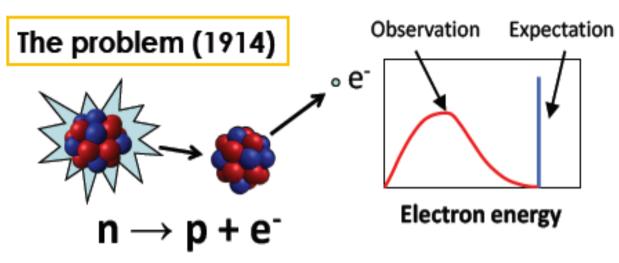
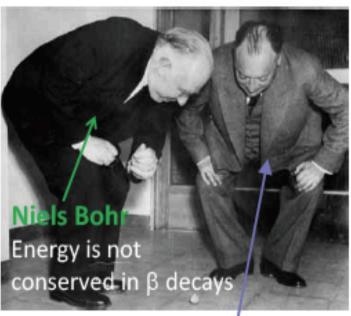
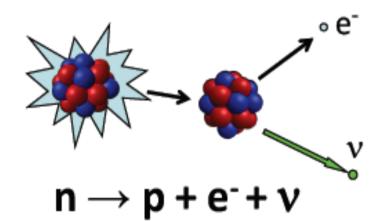
Talking to Neutrinos at the India-based Neutrino Observatory (INO)

Sanjib Kumar Agarwalla


sanjib@iopb.res.in


Institute of Physics, Bhubaneswar, India



Mission Impossible: Detect Neutrinos

The desperate remedy (1930)

Wolfgang Pauli

There is a neutral particle able to cross all detectors without leaving any trace and carrying all the missing energy

«I have done a terrible thing. I have postulated a particle that cannot be detected.» (1930)

Fortunately Pauli was wrong and neutrinos have been detected successfully

Few Unique Features of Neutrinos

After photon, neutrino is the most abundant particle in the universe
 100 billion neutrinos pass through our thumbnail every second

Nature's most elusive messenger, interacts very rarely, very hard to detect
 100 billion neutrinos + the whole Earth = only one interaction

Arrives 'unscathed' from the farthest reaches of the Universe
 Carry information about its source

Few Unique Features of Neutrinos

⊙ Known to undergo flavor change

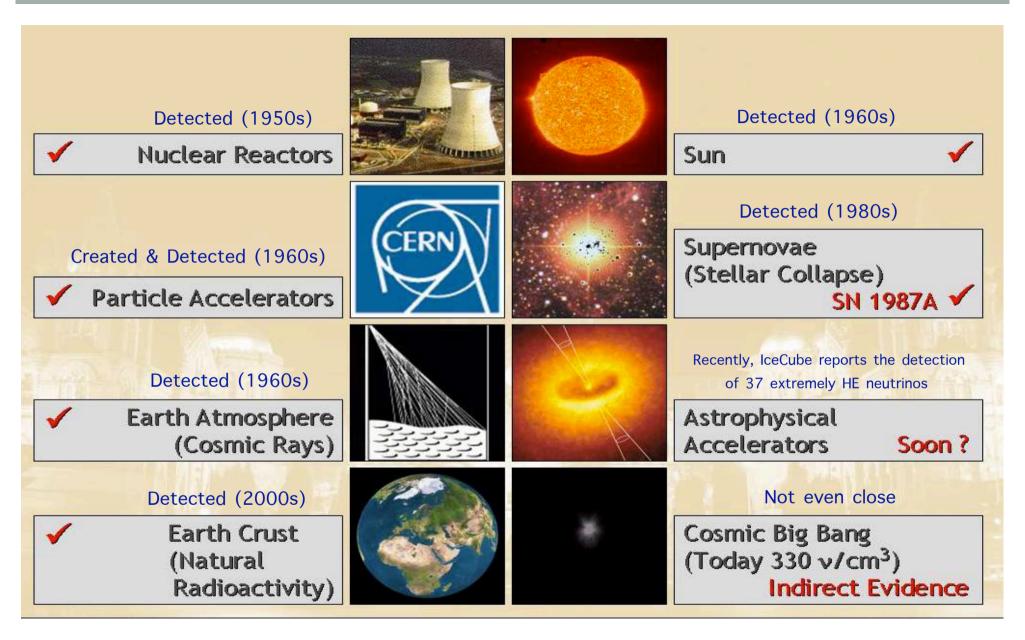
(neutrino mass: first clue of physics beyond the Standard Model)

O Masses are anomalously low

(from CMB data $m_v < 0.2 \text{ eV/c}^2 = 0.0000004 \text{ m}_e$)

Only fundamental fermion that can be its own anti-particle

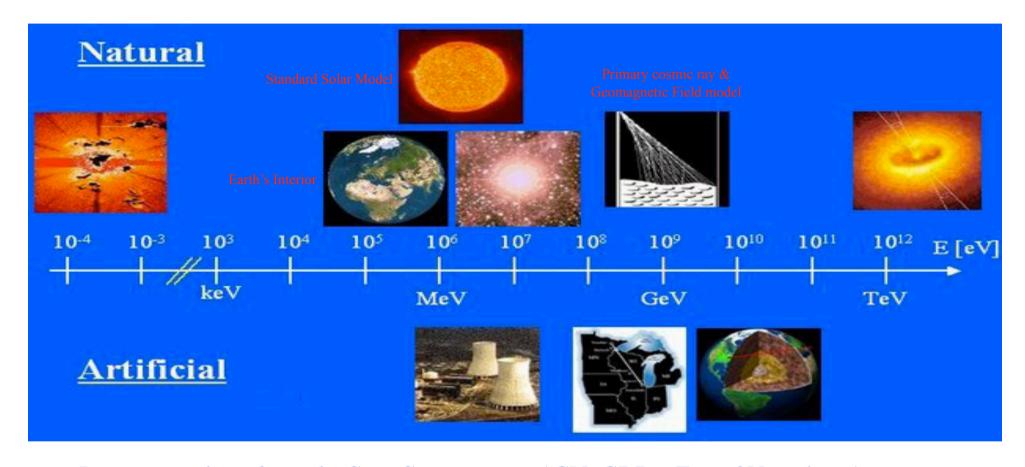
(Majorana particle)


O May open window on the GUT Scale ($\Lambda_{GUT} \sim 10^{16} \text{ GeV}$)

(via seesaw mechanism)

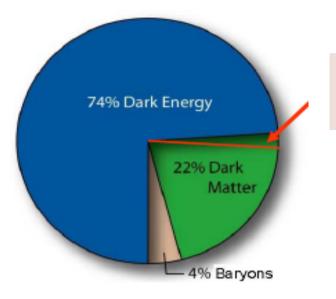
• Could explain the matter/anti-matter asymmetry of the Universe

(leptogenesis)

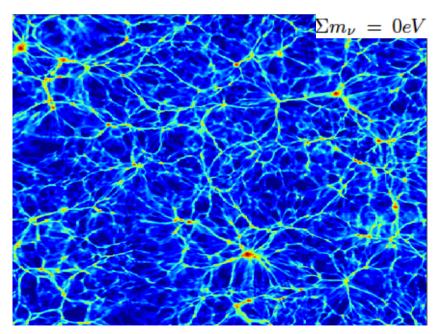

Neutrinos are omnipresent

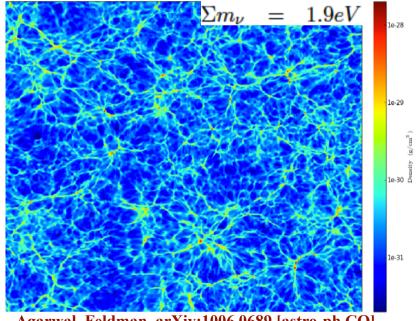
Extremely rich and diverse neutrino physics program

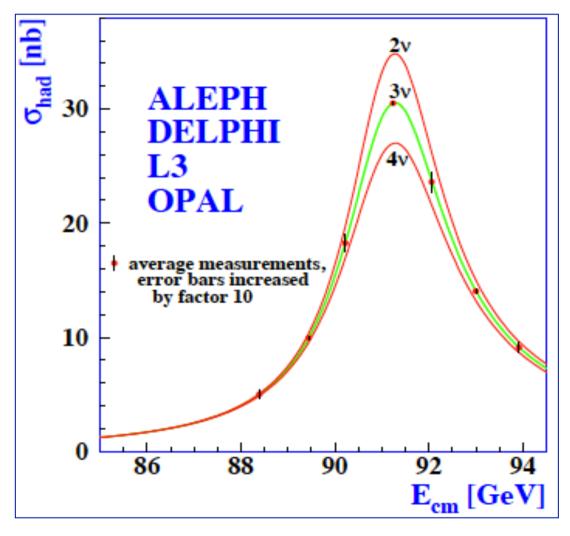
Neutrinos: Exceptional Probe for Environments


Neutrino Observation: Go Beyond optical and radio observation

Detect neutrinos from the Sun, Supernovae, AGN, GRBs: Era of Neutrino Astronomy


- v detection involves several methods on surface, underground, under the sea, or in the ice
 - v detector masses range from few kgs to megatons, with volumes from few m³ to km³


Neutrinos and Dark Matter


Neutrinos constitute a hot dark matter component and affect the formation of clusters of galaxies

Neutrinos are too hot for being trapped in the gravitational wells in the early Universe (free streaming) and move freely, smoothing out the structures (galaxies) at small (cosmological) distances

Three Light Active Neutrinos

Precision data of the Z-decay width at the e⁺e⁻ collider at LEP

$$e^+e^- o Z \xrightarrow{\text{invisible}} \sum_{a= ext{active}}
u_a ar{
u}_a$$
 $N_{
u_{ ext{active}}} = 2.9840 \pm 0.0082$

[LEP, Phys. Rept. 427 (2006) 257, hep-ex/0509008]

3 light active flavor neutrinos
 $u_e \quad \nu_\mu \quad \nu_ au$

The Standard Model: Massless Neutrinos

The Standard Model is a gauge theory & it unifies strong, weak & electromagnetic forces!

$$SU(3)_C \times SU(2)_L \times U(1)_Y \Rightarrow SU(3)_C \times U(1)_{EM}$$

$(1, \frac{2}{2})_{-\frac{1}{2}}$ $(3, \frac{2}{6})_{\frac{1}{6}}$	$(1,1)_{-1}$	$(3,1)_{\frac{2}{3}}$	$(3,1)_{-\frac{1}{3}}$
$\left(\begin{array}{c} oldsymbol{ u_e} \\ e \end{array} \right)_L \left(\begin{array}{c} u^i \\ d^i \end{array} \right)_L$	e_R	u_R^i	d_R^i
$\begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{L} \begin{pmatrix} c^{i} \\ s^{i} \end{pmatrix}_{L}$		c_R^i	s_R^i
$\left(\begin{array}{c} \nu_{ au} \\ au \end{array} \right)_L \left(\begin{array}{c} t^i \\ b^i \end{array} \right)_L$	$ au_R$	t_R^i	b_R^i

3-fold repetition of the same representation!

- 3 *active* neutrinos: v_e , v_μ , v_τ
- Neutral elementary particles of Spin ½
- Only couple to *weak force* (& gravity)
- Only *left handed* neutrinos
- There are no right-handed neutrinos
- *No* Dirac Mass term: $m(\bar{\psi}_L\psi_R + \bar{\psi}_R\psi_L)$

Neutrinos are massless in the Basic SM

- Over the past decade, marvelous data from world class neutrino experiments firmly established that they change flavor after propagating a finite distance
- ☐ Neutrino flavor change (oscillation) demands non-zero mass and mixing

Non-zero v mass: first experimental proof for physics beyond the Standard Model

!! An extension of the Standard Model is necessary !!

Neutrino Physics: An Exercise in Patience

Three most fundamental questions were being asked in the past century...

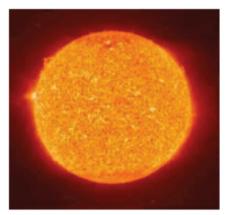
- 1. How tiny is the neutrino mass? (Pauli, Fermi, '30s)
- Planck + BAO + WMAP polarization data: upper limit of 0.23 eV for the sum of v masses!

 Planck Collaboration, arXiv:1303.5076 [astro-ph.CO]
- 2. Can a neutrino turn into its own antiparticle? (Majorana, '30s)

 Hunt for v-less Double- β decay (Z,A \rightarrow Z+2, A) is still on, demands lepton number violation!

