Non-zero θ_{13} and Beyond

Sanjib Kumar Agarwalla Sanjib.Agarwalla@ific.uv.es

IFIC/CSIC, University of Valencia, Spain

Over the last fourteen years or so, marvellous data from world-class experiments

- Solar neutrinos (ν_e)
- **Atmospheric neutrinos** $(\nu_{\mu}, \bar{\nu}_{\mu}, \nu_{e}, \bar{\nu}_{e})$
- **D** Reactor anti-neutrinos $(\bar{\nu}_e)$
- **D** Accelerator neutrinos $(\nu_{\mu}, \bar{\nu}_{\mu})$

Data driven field – new data are coming

Data from various neutrino sources and vastly different energy and distance scales

We have just started our journey in the mysterious world of neutrinos!

Neutrino Flavor Oscillations

Neutrino oscillation experiments have revealed that neutrinos change flavor after propagating a finite distance. The rate of change depends on the **neutrino energy** E_v and **the baseline** L

- $\nu_{\mu} \rightarrow \nu_{\tau}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\tau}$ atmospheric experiments ["indisputable"];
- $\nu_e \rightarrow \nu_{\mu,\tau}$ solar experiments
- $\bar{\nu}_e \rightarrow \bar{\nu}_{other}$ reactor neutrinos
- $\nu_{\mu} \rightarrow \nu_{other}$ from accelerator experiments

["indisputable"]; ["indisputable"].

["indisputable"];

The simplest and **only satisfactory** explanation of **all** this data is that neutrinos have distinct masses, and they mix. A 3 flavor v oscillation framework can accommodate all the data

Finite neutrino masses required by the experimental data provide the **first hint for physics beyond the Standard Model**

!! An extension of the Standard Model is necessary !!

New parameters (masses, angles, phases) need to be measured and understood!

Neutrino Flavor Oscillations (continued..)

• Neutrino oscillations occur because the flavor (weak) eigenstates do not coincide with the mass eigenstates $\begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \end{bmatrix}$

$$|\nu_{\alpha}\rangle = \sum_{i=1}^{3} U_{\alpha i}^{*} |\nu_{i}\rangle \quad (\alpha = e, \mu, \tau) \qquad U_{PMNS} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix}$$

- The neutrinos interact as a flavor state, but propagate as a superposition of the three mass states. Over a distance *L*, changes in the relative phases of the mass states may induce neutrino flavor change
- Assume two neutrino flavors for simplicity:

$$\begin{bmatrix} \nu_{\mu} \\ \nu_{\tau} \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \nu_{2} \\ \nu_{3} \end{bmatrix} \qquad \begin{aligned} |\nu_{\mu}(t)\rangle &= \cos\theta e^{-iE_{2}t}|\nu_{2}\rangle + \sin\theta e^{-iE_{3}t}|\nu_{3}\rangle \\ E_{i} &= \sqrt{p^{2} + m_{i}^{2}} \end{aligned}$$

• Probability that a v_{μ} remains v_{μ} after some time *t*:

$$P(\nu_{\mu} \to \nu_{\mu}) = |\langle \nu_{\mu} | \nu_{\mu}(t) \rangle|^2 \simeq 1 - \sin^2(2\theta) \sin^2\left(1.27\Delta m_{32}^2 \frac{L[\text{km}]}{E[\text{GeV}]}\right)$$

 Neutrino oscillations depend on L, the neutrino energy E, and the mixing parameters

Courtesy to A. Sousa

S. K. Agarwalla, Calcutta University, Kolkata, India, 26th April, 2012

NEUTRINO

0% TAU

NEUTRINO

100% TAU

NEUTRINO

0% MUON

Neutrino Oscillations in Matter

- > Interactions in matter modify the oscillation probability significantly
- Coherent forward elastic scattering of neutrinos with matter particles
- \blacktriangleright Charged current interaction of v_e with electrons creates a potential for v_e

$$A = \pm 2\sqrt{2}G_F \cdot E \cdot n_e$$

 n_e = electron number density, + (-) for neutrinos (anti-neutrinos) Creates an additional phase for v_e and changes the oscillation probability

$$P(\nu_{\alpha} \to \nu_{\beta}) - P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}) \neq 0$$

even if $\delta = 0$, causes fake CP asymmetry

 $Mm^2 \simeq A \quad \Leftrightarrow \quad E_{\rm res}^{\rm Earth} = 6 - 8 \, {
m GeV} \implies {
m Resonant \ conversion} - {
m the \ MSW \ effect}$

Resonance occurs for neutrinos (anti-neutrinos) if Δm^2 is positive (negative)

