW,  $6 \times 10^{20}$  POT/yr, 5 yrs v + 5 yrs  $\overline{v}$ Detector: 10 kton LArTPC (on surface) LBNE proposal: See the talk by Kate Scholberg

2) CERN to Phyasalmi : 2300 km  $(1^{st} Osc. Max = 4.54 GeV)$ 

Beam:400 GeV, 0.77 MW,  $1.5 \times 10^{20}$  POT/yr, 5 yrs v + 5 yrs  $\overline{v}$ Detector:20 kton LArTPC (deep underground, 4000 m.w.e)LBNO proposal: See the talk by Andre Rubbia

3) CERN to Kamioka : 8770 km (Probability Max = 6.5 GeV)

Beam:400 GeV, 0.77 MW,  $1.5 \times 10^{20}$  POT/yr, 5 yrs v (only rate)Detector:22.5 kton Water Cherenkov (existing & well understood Super-K)

Agarwalla and Hernandez, arXiv:1204.4217 [hep-ph]

These baselines are long enough to provide >  $5\sigma$  discovery of MH for 100% values of  $\delta_{CP}$  even with modest power beam and small detector

#### FNAL-Homestake .vs. CERN-Phyasalmi



MH is a discrete measurement, both 1<sup>st</sup> and 2<sup>nd</sup> Oscillation maxima are useful

CERN-Phyasalmi distance is also close to the Bimagic baseline of 2540 km Raut, Singh, Uma Sankar, arXiv:0908.3741, Dighe, Goswami, Ray, arXiv:1009.1093

## **Event Spectrum at LBNE and LBNO**

10 kt LAr @ Homestake Site (NH)

20 kt LAr @ Phyasalmi Site (NH)



Wide Band Beam → Higher statistics → cover several L/E values → kill clone solutions

LAr Detector 
 Excellent Detection efficiency at 1<sup>st</sup> and 2<sup>nd</sup> Oscillation maxima

High L → High E → High cross-section → Less uncertainties in cross-section at high E

S. K. Agarwalla, NOW 2012, Otranto, Lecce, Italy, 15<sup>th</sup> September, 2012

#### Mass Hierarchy Discovery: LBNE .vs. LBNO



A four times small LBNO can give  $10\sigma$  MH discovery for 100% values of  $\delta_{CP}$ LBNE as it stands now can give  $5\sigma$  MH discovery for 85% values of  $\delta_{CP}$ 

#### Incremental Approach: Well suited for CERN-Phyasalmi



Equal sharing of neutrino & anti-neutrino running. NH requires less exposure than IH

Mass hierarchy will be discovered at >  $5\sigma$  with small exposure at 2300 km

#### Near Resonant Matter Effect: Optimal E and L



Agarwalla and Hernandez, arXiv:1204.4217 [hep-ph]

Then maximize the oscillatory term at  $L = L_{max}$ 

$$n_e(L)L|_{L_{\max}} = \frac{\pi}{\sqrt{2}G_F \tan 2\theta_{13}}$$

# For $\sin^2 2\theta_{13} = 0.1$ : $L_{max} \sim 10^4$ km & $E_{res} \sim 6.6$ GeV

#### **!Maximum probability: only if 1-3 mixing is large!**

### Mass Hierarchy Discovery with CERN-Kamioka Baseline



- Send a Superbeam (average energy of 5 GeV) from CERN towards existing and well-understood Super-Kamiokande detector (L = 8770 km)
- This setup can reveal the neutrino MH at  $5\sigma$  in 4.5 years irrespective of the true hierarchy and CP phase with only neutrino beam from 400 GeV SPS, counting the total number of appearance events
- This measurement relies on the near resonant matter effect in the  $v_{\mu}$  to  $v_{e}$  channel

#### **Other Probes of Neutrino Mass Hierarchy**

\* Large value of  $\theta_{13}$  allows us to explore MH with atmospheric neutrinos. ICAL@INO experiment, IceCube Deepcore, PINGU are the candidates

See the talk by Srubabati Goswami, Francis Halzen

- Supernova neutrinos can also discriminate between NH and IH See the talk by Sovan Chakraborty
- Cosmology can weigh neutrinos with precision and future CMB & LSS measurements have a chance to determine the light neutrino spectrum
  See the talk by Carmelita Carbone
- Observation of 0vββ with the next generation expts would not only imply that neutrinos are Majorana, but also that the hierarchy is inverted See the talk by Werner Rodejohann
- High Statistics Reactor experiments at a baseline of 60 km with an exposure of > 200 kt GW yr and 2% energy resolution (The proposals of Daya Bay II & RENO II )