 Nice Review by Avignone, Elliott, Engel, Rev.Mod.Phys. 80 (2008) 481-516
- 3. Do different v flavors 'oscillate' into one another? (Pontecorvo, Maki-Nakagawa-Sakata, '60s)

 B. Pontecorvo, Sov. Phys. JETP 26, 984 (1968) [Zh. Eksp. Teor. Fiz. 53, 1717 (1967)]

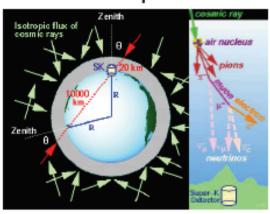

Last question positively answered only in recent years. Now an established fact that **neutrinos are massive** and leptonic flavors are not **symmetries of Nature**!

Recent measurement of θ_{13} , a clear first order picture of the 3-flavor lepton mixing matrix has emerged, signifies a major breakthrough in v physics!

This year marks the 60th anniversary since v detector of Reines & Cowan was turned on

Golden Age of Neutrino Physics (1998 – 2014 & Beyond)

sun


Homestake, SAGE, GALLEX SuperK, SNO, Borexino

reactors

KamLAND, CHOOZ Double Chooz, Daya Bay, RENO

atmosphere

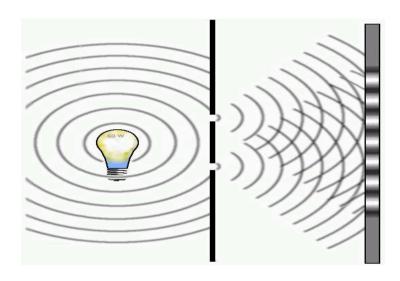
SuperKamiokande IceCube

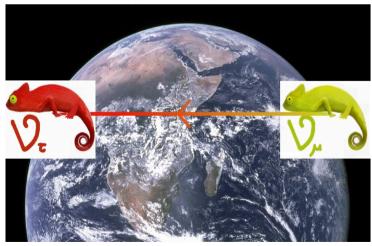
accelerators

K2K, MINOS, T2K NOvA

Over the last sixteen years or so, precious data from world-class experiments

- Solar neutrinos (ν_e)
- Atmospheric neutrinos $(\nu_{\mu}, \bar{\nu}_{\mu}, \nu_{e}, \bar{\nu}_{e})$
- Reactor anti-neutrinos $(\bar{\nu}_e)$
- Accelerator neutrinos $(\nu_{\mu}, \bar{\nu}_{\mu})$



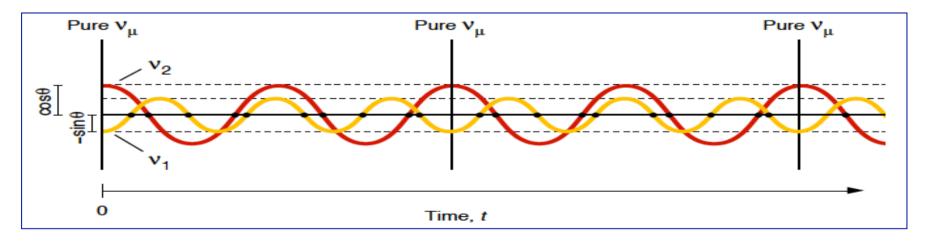

Data from various neutrino sources and vastly different energy and distance scales

We have just started our journey in the mysterious world of neutrinos

Neutrino Flavor Oscillations

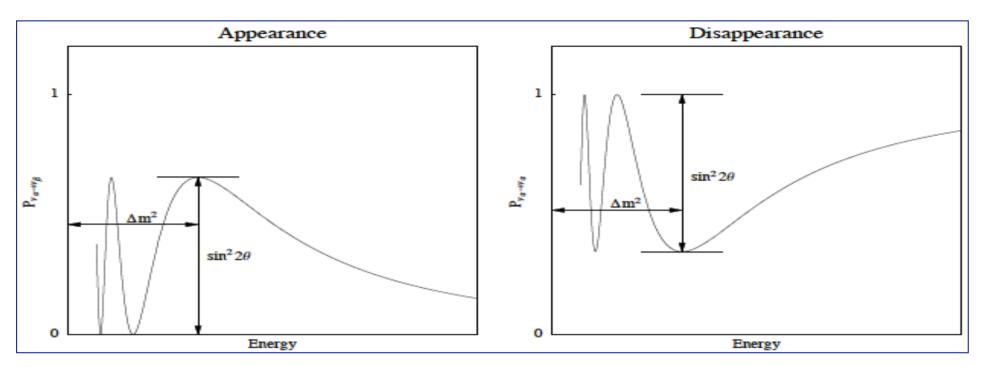
1957: Bruno Pontecorvo proposed Neutrino Oscillations in analogy with $K^0 \subseteq \bar{K}^0$ oscillations (Gell-Mann and Pais, 1955)

- Neutrino oscillation:
 Quantum Mechanical
 interference phenomenon
- Like electrons in the double slit experiment
- > In Neutrino Oscillation: Neutrino changes flavor as it propagates
- > It happens if neutrinos have masses (non-degenerate) and there is mixing


Neutrino Oscillations: 2 Flavors

- Flavor States: v_e and v_u (produced in Weak Interactions)
- \triangleright Mass Eigenstates: v_1 and v_2 (propagate from Source to Detector)

A Flavor State is a linear superposition of Mass Eigenstates


$$|
u_{lpha}
angle = \sum_{k=1}^2 U_{lpha k} |
u_k
angle \qquad (lpha = e, \mu)$$

$$U = \begin{pmatrix} \cos\vartheta & \sin\vartheta \\ -\sin\vartheta & \cos\vartheta \end{pmatrix} \qquad \qquad \begin{vmatrix} \nu_e \rangle = \cos\vartheta \, |\nu_1\rangle + \sin\vartheta \, |\nu_2\rangle \\ |\nu_\mu\rangle = -\sin\vartheta \, |\nu_1\rangle + \cos\vartheta \, |\nu_2\rangle$$

If the masses of these two states are different then they will take different times to reach the same point and there will be a phase difference and hence interference

Oscillation Probabilities in 2 Flavors

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \sin^2 2\theta \sin^2(1.27\Delta m^2 \frac{L}{E})$$

$$P_{\nu_{\alpha} \to \nu_{\alpha}} = 1 - \sin^2 2\theta \sin^2(1.27\Delta m^2 \frac{L}{E})$$

 Δm^2 is in eV², L is in m (km) and E in MeV (GeV)

$$\lambda = 2.47 \mathrm{km} \left(\frac{E}{\mathrm{GeV}} \right) \left(\frac{\mathrm{eV}^2}{\Delta m^2} \right) \Rightarrow \text{oscillation length}$$

Neutrino Oscillations only sensitive to mass squared difference but not to the absolute Neutrino mass scale

Neutrino Oscillations in 3 Flavors

 $c_{ij} = \cos \theta_{ij}$ and $s_{ij} = \sin \theta_{ij}$

$$\begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

$$\theta_{23} : P(\nu_{\mu} \rightarrow \nu_{\mu}) \text{ by } \qquad \theta_{13} : P(\nu_{e} \rightarrow \nu_{e}) \text{ by Reactor } \nu$$

$$\theta_{13} : P(\nu_{\nu} \rightarrow \nu_{e}) \text{ by } \nu \text{ beam }$$

$$\theta_{13} : P(\nu_{\nu} \rightarrow \nu_{e}) \text{ by } \nu \text{ beam }$$
 Reactor and solar ν

Three mixing angles: $(\theta_{23}, \theta_{13}, \theta_{12})$ and one CP violating (Dirac) phase (δ_{CP})

$$\tan^2 \theta_{12} \equiv \frac{|U_{e2}|^2}{|U_{e1}|^2}; \quad \tan^2 \theta_{23} \equiv \frac{|U_{\mu 3}|^2}{|U_{\tau 3}|^2}; \quad U_{e3} \equiv \sin \theta_{13} e^{-i\delta}$$

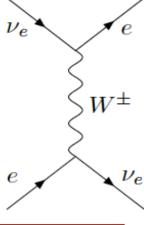
3 mixing angles simply related to flavor components of 3 mass eigenstates

Over a distance L, changes in the relative phases of the mass states may induce flavor change!

$$P(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} - 4 \sum_{i>j} \text{Re}[U_{\alpha i}^* U_{\alpha j} U_{\beta i} U_{\beta j}^*] \sin^2 \Delta_{ij} - 2 \sum_{i>j} \text{Im}[U_{\alpha i}^* U_{\alpha j} U_{\beta i} U_{\beta j}^*] \sin 2\Delta_{ij}.$$

$$\Delta_{ij} = \Delta m_{ij}^2 L/4E_{\nu}$$

$$\Delta m_{ij}^2 = m_i^2 - m_j^2$$


2 independent mass splittings Δm_{21}^2 and Δm_{32}^2 , for anti-neutrinos replace δ_{CP} by $-\delta_{CP}$

Neutrino Oscillations in Matter

Neutrino propagation through matter modify the oscillations significantly

Coherent forward elastic scattering of neutrinos with matter particles

Charged current interaction of v_e with electrons creates an extra potential for v_e

Wolfenstein matter term:

$$A = \pm 2\sqrt{2}G_F N_e E \quad 0$$

or

$$A(eV^2) = 0.76 \times 10^{-4} \rho \text{ (g/cc)} E(GeV)$$

 N_e = electron number density, + (-) for neutrinos (anti-neutrinos), ρ = matter density in Earth

Matter term changes sign when we switch from neutrino mode to anti-neutrino mode

$$P(\nu_{\alpha} \to \nu_{\beta}) - P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}) \neq 0$$

even if $\delta_{CP} = 0$, causes fake CP asymmetry

Matter term modifies oscillation probability differently depending on the sign of Δm^2

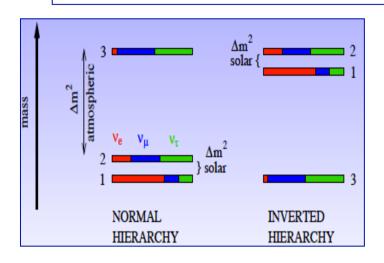
$$\Delta m^2 \simeq A \quad \Leftrightarrow \quad E_{\rm res}^{\rm Earth} = 6 - 8 \, {\rm GeV}$$

Resonant conversion – Matter effect

2002	ν	$ar{ u}$
$\Delta m^2 > 0$	MSW	· - ·
$\Delta m^2 < 0$	_	MSW

Resonance occurs for neutrinos (anti-neutrinos) if Δm^2 is positive (negative)

Oscillation Parameters After Neutrino 2014


	bfp $\pm 1\sigma$	3σ range	Relative 1σ Precision
$\sin^2 \theta_{12}$	$0.304^{+0.012}_{-0.012}$	$0.270 \rightarrow 0.344$	10 1 recision
$\theta_{12}/^{\circ}$	$33.48^{+0.77}_{-0.74}$	$31.30 \rightarrow 35.90$	4%
$\sin^2 \theta_{23}$ θ_{23}	$\left[0.451^{+0.001}_{-0.001}\right] \oplus 0.577^{+0.027}_{-0.035}$	$0.385 \rightarrow 0.644$	0.60/
$\theta_{23}/^{\circ}$ Non-	$\left[42.2^{+0.1}_{-0.1}\right] \oplus 49.4^{+1.6}_{-2.0}$	$38.4 \rightarrow 53.3$	9.6%
$\sin^2 \theta_{13}$ Non-zero	$0.0219^{+0.0010}_{-0.0011}$	$0.0188 \rightarrow 0.0251$	4.8%
$\theta_{13}/^{\circ}$	$8.52^{+0.20}_{-0.21}$	$7.87 \rightarrow 9.11$	4.0 70
$\delta_{\rm CP}/\circ$ $\sin \delta_{\rm CP} < 0$ $\sin \delta_{\rm CP} < 0$	251^{+67}_{-59}	$0 \rightarrow 360$	(Not Known)
$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.50^{+0.19}_{-0.17}$	$7.03 \rightarrow 8.09$	2.4%
$\frac{\Delta m_{31}^2}{10^{-3} \text{ eV}^2} \text{ (N)}$	$[+2.458^{+0.002}_{-0.002}]$	$+2.325 \rightarrow +2.599$	1 00/
$\frac{\Delta m_{32}^2}{10^{-3} \text{ eV}^2} \text{ (I)}$	$-2.448^{+0.047}_{-0.047}$	$-2.590 \to -2.307$	1.9%

Based on the data available after Neutrino 2014 conference

Gonzalez-Garcia, Maltoni, Salvado, Schwetz, http://www.nu-fit.org

Fundamental Unknowns in Neutrino Oscillation

1. What is the hierarchy of the neutrino mass spectrum, normal or inverted?

- The sign of $\Delta m_{31}^2 = m_3^2 m_1^2$ is not known!
- Currently do not know which neutrino is the heaviest?
- Only have a lower bound on the mass of the heaviest v!

$$\sqrt{2.5 \cdot 10^{-3} \text{eV}^2} \sim 0.05 \text{ eV}$$

2. What is the octant of the 2-3 mixing angle, lower ($\theta_{23} < 45^{\circ}$) or higher ($\theta_{23} > 45^{\circ}$)?