Three Flavor Mixing Hypothesis

U is a 3×3 unitary matrix containing θ_{23} , θ_{13} , θ_{12} and one CP violating (Dirac) phase δ

$$\tan^2 \theta_{12} \equiv \frac{|U_{e2}|^2}{|U_{e1}|^2}; \quad \tan^2 \theta_{23} \equiv \frac{|U_{\mu3}|^2}{|U_{\tau3}|^2}; \quad U_{e3} \equiv \sin \theta_{13} e^{-i\delta}$$

$$\sin^2 \theta_{23} = 0.52^{+0.06}_{-0.07} \quad (\theta_{23} = 46.14^{\circ})$$

$$\Delta m^2_{31} = \frac{2.50^{+0.09}_{-0.16}}{-(2.40^{+0.08}_{-0.09})} \times 10^{-3} \text{eV}^2$$

$$\Delta m^2_{12} = (7.59^{+0.20}_{-0.18}) \times 10^{-5} \text{eV}^2$$

2011-2012: Important Breakthroughs in 1-3 mixing

T2K (June 2011): $sin^2 2\theta_{13} = 0.03 - 0.34$ @ 90% C.L

T2K collaboration, arXiv:1106.2822 [hep-ex]

MINOS (July 2011): $\sin^2 2\theta_{13} \neq 0$ @ 89% C.L.

MINOS collaboration, arXiv:1108.0015 [hep-ex]

Double CHOOZ (December 2011): $\sin^2 2\theta_{13} = 0.017 - 0.16$ @ 90% C.L

Double CHOOZ collaboration, arXiv:1112.6353 [hep-ex]

Daya Bay (March 2012): $\sin^2 2\theta_{13} = 0.092 \pm 0.016 \pm 0.005$ @ 68% C.L. Daya Bay collaboration, arXiv:1203.1669 [hep-ex]

 $sin^2 2\theta_{13} \neq 0$ @ 5.2 σ

 $\square \qquad RENO (April 2012): \sin^2 2\theta_{13} = 0.113 \pm 0.013 \pm 0.019 @ 68\% C.L.$

RENO collaboration, arXiv:1204.0626v2 [hep-ex]

 $sin^2 2\theta_{13} \neq 0$ @ 4.9 σ

The θ_{13} Revolution

Big News: We have discovered the 1-3 mixing angle!

By the end of 2012, this will be the most precisely known mixing angle in the PMNS matrix! S. K. Agarwalla, Calcutta University, Kolkata, India, 26th April, 2012 7/27

Latest results on θ_{13} : What happened to Mass models?

Is tri-bimaximal neutrino mixing pattern still allowed?

See, Brahmachari and Raychaudhuri, arXiv:1204.5619v1 [hep-ph]

Unsolved Issues in Neutrino Oscillation

The Current Generation

Currently running & upcoming superbeam and reactor experiments

Setup	t_{ν} [yr]	<i>t</i> _{<i>ν</i>} [yr]	P_{Th} or P_{Target}	L [km]	Detector tech	$m_{ m Det}$
Double Chooz	-	3	8.6 GW	1.05	Liquid scint	8.3 t
Daya Bay	-	3	17.4 GW	1.7	Liquid scint	80 t
RENO	-	3	16.4 GW	1.4	Liquid scint	15.4 t
T2K	5	-	0.75 MW	295	Water Cerenkov	22.5 kt
ΝΟνΑ	3	3	0.7 MW	810	TASD	15 kt

P. Huber etal., JHEP 11 044 (2009)

Double Chooz, Daya Bay, RENO: Reactor experiments

- Electron anti-neutrino disappearance at reactors with $L \approx 1 \text{ km}$
- "Clean" measurement of θ_{13} : $P \approx 1 \sin^2 2\theta_{13} \sin^2(\Delta m_{31}^2 L/4E)$

T2K, NOvA : v_{μ} to v_{e} transitions at Accelerator experiments

•Oscillation probability complicated : Depends on θ_{13} , δ_{CP} , and mass hierarchy

MH & CPV discovery without new experiments

P. Huber etal., JHEP 11 044 (2009)

Expectation in 2025 without new facilities at 3σ C.L.

Combined results expected from: T2K + NOvA + Double Chooz + Daya Bay + RENO (Including Project X and T2K operating at 1.66 MW)

More than 70% of parameter space are not accessible. New experiments needed

Superbeams

Neutrino beam from π -decay They are called "super" : why?