See the talk by Seon-Hee Seo and Liang Zhan

### **Concluding Remarks**

- \* Recent discovery of large value of  $\theta_{13}$  have taken us one step further in validating the 3-flavor picture of the Standard v model with a strong footing
- Neutrino mass hierarchy is one of the fundamental unsolved issues that needs to be addressed in the present or next generation LBL expts
- \* To have  $a > 5\sigma$  direct determination of MH for all values of  $\delta_{CP}$ , we need next generation LBL expts (> 1000 km) enriched with Earth Matter effects
- \* An optimized Superbeam using the existing 400 GeV SPS machine pointing towards Phyasalmi mine with a baseline of 2300 km and coupled with a 20 kt LArTPC can provide a 10 $\sigma$  direct determination of MH for all values of  $\delta_{CP}$  within 2.5 years
- The determination of MH can be considered as a first step towards the Leptonic CP violation discovery!

#### **Thank you!**

### **Performance of Super-K at Higher Energies**

#### We consider the existing and well understood Super-K detector with 22.5 kt fiducial

|                    | Signal      |          |              | Background |                  |
|--------------------|-------------|----------|--------------|------------|------------------|
| True $v$ energy    | $v_e$ (avg) | QE $v_e$ | non-QE $v_e$ | NC         | $v_{\mu}$ mis-ID |
| 0 - 0.35 GeV       | 95%         | 94%      | 53%          | 0.4%       | 0.5%             |
| 0.35 - 0.85 GeV    | 87%         | 96%      | 49%          | 3%         | 0.4%             |
| 0.85 GeV - 1.5 GeV | 70%         | 95%      | 43%          | 8%         | 0.3%             |
| 1.5 - 2.0 GeV      | 58%         | 91%      | 38%          | 11%        | 0.5%             |
| 2.0 - 3.0 GeV      | 51%         | 91%      | 35%          | 11%        | 0.8%             |
| 3.0 - 4.0 GeV      | 45%         | 90%      | 34%          | 12%        | 0.9%             |
| 4.0 - 5.0 GeV      | 43%         | 90%      | 33%          | 13%        | 1.0%             |
| 5.0 - 10.0 GeV     | 37%         | 86%      | 29%          | 10%        | 1.4%             |

#### **Pre-cut efficiencies for T2KK proposal**

Estimated based on the criteria:

- 1) Events are fully contained in the fiducial volume!
- 2) Have a single Cerenkov ring recognized as electron-like!
- 3) No Michel electron present!

#### F. Dufour etal., arXiv: 1001.5165

- ✤ We only consider charged current single ring events as our signal
- ★ We only rely on total signal and background event rates
- No spectral information has been used
- \* For  $v_e$  appearance: main NC background comes from Single- $\pi^0$  contamination
- ✤ We use the true neutrino energy window of 0.5 GeV to 10 GeV
- ✤ 90% NC background rejection (5 10 GeV)

#### Superbeam flux



A. Longhin, PoS ICHEP2010, 325 (2010)

- ➢ New high power accelerator (HP-PS2)
- ▶ 50 GeV proton beam, power 1.6 MW
- >  $3 \times 10^{21}$  protons on target/yr (200 days/yr)
- @ flux level, 0.62% intrinsic v<sub>e</sub> contamination

We can also use 400 GeV proton line from SPS towards a 0.7 - 1 MW target region!

Recent optimization suggests that we can have  $1.5 \times 10^{20}$  protons on target/year with 200 days/year!

We scale these fluxes to the longer L = 8770 km baseline, as  $L^{-2}$ 

#### Signal and Background Event rates for CERN-Kamioka



|                                                 | CERN-Kamioka (8870 km) |                       |  |  |
|-------------------------------------------------|------------------------|-----------------------|--|--|
| Channel                                         | Signal                 | Background            |  |  |
|                                                 | CC-1 ring              | Int+Mis-id+NC = Total |  |  |
| $\nu_{\mu} \rightarrow \nu_{e} \ (\mathrm{NH})$ | 40                     | 1+2+16=19             |  |  |
| $\nu_{\mu} \rightarrow \nu_{e} \ (\text{IH})$   | 2                      | 1+3+16=20             |  |  |
| $\nu_{\mu} \rightarrow \nu_{\mu} \ (\text{NH})$ | 84                     | 2                     |  |  |
| $\nu_{\mu} \rightarrow \nu_{\mu} \ (\text{IH})$ | <mark>89</mark>        | 2                     |  |  |

Total exposure  $5 \times 10^{21}$  protons on target

This is for appearance channel!

S. K. Agarwalla, NOW 2012, Otranto, Lecce, Italy, 15th September, 2012

#### Mass Hierarchy Discovery for different 1-3 mixing angle





S. K. Agarwalla, NOW 2012, Otranto, Lecce, Italy, 15th September, 2012