Measure θ_{23} precisely, Establish deviation from maximality at higher C.L. Then look for Octant

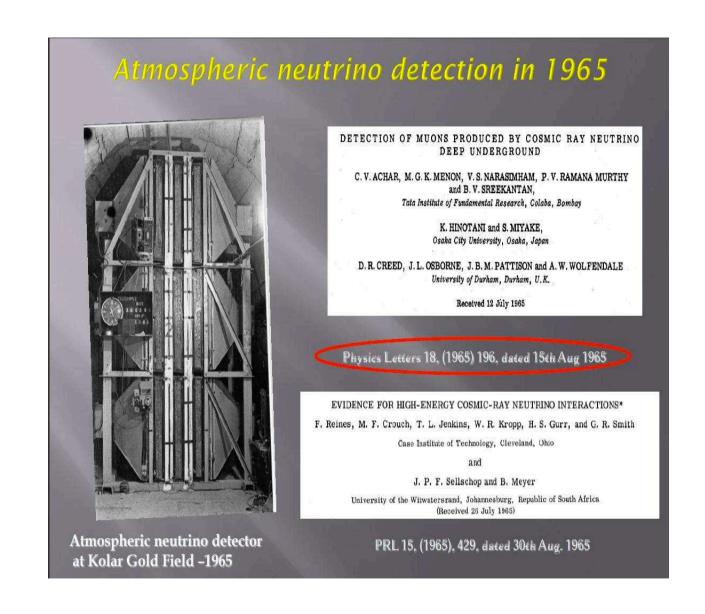
2. Is there CP violation in the leptonic sector, as in the quark sector?

Mixing can cause CP violation in the leptonic sector (if δ_{CP} differs from 0° and 180°) Need to measure the CP-odd asymmetries: $\Delta P_{\alpha\beta} \equiv P(\nu_{\alpha} \to \nu_{\beta}; L) - P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}; L)$ ($\alpha \neq \beta$)

With current knowledge of θ_{13} , resolving these unknowns fall within our reach Sub-leading 3 flavor effects are extremely crucial in current & future oscillation expts

An Old Saga of Underground Laboratory in India

- ➤ KGF: Deepest underground lab in world till 1992 > 6500 MWE
- ➤ In 1965, at KGF at a depth of 2.3km, first atmospheric neutrino was observed by the TIFR-Osaka-Durham group
- During early 80s


 dedicated detectors

 were setup at KGF

 by TIFR-Osaka

 collaboration to

 look for proton decay

Introducing INO Collaboration

Ahmadabad: Physical Research Laboratory

Aligarh: Aligarh Muslim University

Allahabad: HRI

Bhubaneswar: IoP, Utkal University

Calicut: University of Calicut Chandigarh: Panjab University Chennai: IIT-Madras, IMSc Delhi: University of Delhi

Kalpakkam: IGCAR

Kolkata: SINP, VECC, University of Calcutta

Lucknow: Lucknow University Madurai: American College

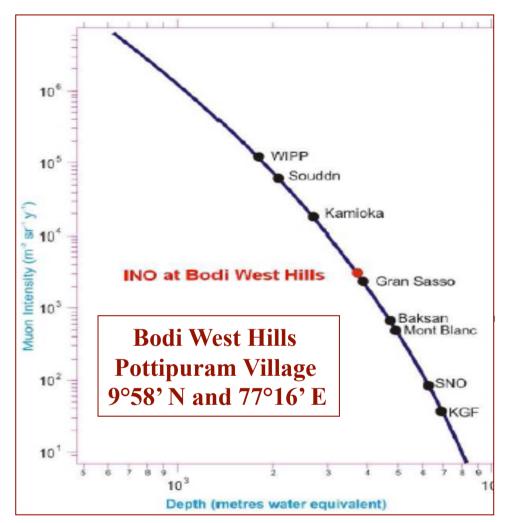
Mumbai: BARC, IIT-Bombay, TIFR, CMEMS

Mysore: University of Mysore Srinagar: University of Kashmir Varanasi: Banaras Hindu University

Nearly 100 scientists from 23 research institutes & universities all over India

One of the largest basic science projects in India in terms of man power & cost as well

We are growing day by day

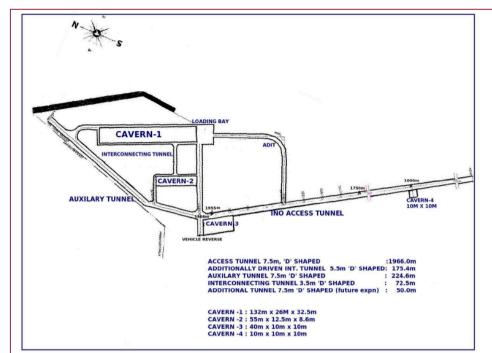

India-Based Neutrino Observatory

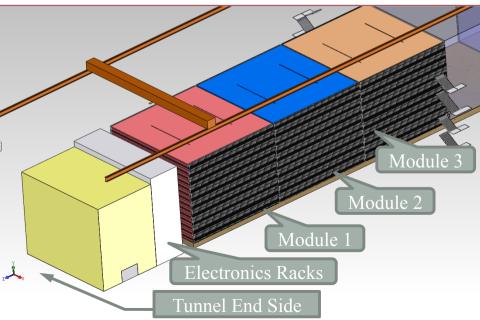
- A multi-institutional attempt to build a world-class underground facility to study fundamental issues in science with special emphasis on neutrinos
- With ~1 km all-round rock cover accessed through a 2 km long tunnel.

 A large and several smaller caverns to pursue many experimental programs
- Complementary to ongoing efforts worldwide to explore neutrino properties
- A mega-science project (~250 M\$) in India, jointly funded (50:50) by the Department of Atomic Energy and the Department of Science and Technology
- INO project was discussed and approved by the Atomic Energy Commission
- Regarding Final approval: Clearance from the Cabinet expected soon
- International Community is welcome to participate in ICAL@INO activity.

 INO facility is also available to the entire community for setting up experiments like Neutrino-less Double Beta Decay, Direct Dark Matter searches

Coordinates of INO




Located 115 km west of the Madurai city in the Theni district of Tamil Nadu

Madurai has an International Airport

Approved projects under INO

- Come up with an underground lab & surface facilities near Pottipuram village in Theni district of Tamil Nadu
- Build massive 50 kt magnetized Iron calorimeter (ICAL) detector to study properties of neutrinos
- Construction of INO centre at Madurai: Inter-Institutional Centre for High Energy Physics (IICHEP)
- Human Resource Development (INO Graduate Training Program)
- Completely in-house Detector R&D with substantial INO-Industry interface
- Time Frame for 1st module: 2019

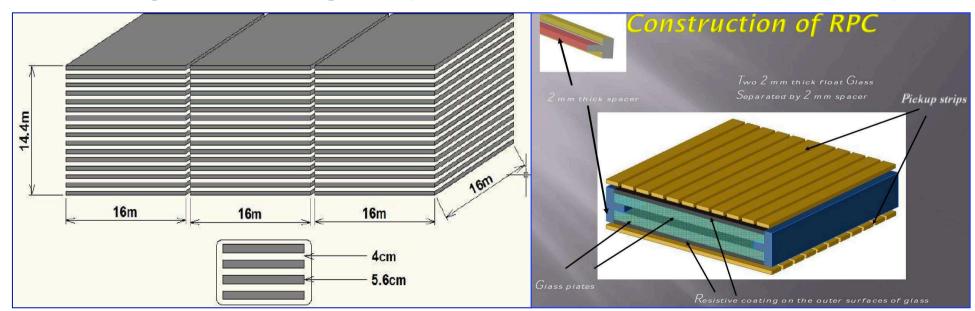
Physics Issues with ICAL-INO

Study Atmospheric neutrinos w/ a wide range of Baselines & Energies

Recent discovery of large θ_{13} : A good news for ICAL-INO

What do we want to achieve?

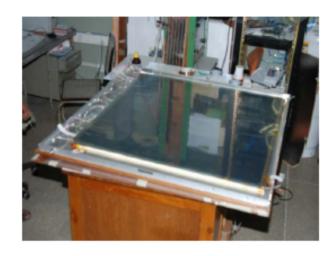
- * Reconfirm neutrino oscillations using neutrinos and anti-neutrinos separately
- ❖ Improved precision of atmospheric oscillation parameters
- ❖ Determine neutrino mass hierarchy using matter effects via charge discrimination
- * Measure the deviation of 2-3 mixing angle from its maximal value and its octant
- Test bed for various new physics like NSI, CPT violation, long range forces
- ❖ Detect Ultra High Energy Neutrinos, Cosmic Muons, Indirect searches of DM

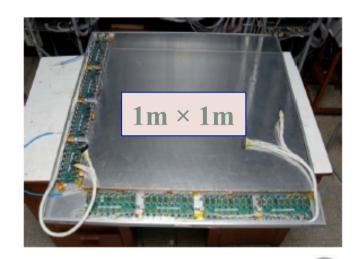

Detector Characteristics

- Should have large target mass (50 100 kt)
- Good tracking and Energy resolution (tracking calorimeter)
- Good directionality for up/down discrimination (nano-second time resolution)
- Charge identification (need to have uniform, homogeneous magnetic field)
- Ease of construction & Modularity
- Complementary to the other existing and proposed detectors