- $\blacksquare \ Beam \ power \sim 1 \ MW$
- \blacksquare Detector mass $\sim 100 \text{ kt}$
- **\square** Running time of the experiment ~ 10 years

Price

Platinum Channel (P_{µe})

The appearance probability $(\nu_{\mu} \rightarrow \nu_{e})$ in matter, upto second order in the small parameters $\alpha \equiv \Delta m_{21}^{2} / \Delta m_{31}^{2}$ and $\sin 2\theta_{13}$,

$$\begin{split} P_{\mu e} &\simeq & \sin^2 2\theta_{13} \sin^2 \theta_{23} \frac{\sin^2[(1-\hat{A})\Delta]}{(1-\hat{A})^2} \Longrightarrow \theta_{13} \text{ Driven} \\ &- & \alpha \sin 2\theta_{13} \xi \sin \delta_{CP} \sin(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})} \Longrightarrow \text{ CP odd} \\ &+ & \alpha \sin 2\theta_{13} \xi \cos \delta_{CP} \cos(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})} \Longrightarrow \text{ CP even} \\ &+ & \alpha^2 \cos^2 \theta_{23} \sin^2 2\theta_{12} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2}; \Longrightarrow \text{ Solar Term} \end{split}$$

where $\Delta \equiv \Delta m_{31}^2 L/(4E)$, $\xi \equiv \cos \theta_{13} \sin 2\theta_{21} \sin 2\theta_{23}$, and $\hat{A} \equiv \pm (2\sqrt{2}G_F n_e E)/\Delta m_{31}^2$

> Cervera etal., hep-ph/0002108 Freund etal., hep-ph/0105071

13/27

Eight-fold Degeneracy

$\blacksquare \ (\theta_{13}, \, \delta_{CP}) \text{ intrinsic degeneracy}$

Burguet-Castell, Gavela, Gomez-Cadenas, Hernandez, Mena, hep-ph/0103258

 $(sgn(\Delta m_{31}^2), \delta_{CP}) \text{ degeneracy}$

Minakata, Nunokawa, hep-ph/0108085

$$\blacksquare \quad (\theta_{23}, \pi/2 - \theta_{23}) \text{ degeneracy}$$

Fogli, Lisi, hep-ph/9604415

Severely deteriorates the sensitivity

Future Facilities for Long Baseline Neutrinos

LBNE – a plan to build a new neutrino beam at Fermilab aimed at Homestake, where either a large water Cerenkov detector or a LAr tracking calorimeter would be built

In Japan

LAGUNA/LAGUNA-LBNO – study considering three detector options for astroparticle physics and new long baseline in Europe

Each of the three community ≈ same size

Courtesy to A. Rubbia 15/27

European Policy: LAGUNA-LBNO

arXiv:1109.6526 [hep-ph]

EURONU-WP6-11-38 IFIC/11-48

An incremental approach to unravel the neutrino mass hierarchy and CP violation with a long-baseline Superbeam for large θ_{13}

SANJIB KUMAR AGARWALLA^a, TRACEY LI^b, ANDRÉ RUBBIA^c

^{a,b} Instituto de Física Corpuscular, CSIC-Universitat de València, Apartado de Correos 22085, E-46071 Valencia, Spain
^c ETH Zurich, Institute for Particle Physics, CH-8093 Zürich, Switzerland Large θ_{13} will have crucial impact on the optimization of the future long baseline Superbeam experiments

Large θ_{13} allows us to pursue a staged approach in terms of the size of the experiments

Progressive increase of the beam power & detector mass

Produce significant physics results at each phase !!

CERN-Pyhäsalmi Superbeam Experiment

Longest Baseline in Europe → CERN-Pyhäsalm = 2290 km → Strong Matter Effect

Wide Band Beam → Higher statistics → cover several L/E values → kill clone solutions

LAr Detector
→ Excellent Detection efficiency at 1st and 2nd Oscillation maxima

Superbeam Flux and Platinum Channel (P_{ue})

- ➢ New high power accelerator (HP-PS2)
- ➢ 50 GeV proton beam, power 1.6 MW
- > 3×10^{21} protons on target/yr (200 days/yr)

 \blacktriangleright @ flux level, 0.62% intrinsic v_e contamination

≻Both 1st and 2nd Osc. Maxima important

≻*High L, High E, High cross-section*

Eless uncertainties in σ at high E

Signal and Background

$$N_{i} = \frac{T n_{n} \epsilon}{4\pi L^{2}} \int_{0}^{E_{\max}} dE \int_{E_{A_{i}}^{\min}}^{E_{A_{i}}^{\max}} dE_{A} \phi(E) \sigma_{\nu_{e}}(E) R(E, E_{A}) P_{\mu e}(E) P_{\mu e}(E)$$