Our choice

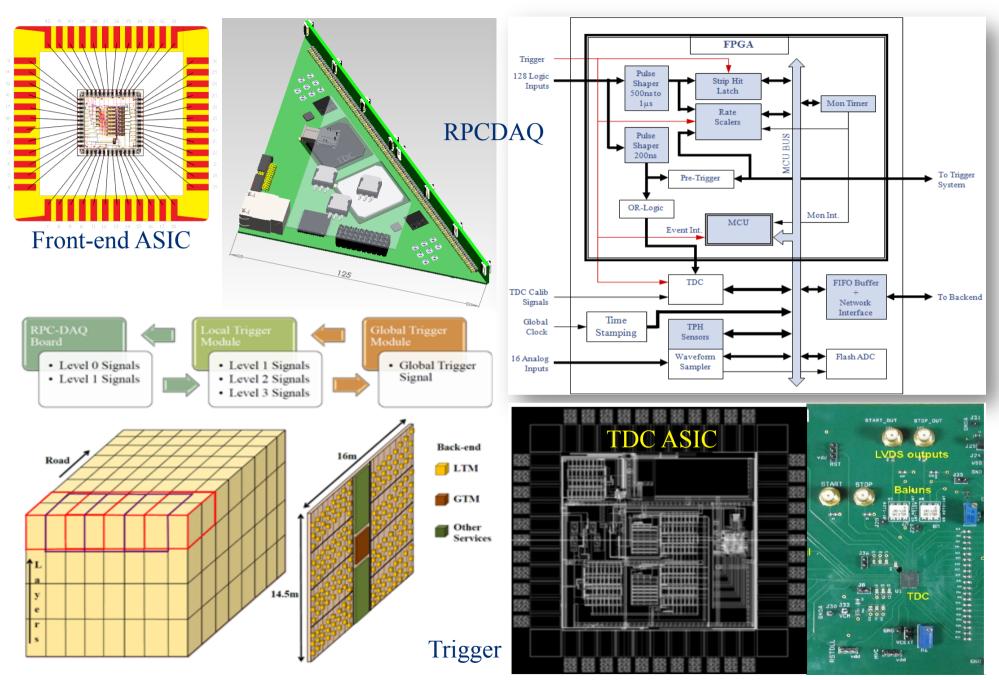
Magnetized iron (target mass): ICAL

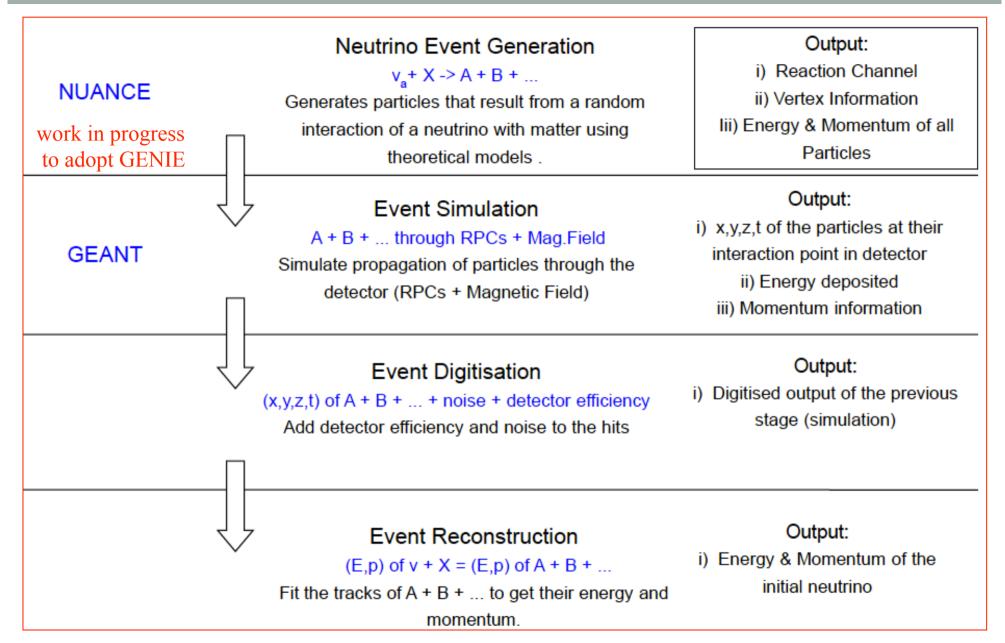

RPC (active detector element)


Specifications of the ICAL Detector

No of modules	3	
Module dimension	16 m X 16 m X 14.4m	
Detector dimension	48.4 m X 16 m X 14.4m	
No of layers	150	
Iron plate thickness	5.6cm	
Gap for RPC trays	4 cm	
Magnetic field	1.4 Tesla	
RPC unit dimension	195 cm x 184 cm x 2.4 cm	
Readout strip width	3 cm	
No. of RPCs/Road/Layer	8	
No. of Roads/Layer/Module	8	
No. of RPC units/Layer	192	
Total no of RPC units	28800	
No of Electronic channels	3.7 X 10 ⁶	

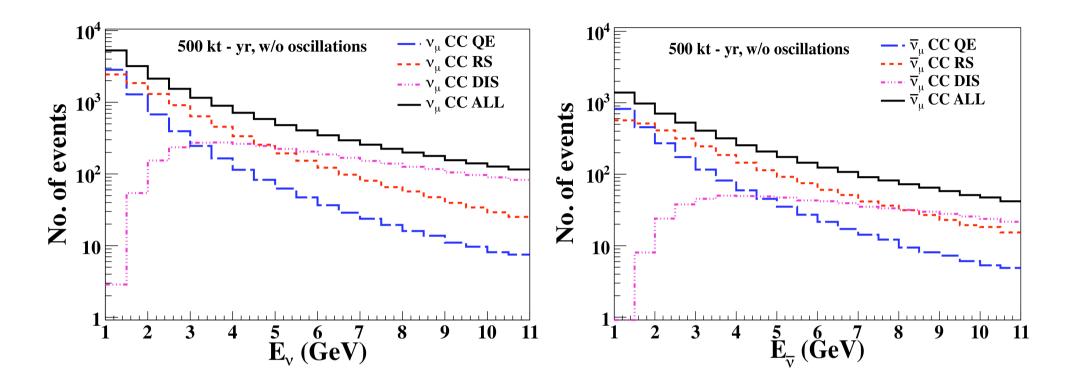
Fabricating Glass RPCs for ICAL





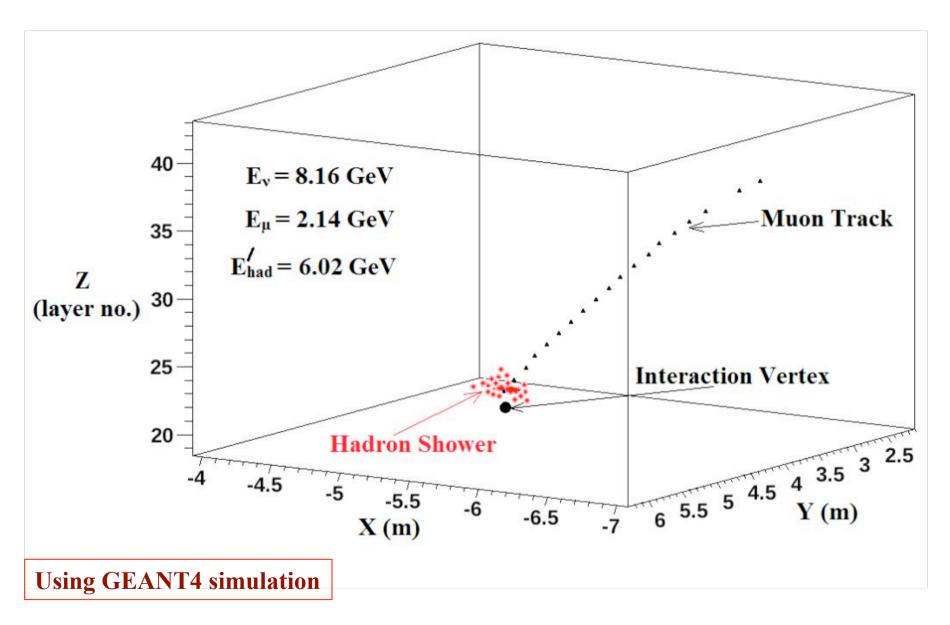
- > 30 glass RPCs of 1m × 1m developed, tested for long in avalanche mode
- > 5 glass RPCs of 2m × 2m successfully assembled and tested

Various Components of ICAL Electronics

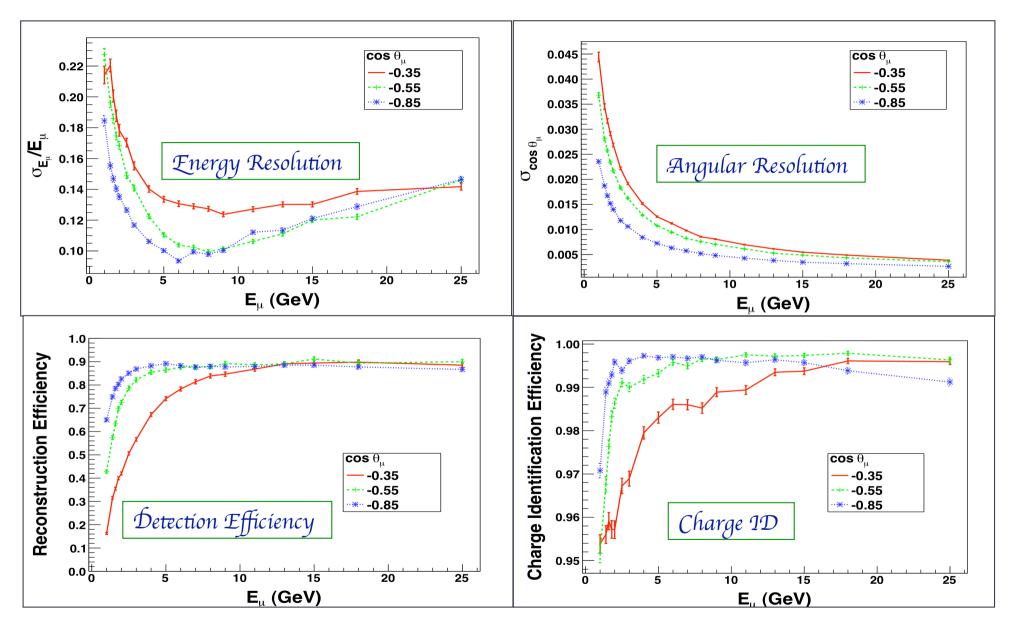


Overview of Simulation Framework

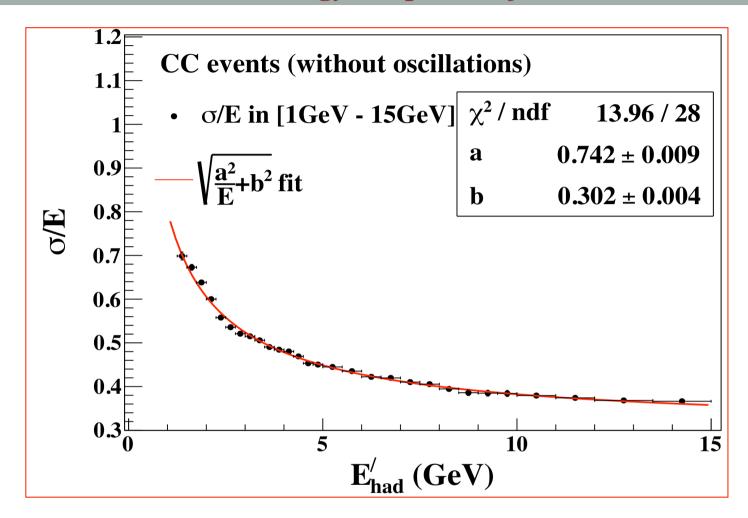
Simulation work is under progress in full swing!


Events in Various Channels

Devi, Thakore, Agarwalla, Dighe, arXiv:1406.3689 [hep-ph] (INO Collaboration)


Relative contributions of three cross-section processes to the total events in the absence of oscillation and without detector efficiency and resolutions

Event Display Inside the ICAL Detector


Devi, Thakore, Agarwalla, Dighe, arXiv:1406.3689 [hep-ph] (INO Collaboration)

Muon Efficiencies and Resolutions

Animesh Chatterjee, Meghna K.K., Kanishka Rawat, Tarak Thakore etal., arXiv:1405.7243 [physics.ins-det]

Hadron Energy Response of ICAL

 $E'_h = E_v - E_u$ (from hadron hit calibration)

Hadron energy resolution: 85% at 1 GeV and 36% at 15 GeV

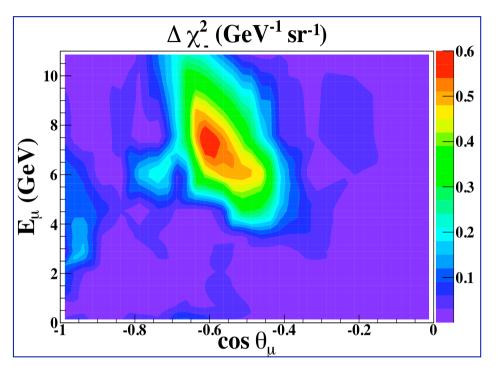
Moon Moon Devi, Anushree Ghosh, Daljeet Kaur, Lakshmi S. Mohan etal., JINST 8 (2013) P11003