 $exposure = (pot per year) \times (fiducial mass of detector in kt) \times (total runtime in years)$

It has units of pot.kt

 $\sin^2 2\theta_{13} = 0.05, \ \delta_{CP} = 0^\circ, \ 1500 \times 10^{21} \text{ pot.kt}$

Channel	CERN-Pyhäsalmi (2290 km)		
	Signal	Background	
	CC	Int+Mis-id+NC = Total	
$ u_{\mu} \rightarrow \nu_{e} \text{ (NH)} $	2364	419+100+103= 622	
$ u_{\mu} \rightarrow \nu_{e} \text{ (IH)} $	485	439+100+103= 642	
$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} (\text{NH})$	304	128+42+45=215	
$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ (IH)	1049	122+43+45= 210	

Agarwalla, Li, Rubbia, arXiv:1109.6526 [hep-ph]

Intrinsic v_e contamination causes highest background: Near Detector must

Neutrino Mass Hierarchy Discovery

Equal sharing of neutrino & anti-neutrino running. NH requires less exposure than IH

Neutrino Mass ordering will be discovered at 5σ with lowest exposure at 2290 km

S. K. Agarwalla, Calcutta University, Kolkata, India, 26th April, 2012

20/27

CP violation discovery is never easy!

CP violation measurement is never easy even for the largest values of θ_{13}

S. K. Agarwalla, Calcutta University, Kolkata, India, 26th April, 2012

Leptonic CP violation Discovery

Equal sharing of neutrino & anti-neutrino running. IH requires less exposure than NH We can cover 30%, 50% & 70% of parameter space with 3 defining exposures

S. K. Agarwalla, Calcutta University, Kolkata, India, 26th April, 2012

22/27

Is there any fastest way of determining the mass hierarchy?

We have one proposal!

Probing the Neutrino Mass Hierarchy with Super-Kamiokande

Agarwalla, Hernanadez, arXiv:1204.4217 [hep-ph]

Send a superbeam (average energy of 5 GeV) from CERN towards existing and well-understood Super-Kamiokande (L = 8770 km)

This setup can reveal the neutrino MH at 5σ in less than two years irrespective of the true hierarchy and CP phase

The measurement relies on the near resonant matter effect in the v_{μ} to v_{e} oscillation channel, & can be done counting the total number of appearance events with just a neutrino beam

CERN-Kamioka (8770 km)

S. K. Agarwalla, Calcutta University, Kolkata, India, 26th April, 2012

24/27

Results

Central (true) Values	External 1σ error
$\sin^2 2\theta_{13}(\text{true}) = 0.113$	$\sigma(\sin^2 2\theta_{13}) = 0.023$
$\Delta m_{31}^2(\text{true}) = 2.45 \times 10^{-3} \text{ eV}^2 \text{ (NH)}$	$\sigma(\Delta m_{31}^2) = 5\%$
$\Delta m_{31}^2(\text{true}) = -2.34 \times 10^{-3} \text{ eV}^2 \text{ (IH)}$	$\sigma(\Delta m_{31}^2) = 5\%$
$\theta_{23}(\text{true}) = 45^{\circ}$	$\sigma(\theta_{23}) = 10\%$
Δm_{21}^2 (true) = 7.59 × 10 ⁻⁵ eV ²	$\sigma(\Delta m_{21}^2) = 3\%$
$\theta_{12}(\text{true}) = 33.96^{\circ}$	$\sigma(\theta_{12}) = 3\%$
$\rho(true) = 1$	$\sigma(\rho)=2\%$

	CERN-Kamioka (8870 km)			
Channel	Signal	Background		
	CC-1 ring	${\rm Int+Mis\text{-}id+NC}={\rm Total}$		
$\nu_{\mu} \rightarrow \nu_{e} \ (\text{NH})$	44	1+2+16=19		
$\nu_{\mu} \rightarrow \nu_{e} \ (\text{IH})$	2	1+3+16=20		
$\nu_{\mu} \rightarrow \nu_{\mu} \ (\text{NH})$	83	2		
$\nu_{\mu} \rightarrow \nu_{\mu} \ (\text{IH})$	91	2		

Ultimately What Are We Trying To Understand?

Concluding Remarks

Neutrino oscillation is an exclusive example of experimental evidence for physics beyond the Standard Model

Recent results on 1-3 mixing angle is very exciting!

Following the recent discoveries, we need to re-optmize the future neutrino roadmap to explore the information on mass hierarchy and leptonic CP violation!

The work has been started just now.....

Thank you!

Backup Slides: See-Saw & Neutrino Mass