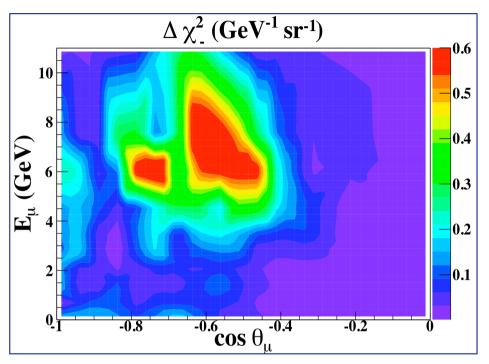
The χ^2 Analysis

We define the Poissonian χ_{-}^{2} for μ^{-} events as:

$$\chi_{-}^{2} = \min_{\xi_{l}} \sum_{i=1}^{N_{E'_{\text{had}}}} \sum_{j=1}^{N_{E_{\mu}}} \sum_{k=1}^{N_{\cos\theta_{\mu}}} \left[2(N_{ijk}^{\text{theory}} - N_{ijk}^{\text{data}}) - 2N_{ijk}^{\text{data}} \ln\left(\frac{N_{ijk}^{\text{theory}}}{N_{ijk}^{\text{data}}}\right) \right] + \sum_{l=1}^{5} \xi_{l}^{2},$$

where

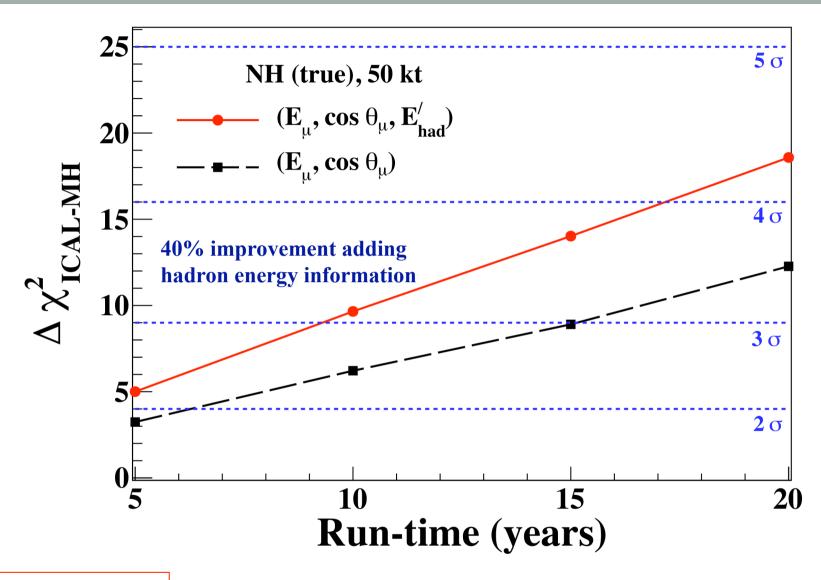

$$N_{ijk}^{\text{theory}} = N_{ijk}^0 \left(1 + \sum_{l=1}^5 \pi_{ijk}^l \xi_l \right).$$


Observable	Range	Bin width	Total bins	
E_{μ} (GeV)	[1, 4)	0.5	6	
	[4, 7)	1	3 }	10
	[7, 11)	4	1	
$\cos \theta_{\mu}$	[-1.0, -0.4)	0.05	12	
	[-0.4, 0.0)	0.1	4	21
	[0.0, 1.0]	0.2	5	
$E'_{\rm had}~({ m GeV})$	[0, 2)	1	2	
	[2, 4)	2	1	4
	[4, 15)	11	1	

- 1) Overall 5% systematic uncertainty
- 2) Overall flux normalization: 20%
- 3) Overall cross-section normalization: 10%
- 4) 5% uncertainty on the zenith angle dependence of the fluxes
- 5) Energy dependent tilt factor: $\Phi_{\delta}(E) = \Phi_0(E) \ [E/E_0]^{\delta} \approx \Phi_0(E) \ [1+\delta \ ln \ E/E_0]$ where $E_0 = 2 \ GeV$ and δ is the 1σ systematic error of 5%

Neutrino Mass Hierarchy Discrimination

Distribution of $\Delta \chi^2$ [χ^2 (IH) - χ^2 (NH)] for mass hierarchy discrimination considering μ - events

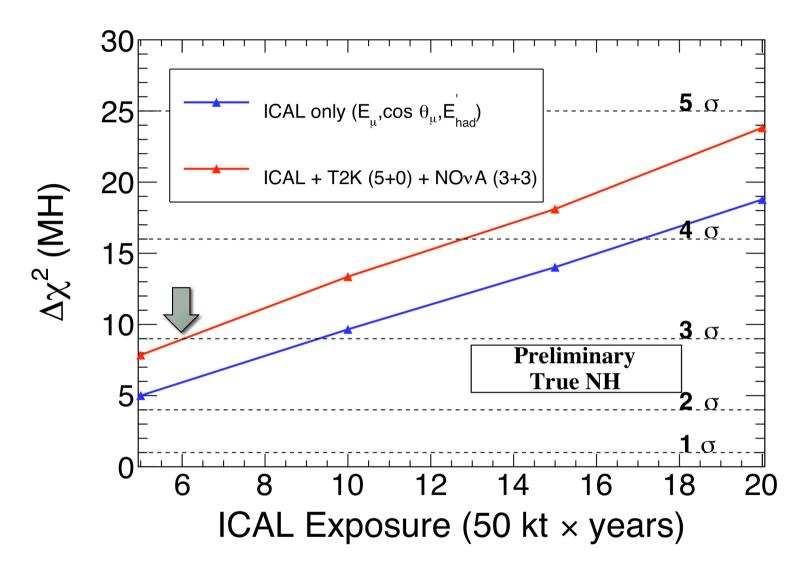


Hadron energy information not used

Hadron energy information used

- Further subdivide the events into four hadron energy bins
- Hadron energy carries crucial information
- Correlation between hadron energy and muon momentum is very important

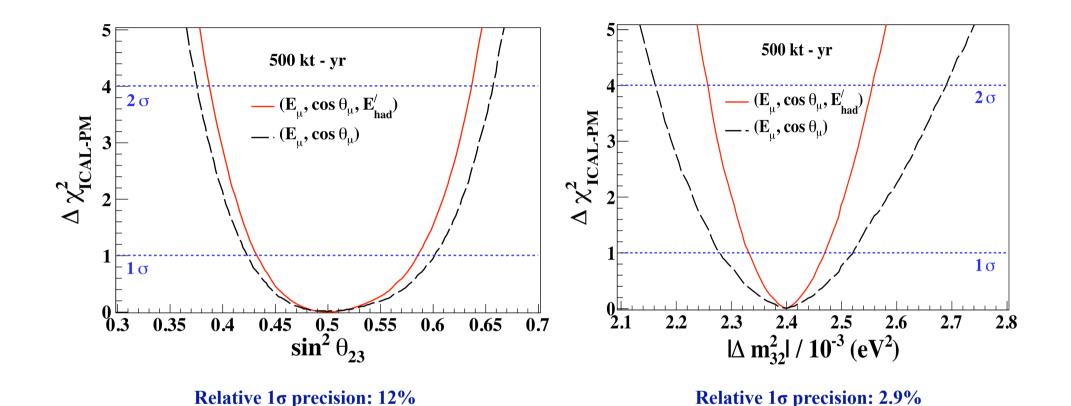
Identifying Neutrino Mass Hierarchy with ICAL



Median Sensitivity

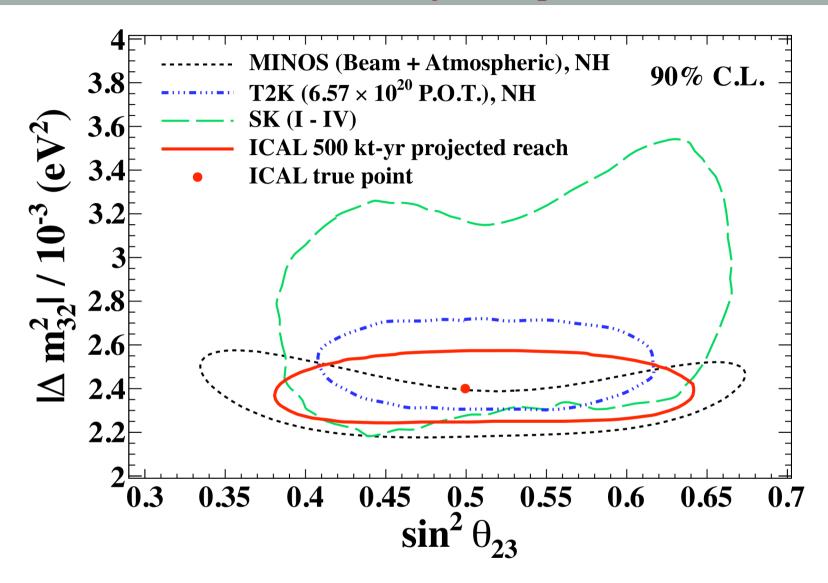
Devi, Thakore, Agarwalla, Dighe, arXiv:1406.3689 [hep-ph] (INO Collaboration)

50 kt ICAL can rule out the wrong hierarchy with $\Delta \chi^2 \approx 9.5$ in 10 years


MH Discovery with ICAL+T2K+NOvA

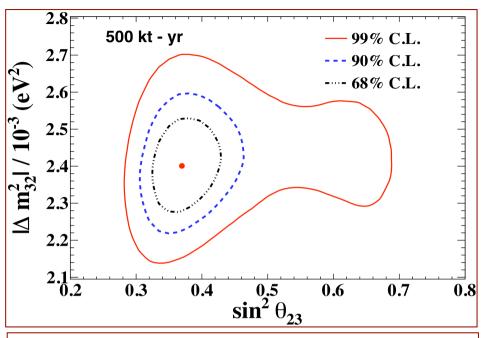
Agarwalla, Thakore, work in progress (INO Collaboration)

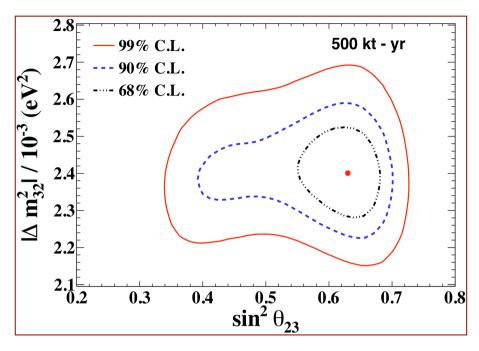
3σ median sensitivity can be achieved in 6 years

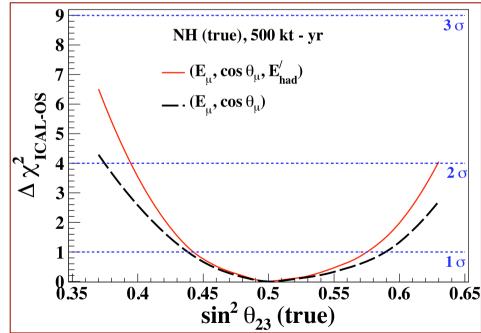

Precision of Atmospheric Oscillation Parameters

Devi, Thakore, Agarwalla, Dighe, arXiv:1406.3689 [hep-ph] (INO Collaboration)

Significant improvement in the precision measurement of atmospheric mass splitting by adding hadron energy information with muon momentum


Precision Measurement of Atmospheric Parameters




Devi, Thakore, Agarwalla, Dighe, arXiv:1406.3689 [hep-ph] (INO Collaboration)

ICAL's expected precision on atmospheric mass splitting is far superior than SK

Octant of θ_{23} with ICAL-INO

Median 2σ discovery of θ_{23} octant is possible if θ_{23} is sufficiently away from maximal value

Devi, Thakore, Agarwalla, Dighe, arXiv: 1406.3689 (INO Collaboration)

Current Status of INO

Pre-project activities started with an initial grant of $\sim 15 \text{ M}$ \$

- Site infrastructure development
- Development of INO centre at Madurai city (110 km from underground lab)
 - Inter-Institutional Centre for High Energy Physics (IICHEP)
- Construction of an 1/8th size engineering prototype module
- Detector R&D is now over
- Detailed Project Report for Detector and DAQ system is ready
- Soon go for industrial production of RPCs & associated front-end electronics
- Full project approved by Indian Atomic Energy Commission
 Waiting for approval from PM's cabinet committee to start construction

Glimpse of Activities at the IICHEP Site

Glimpse of Activities at the INO Site

Human Resource Development and Training

- INO Graduate Training Program started in August 2008, students are affiliated to HBNI
- At present students being trained for 1 year at TIFR in both experimental techniques & theory
- After completion of coursework, attached to Ph.D. guides at various collaborating institutions
- Many short/long term visits to RPC labs (Mumbai & Kolkata) of students & faculties from Universities in last several years
- Several students from 1st batch (2008) are at the final stage of writing their theses. Few of them have already received good post-doctoral offers from various experiments
- 7th batch of 11 students have started their course work at TIFR in 2014

Concluding Remarks

Satisfactory progress in all fronts in last 2 to 3 years

Strong support from the community & Funding agencies

All set to move ahead with this mega-science project

For more updates visit: http://www.ino.tifr.res.in/ino/

You can join us at: https://www.facebook.com/ino.neutrino

International collaboration most welcome

!! Looking Forward for Exciting Discoveries at INO !!

Thank You

Backup Slides

A Personal View of Sheldon Lee Glashow

Is observable CP violation confined to hadrons?

I would assign very high priority to experiments that could demonstrate the existence of CP violating effects in the neutrino sector

The other important mass-related issue is the binary choice between two orderings of neutrino masses

The accuracy with which oscillation parameters are already known surely suffices for the design of an experiment that can accomplish this goal

Particle Physics in the United States
A Personal View
Sheldon Lee Glashow
arXiv:1305.5482v1 [hep-ph]

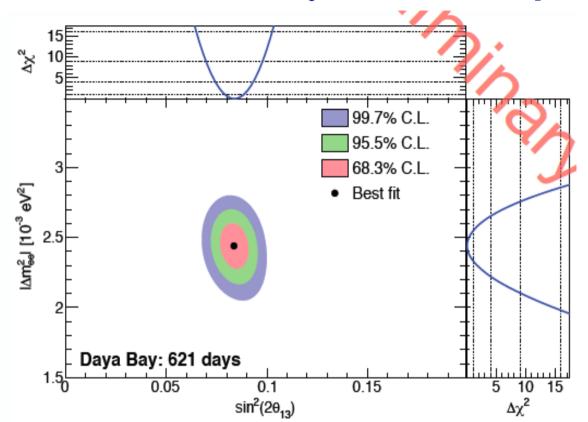
!! Let us work together and resolve these fundamental issues !!

CKM vs. PMNS Precision

Recent discovery of θ_{13} signifies an important breakthrough in establishing the standard three flavor oscillation picture of neutrinos

It has opened up exciting possibilities for current & future oscillation experiments

At present, we have:


$$|U|_{\text{LEP}(3\sigma)} = \begin{pmatrix} 0.799 \to 0.844 & 0.515 \to 0.581 & 0.129 \to 0.173 \\ 0.212 \to 0.527 & 0.426 \to 0.707 & 0.598 \to 0.805 \\ 0.233 \to 0.538 & 0.450 \to 0.722 & 0.573 \to 0.787 \end{pmatrix}$$

Satisfactory progress in last 15 years but still very far from the 'dream' precision:

$$|V|_{\text{CKM}} = \begin{pmatrix} 0.97427 \pm 0.00015 & 0.22534 \pm 0.0065 & (3.51 \pm 0.15) \times 10^{-3} \\ 0.2252 \pm 0.00065 & 0.97344 \pm 0.00016 & (41.2^{+1.1}_{-5}) \times 10^{-3} \\ (8.67^{+0.29}_{-0.31}) \times 10^{-3} & (40.4^{+1.1}_{-0.5}) \times 10^{-3} & 0.999146^{+0.000021}_{-0.000046} \end{pmatrix}$$

Latest Oscillation Results from Daya Bay

Rate + Shape Oscillation Results [Announced in Neutrino 2014]

$$\sin^2 2\theta_{13} = 0.084^{+0.005}_{-0.005}$$

 $|\Delta m_{ee}^2| = 2.44^{+0.10}_{-0.11} \times 10^{-3} \text{eV}^2$
 $\chi^2/NDF = 134.7/146$

6% precision in $\sin^2 2\theta_{13}$ achieved

Strong confirmation of oscillation-interpretation of observed $\bar{\nu_e}$ deficit

	Normal MH Δm_{32}^2 [10 ⁻³ eV ²]	Inverted MH Δm_{32}^2 [10 ⁻³ eV ²]
From Daya Bay Δm_{ee}^2	$2.39^{+0.10}_{-0.11}$	$-2.49^{+0.10}_{-0.11}$
From MINOS $\Delta m_{\mu\mu}^2$	$2.37^{+0.09}_{-0.09}$	$-2.41^{+0.11}_{-0.09}$

Present Understanding of the 2-3 Mixing Angle

Information on θ_{23} comes from: a) atmospheric neutrinos and b) accelerator neutrinos

In two-flavor scenario:
$$P_{\mu\mu} = 1 - \sin^2 2\theta_{\rm eff} \sin^2 \left(\frac{\Delta m_{\rm eff}^2 L}{4E}\right)$$

For accelerator neutrinos: relate effective 2-flavor parameters with 3-flavor parameters:

$$\Delta m_{\text{eff}}^2 = \Delta m_{31}^2 - \Delta m_{21}^2 (\cos^2 \theta_{12} - \cos \delta_{\text{CP}} \sin \theta_{13} \sin 2\theta_{12} \tan \theta_{23})$$

$$\sin^2 2\theta_{\text{eff}} = 4\cos^2 \theta_{13}\sin^2 \theta_{23} \left(1 - \cos^2 \theta_{13}\sin^2 \theta_{23}\right)$$
 where $\frac{|U_{\mu 3}|^2}{|U_{\tau 3}|^2} = \tan^2 \theta_{23}$

Nunokawa etal, hep-ph/0503283; A. de Gouvea etal, hep-ph/0503079

Combining beam and atmospheric data in MINOS, we have:

MINOS Collaboration: arXiv:1304.6335v2 [hep-ex]

$$\sin^2 2\theta_{\rm eff} = 0.95^{+0.035}_{-0.036} \; (10.71 \times 10^{21} \; \rm p.o.t) \\ \sin^2 2\bar{\theta}_{\rm eff} = 0.97^{+0.03}_{-0.08} \; (3.36 \times 10^{21} \; \rm p.o.t)$$

Atmospheric data, dominated by Super-Kamiokande, still prefers maximal value of $\sin^2 2\theta_{eff} = 1 \ (\geq 0.94 \ (90\% \ C.L.))$

Talk by Y. Itow in Neutrino 2012 conference, Kyoto, Japan

Bounds on θ_{23} from the global fits

In ν_{μ} survival probability, the dominant term mainly sensitive to $sin^22\theta_{23}$

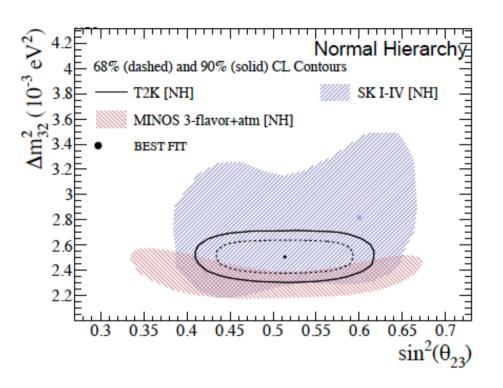
If $\sin^2 2\theta_{23}$ differs from 1 (as indicated by recent data), we get two solutions for θ_{23} :

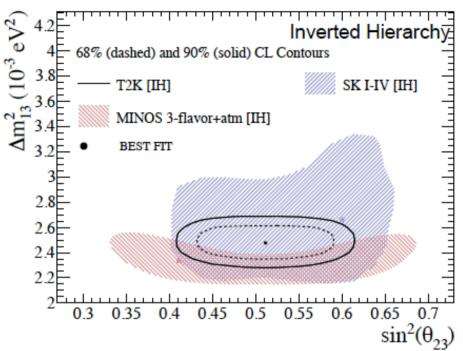
one in lower octant (LO: θ_{23} < 45 degree), other in higher octant (HO: θ_{23} > 45 degree)

In other words, if $(0.5 - \sin^2\theta_{23})$ is +ve (-ve) then θ_{23} belongs to LO (HO)

This is known as the octant ambiguity of θ_{23}

Fogli and Lisi, hep-ph/9604415

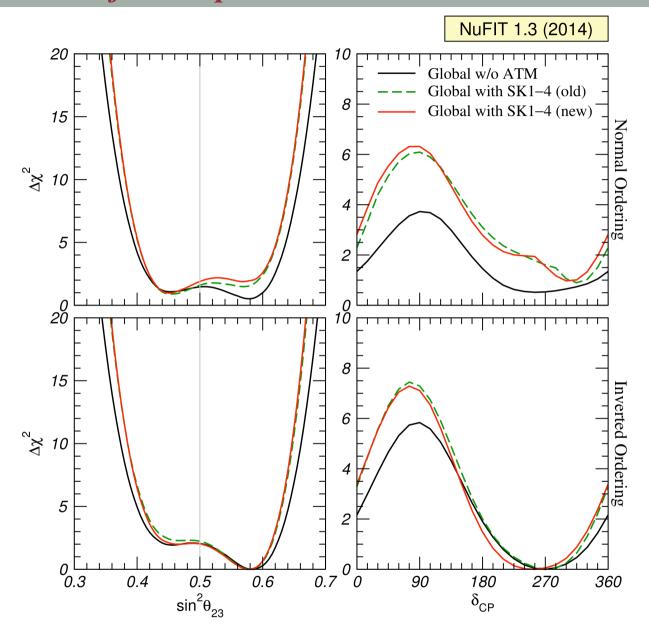

Conferences	After Neutrino 2012	After NeuTel 2013	After TAUP 2013
$\sin^2 \theta_{23}$	$0.41^{+0.037}_{-0.025} \oplus 0.59^{+0.021}_{-0.022}$	$0.437^{+0.061}_{-0.031}$	$0.446^{+0.007}_{-0.007} \oplus 0.587^{+0.032}_{-0.037}$
3σ range	$0.34 \to 0.67$	$0.357 \rightarrow 0.654$	$0.366 \to 0.663$
1σ precision (relative)	13.4%	11.3%	11.1%


Based on Gonzalez-Garcia, Maltoni, Salvado, Schwetz, http://www.nu-fit.org

Global fit disfavors maximal 2-3 mixing at 1.4 σ confidence level (mostly driven by MINOS) v_{μ} to v_{e} oscillation data can break this degeneracy

The preferred value would depend on the choice of the neutrino mass hierarchy

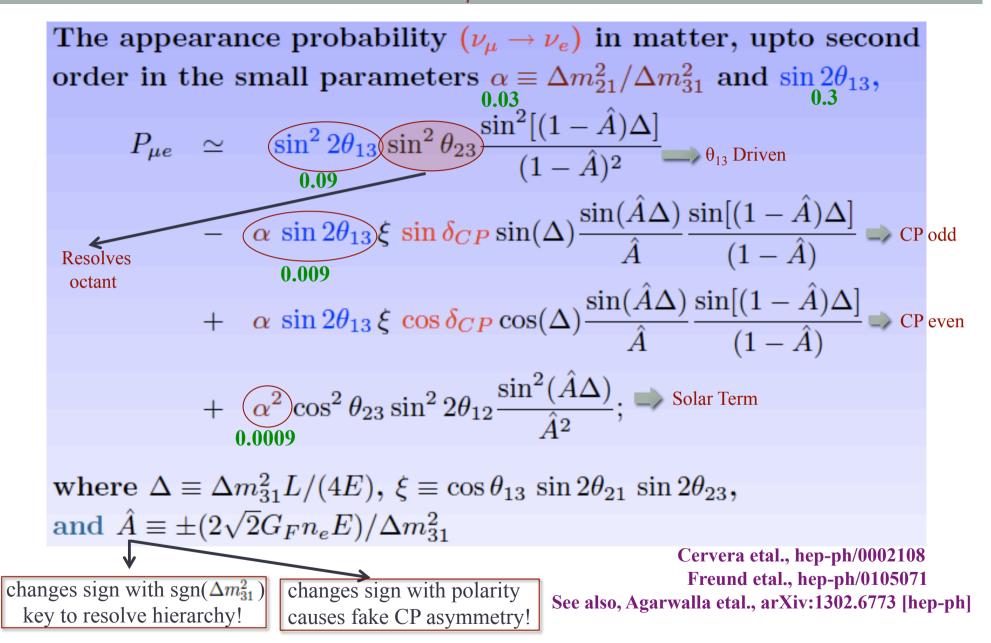
New Measurements of Atmospheric Parameters



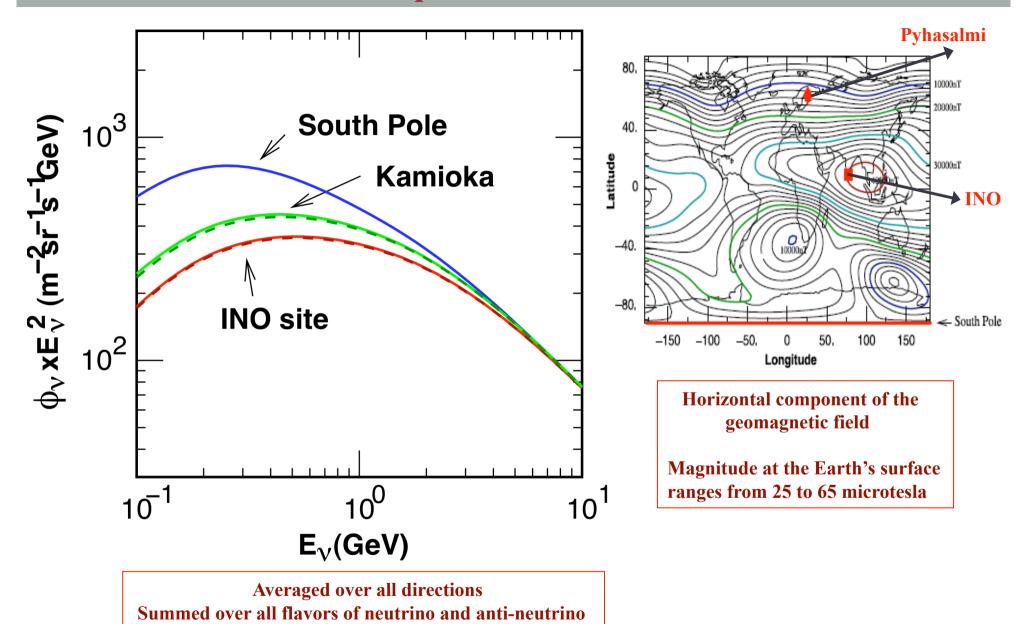
		Best-fit ± FC 68% CL (Δm² units 10 ⁻³ eV²/c⁴)
NH	$\sin^2\!\theta_{23}$	0.514+0.055
	$\Delta m_{\ 32}^2$	2.51 ± 0.10
IH	$sin^2\theta_{23}$	0.511 ± 0.055
	Δm_{13}^2	2.48 ± 0.10

Already mixing angle is better constrained by T2K in comparison to SK and MINOS

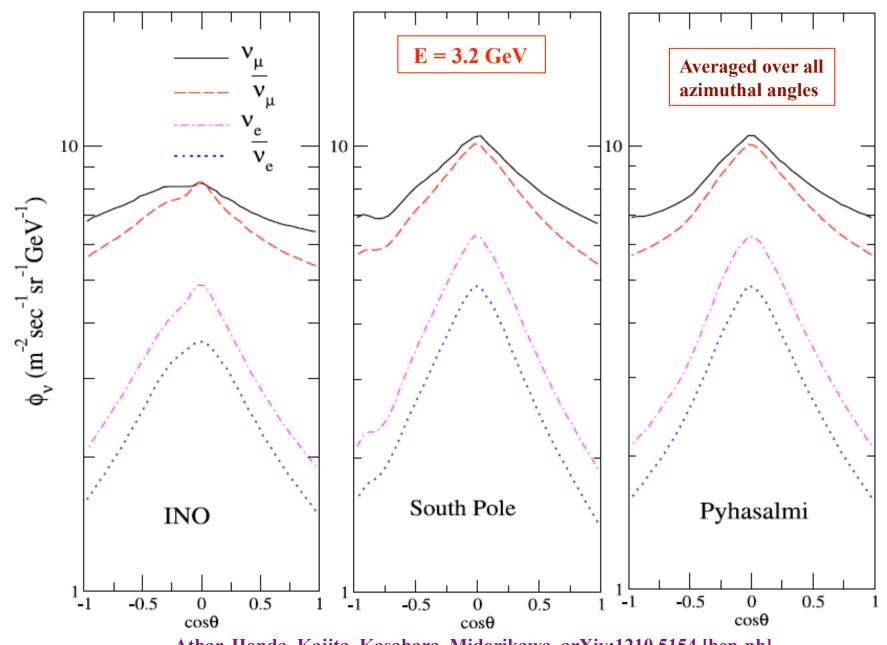
Talk by C. Walter in Neutrino 2014


Role of Atmospheric Neutrinos in Global Fit

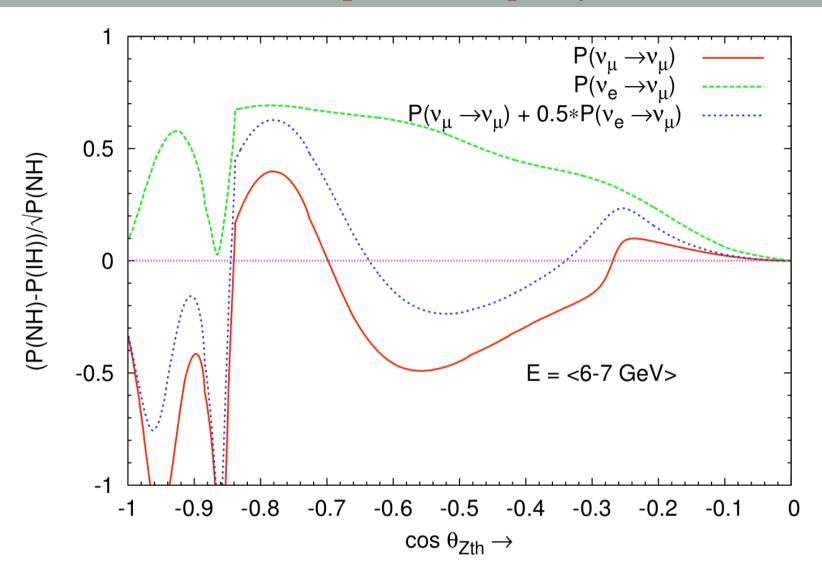
Based on the data available after Neutrino 2014 conference


Gonzalez-Garcia, Maltoni, Salvado, Schwetz, http://www.nu-fit.org

Three Flavor Effects in $v_{\mu} \rightarrow v_{e}$ oscillation probability


This channel suffers from: (Hierarchy – δ_{CP}) & (Octant – δ_{CP}) degeneracy! How can we break them?

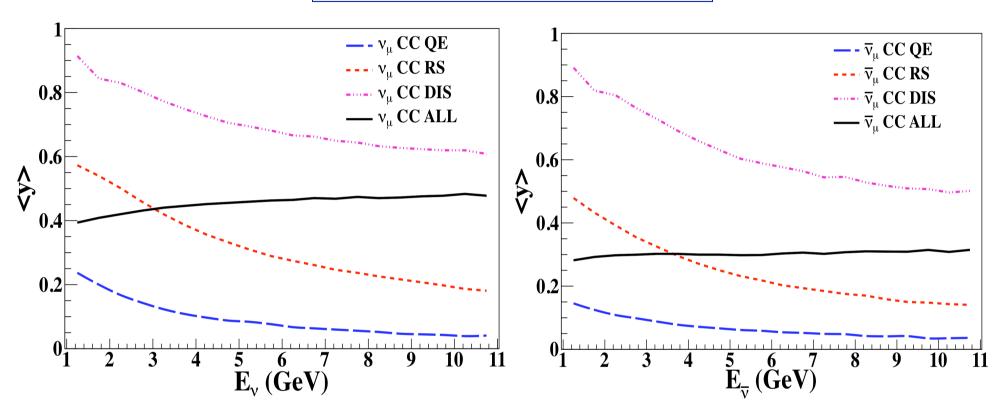
Atmospheric Neutrino Flux


Athar, Honda, Kajita, Kasahara, Midorikawa, arXiv:1210.5154 [hep-ph]

Atmospheric Neutrino Flux

Athar, Honda, Kajita, Kasahara, Midorikawa, arXiv:1210.5154 [hep-ph]

Atmospheric Conspiracy

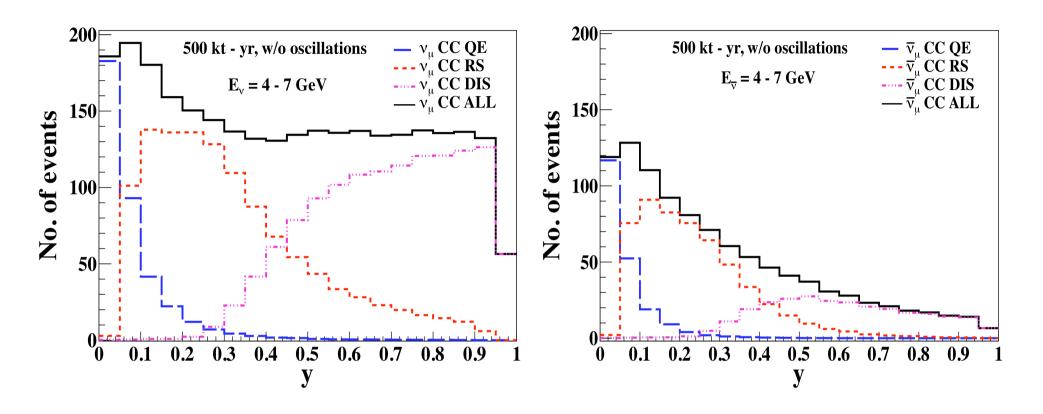


Presence of different flavors dilutes the MH effect in oscillation

Agarwalla, Chatterjee, Khatun, work in progress (INO Collaboration)

Average Inelasticities in Various Channels

$$y \equiv (E_{\nu} - E_{\mu})/E_{\nu} = E'_{\text{had}}/E_{\nu}$$

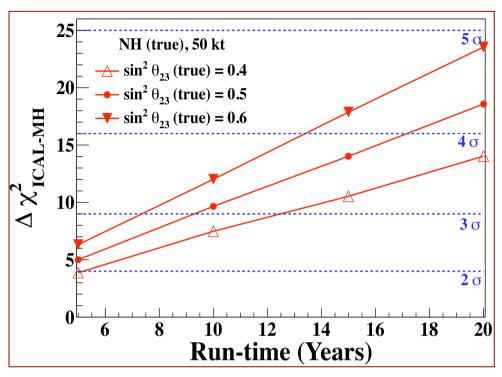


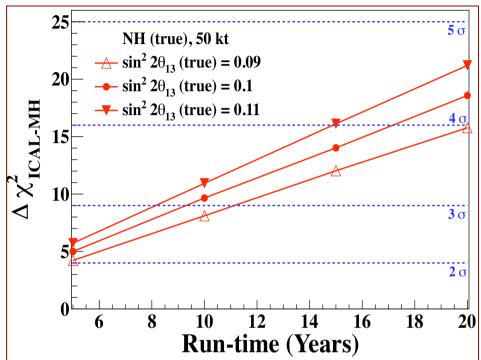
Devi, Thakore, Agarwalla, Dighe, arXiv:1406.3689 [hep-ph] (INO Collaboration)

Average Inelasticity in the deep-inelastic events is significant

Crucial for mass hierarchy identification

Distribution of Inelasticities in Events

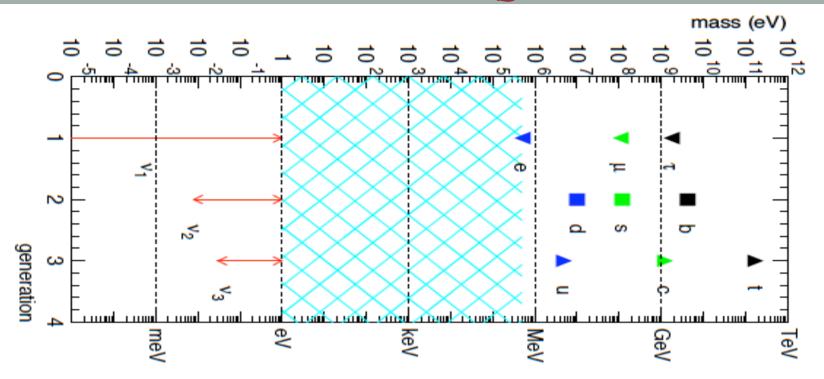



Devi, Thakore, Agarwalla, Dighe, arXiv:1406.3689 [hep-ph] (INO Collaboration)

Inelasticities in individual events have a wide distribution

Important to measure inelasticity in individual events

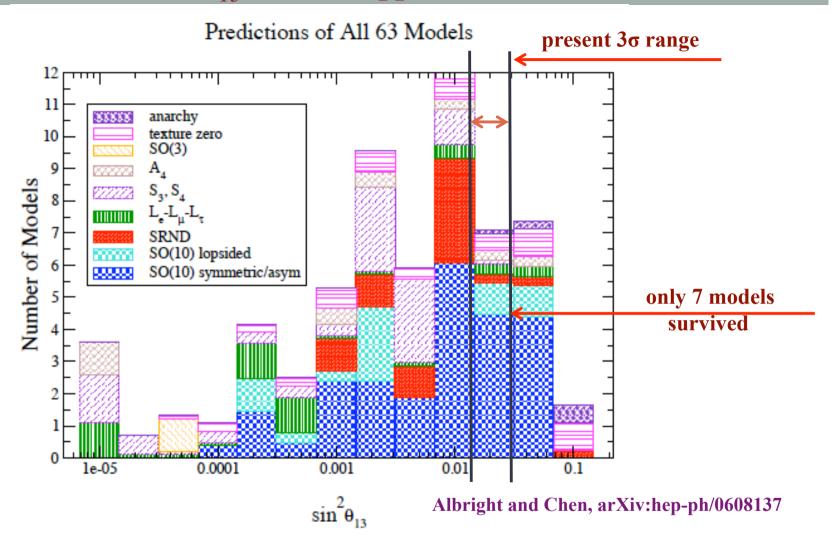
Impact of θ_{23} and θ_{13} on Mass Hierarchy



Devi, Thakore, Agarwalla, Dighe, arXiv:1406.3689 [hep-ph] (INO Collaboration)

50 kt ICAL can rule out the wrong hierarchy with median $\Delta \chi^2 \approx 7$ to 12 depending on the true values of θ_{23} and θ_{13} in 10 years

The Two Fundamental Questions


Why are neutrinos so light? The origin of Neutrino Mass!

	Neutrinos (PMNS)	Quarks (CKM)
θ_{12}	35°	13°
θ_{32}	43°	2°
θ_{13}	9°	0.2°
δ	unknown	68°

Why are lepton mixings so different from quark mixings?

The Flavor Puzzle!

Latest Results on θ_{13} : What happened to Mass models?

Survey of 63 v mass models in June 2006 by Carl H. Albright and Mu-Chun Chen

Future high precision measurements of mixing angles, new information on neutrino mass ordering and CP phase will severely constrain these presently allowed models

Implications of Recent Measurement of θ_{13}

Simplest models that are ruled out!

■ Bimaximal mixing: [Vissani (97), Barger, Pakvasa, Weiler, Whisnant (98)]

It predicts: $\theta_{12} = 45^{\circ}$, $\theta_{23} = 45^{\circ}$, and $\theta_{13} = 0^{\circ}$

predicted in flavor symmetry models with symmetry groups like A4, S4, A5

■ Tri-bimaximal mixing: [Vissani (97), Harrison, Perkins, Scot (02)]

$$U_{\text{TBM}} = R_{32} \left(\theta_{32} = \frac{\pi}{4} \right) R_{13} (\theta_{13} = 0) R \left(\theta_{21} = \tan^{-1} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{6}} \begin{pmatrix} 2 & \sqrt{2} & 0 \\ -1 & \sqrt{2} & \sqrt{3} \\ 1 & -\sqrt{2} & \sqrt{3} \end{pmatrix}$$

• Golden ratio: [Datta, Ling, Ramond (03), Kajiyama, Raidal, Strumia (07)]

It predicts: $\theta_{12} = 31.7^{\circ}$, $\theta_{23} = 45^{\circ}$, and $\theta_{13} = 0^{\circ}$

Simplest models that are still alive!

- Anarchy (v mass matrix completely random): [Hal, Murayama, Weiner (99), de Gouvea, Murayama (03, 12)] It predicts: large θ_{13} , okay with observed value of θ_{13}
- Quark-Lepton Complementarity: [Minakata, Smirnov (94), Raidal (04)]

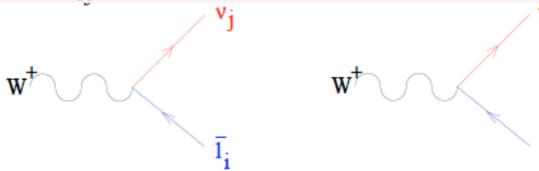
Based on observation: θ_{12} (PMNS) + θ_{12} (CKM) = 45°

It predicts: $\sin\theta_{13} \approx \sin\theta_{\rm C}/\sqrt{2} \approx 0.16$ (close to the observed value, other relations needs to be tested!)

Backup Slides

The New Minimal Standard Model

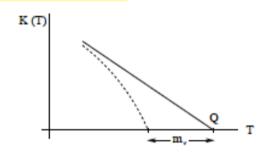
- Minimal Extensions to give Mass to the Neutrino:
 - * Introduce ν_R AND impose L conservation \Rightarrow Dirac $\nu \neq \nu^c$:


$$\mathcal{L} = \mathcal{L}_{SM} - M_{\nu} \overline{\nu_L} \nu_R + h.c.$$

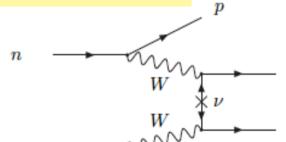
* NOT impose L conservation \Rightarrow Majorana $\nu = \nu^c$

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{2} M_{\nu} \overline{\nu_L} \nu_L^C + h.c.$$

The charged current interactions of leptons are not diagonal (same as quarks)


$$\frac{g}{\sqrt{2}} W_{\mu}^{+} \sum_{ij} \left(U_{\rm LEP}^{ij} \, \overline{\ell^{i}} \, \gamma^{\mu} \, L \, \nu^{j} \, + \, U_{\rm CKM}^{ij} \, \overline{U^{i}} \, \gamma^{\mu} \, L \, D^{j} \right) \, + \, h.c.$$

Backup Slides


Neutrino Mass Scale

Single β decay: Dirac or Majorana ν mass modify spectrum endpoint

$$m_{\nu_e}^2 = \sum m_j^2 |U_{ej}|^2 = c_{13}^2 c_{12}^2 m_1^2 + c_{13}^2 s_{12}^2 m_2^2 + s_{13}^2 m_3^2$$

 ν -less Double- β decay: \Leftrightarrow Majorana $\nu's$ sensitive to Majorana phases

If
$$m_{
u}$$
 only source of ΔL $(T_{1/2}^{0
u})^{-1} \propto (m_{ee})^2$

$$m_{ee} = |\sum U_{ej}^2 m_j|$$

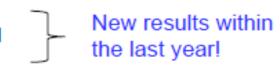
$$\begin{split} & _{e^{-}} \ m_{ee} = |\sum U_{ej}^{2} m_{j}| \\ & _{e^{-}} = \left| c_{13}^{2} c_{12}^{2} m_{1} \, e^{i \eta_{1}} + c_{13}^{2} s_{12}^{2} m_{2} \, e^{i \eta_{2}} + s_{13}^{2} m_{3} \, e^{-i \delta_{CP}} \right| \end{aligned}$$

COSMO Neutrino mass (Dirac or Majorana) modify the growth of structures

Backup Slides (Neutrinoless double beta decay)

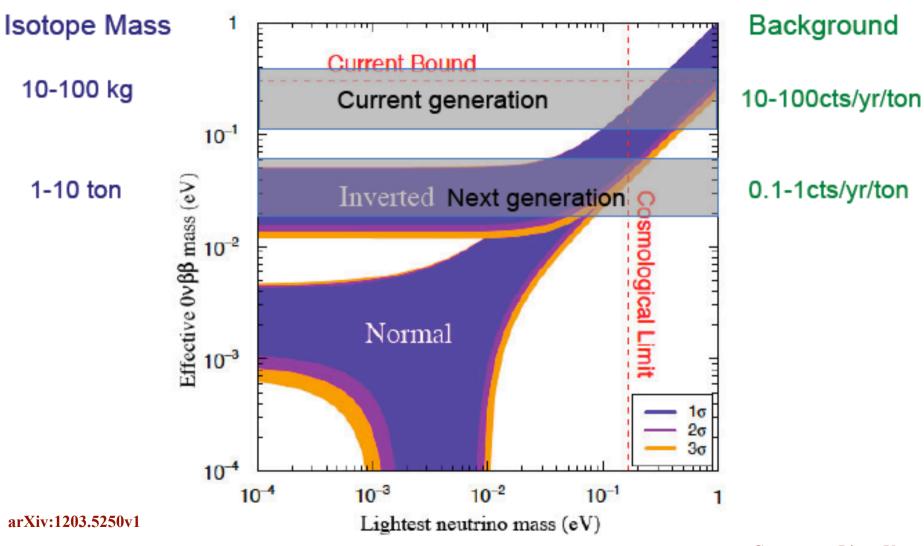
Experimental Limits

Isotope	0vββ half life	Experiment	<m> eV</m>
⁴⁸ Ca	> 1.4*10 ²² (90%CL)	ELEGANT-VI	< 7 - 44
⁷⁶ Ge	> 1.9*10 ²⁵ (90%CL)	Heidelberg-Moscow	< 0.35
⁷⁶ Ge	2230+440 ₋₃₁₀ (90%CL)	Subset of HM coll.	0.32 +/- 0.03
⁷⁶ Ge	> 2.1*10 ²⁵ (90%CL)	GERDA†	< 0.2 – 0.4
⁸² Se	> 2.1*10 ²³ (90%CL)	NEMO-3	<1.2 – 3.2
¹⁰⁰ Mo	> 5.8*10 ²³ (90%CL)	NEMO-3	< 0.6 – 2.7
¹¹⁶ Cd	> 1.7*10 ²³ (90%CL)	Solotvino	< 1.7
¹³⁰ Te	> 2.8*10 ²⁴ (90%CL)	Cuoricino	< 0.41 - 0.98
¹³⁶ Xe	> 1.9*10 ²⁵ (90%CL)	KamLAND-Zen††	< 0.12 - 0.25
¹³⁶ Xe	> 1.6×10 ²⁵ (90%CL)	EXO-200†††	< 0.14 - 0.38
¹⁵⁰ Nd	> 1.8*10 ²² (90%CL)	NEMO-3	

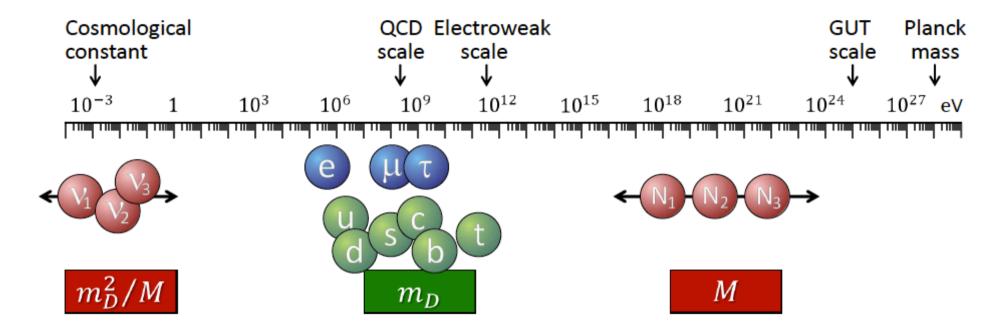

Courtesy to Liang Yang

[F. Avignone, S. Elliot, J. Engel, arXiv:0708: 1033v2 (2007)]

† [GERDA Collaboration, arXiv:1307.4720 (2013]


†† [KamLAND-Zen Collaboration, Phys. Rev. Lett. 110, 062502(2013)]

††† [EXO Collaboration, Phys. Rev. Lett.109, 0322505 (2012)]


Backup Slides (Neutrino Mass)

Experimental Sensitivity to Neutrino Mass

Courtesy to Liang Yang

Backup Slides (See-Saw & Neutrino Mass)

Mass matrix for one family of ordinary and heavy r.h. neutrinos

$$(\overline{\nu}_L, \overline{N}_R)\begin{pmatrix} \mathbf{0} & m_D \\ m_D & \mathbf{M} \end{pmatrix}\begin{pmatrix} \nu_L \\ N_R \end{pmatrix}$$

Diagonalization

$$(\overline{\nu}_L, \overline{N}_R)\begin{pmatrix} m_D^2/M & 0 \\ 0 & M \end{pmatrix}\begin{pmatrix} \nu_L \\ N_R \end{pmatrix}$$

One light and one heavy Majorana neutrino

