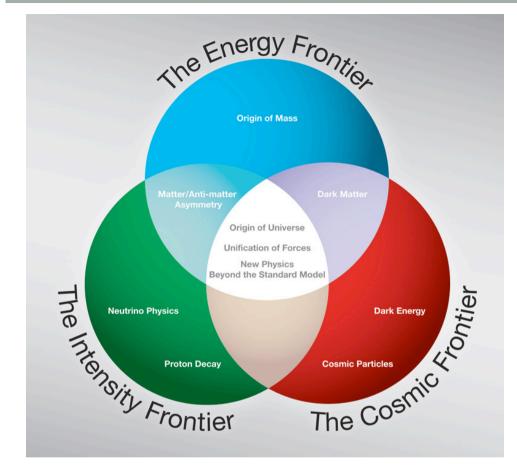
Neutrino Properties from Recent Reactor and Accelerator Experiments


Sanjib Kumar Agarwalla

sanjib@iopb.res.in

Institute of Physics, Bhubaneswar, India

Big News in Neutrino Sector: Discovery of θ_{13}

Global Neutrino Meeting important

Exciting results from all the three frontiers

The Energy Frontier:
Discovery of Higgs at LHC

The Intensity Frontier: Discovery of θ_{13}

The Cosmic Frontier:
High Precision Planck measurements

BICEP2 detected B-mode polarization Smoking gun evidence for Inflation

Intensity Frontier: Neutrino properties: A window to our Universe and New Physics

Discovery of moderately large value of θ_{13} has crucial consequences for future theoretical and experimental efforts

Non-zero θ_{13} is the gateway to discover leptonic CP violation & to measure δ_{CP}

Neutrino Physics: An Exercise in Patience

Three most fundamental questions were being asked in the past century...

- 1. How small is the neutrino mass? (Pauli, Fermi, '30s)
- Planck + BAO + WMAP polarization data: upper limit of 0.23 eV for the sum of v masses

 Planck Collaboration, arXiv:1303.5076 [astro-ph.CO]
- 2. Can a neutrino be its own antiparticle? (Majorana, '30s)
 Hunt for v-less Double- β decay (Z,A \rightarrow Z+2, A) is still on, demands lepton number violation

 Nice Review by Avignone, Elliott, Engel, Rev.Mod.Phys. 80 (2008) 481-516
- 3. Do different v flavors 'oscillate' into one another? (Pontecorvo, Maki-Nakagawa-Sakata, '60s)

 B. Pontecorvo, Sov. Phys. JETP 26, 984 (1968) [Zh. Eksp. Teor. Fiz. 53, 1717 (1967)]

Last question positively answered only in recent years. Now an established fact that **neutrinos are massive** and leptonic flavors are not **symmetries of Nature**

Recent measurement of θ_{13} , a clear first order picture of the 3-flavor lepton mixing matrix has emerged, signifies a major breakthrough in v physics

This year marks the 60th anniversary since v detector of Reines & Cowan was turned on

Neutrino Oscillations in 3 Flavors

It happens because flavor (weak) eigenstates do not coincide with mass eigenstates

 $c_{ij} = \cos \theta_{ij}$ and $s_{ij} = \sin \theta_{ij}$

$$\begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

$$\theta_{23} \colon \mathsf{P}(\nu_{\mu} \to \nu_{\mu}) \, \mathsf{by} \qquad \qquad \theta_{13} \colon \mathsf{P}(\nu_{e} \to \nu_{e}) \, \mathsf{by} \, \mathsf{Reactor} \, \mathsf{v} \qquad \qquad \theta_{12} \colon \mathsf{P}(\nu_{e} \to \nu_{e}) \, \mathsf{by} \, \mathsf{Reactor} \, \mathsf{v}$$
 Atoms, $\mathsf{v} \, \mathsf{and} \, \mathsf{v} \, \mathsf{beam} \qquad \qquad \theta_{13} \, \& \, \delta \colon \mathsf{P}(\nu_{\mu} \to \nu_{e}) \, \mathsf{by} \, \mathsf{v} \, \mathsf{beam} \qquad \qquad \mathsf{Reactor} \, \mathsf{and} \, \mathsf{solar} \, \mathsf{v}$

Three mixing angles: $(\theta_{23}, \theta_{13}, \theta_{12})$ and one CP violating (Dirac) phase (δ_{CP})

$$\tan^2 \theta_{12} \equiv \frac{|U_{e2}|^2}{|U_{e1}|^2}; \quad \tan^2 \theta_{23} \equiv \frac{|U_{\mu 3}|^2}{|U_{\tau 3}|^2}; \quad U_{e3} \equiv \sin \theta_{13} e^{-i\delta}$$

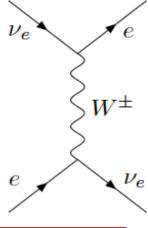
3 mixing angles simply related to flavor components of 3 mass eigenstates

Over a distance L, changes in the relative phases of the mass states may induce flavor change!

$$P(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} - 4 \sum_{i>j} \text{Re}[U_{\alpha i}^* U_{\alpha j} U_{\beta i} U_{\beta j}^*] \sin^2 \Delta_{ij} - 2 \sum_{i>j} \text{Im}[U_{\alpha i}^* U_{\alpha j} U_{\beta i} U_{\beta j}^*] \sin 2\Delta_{ij}.$$

$$\Delta_{ij} = \Delta m_{ij}^2 L/4E_{\nu}$$

$$\Delta m_{ij}^2 = m_i^2 - m_j^2$$


2 independent mass splittings Δm_{21}^2 and Δm_{32}^2 , for anti-neutrinos replace δ_{CP} by $-\delta_{CP}$

Neutrino Oscillations in Matter

Neutrino propagation through matter modify the oscillations significantly

Coherent forward elastic scattering of neutrinos with matter particles

Charged current interaction of v_e with electrons creates an extra potential for v_e

Wolfenstein matter term:

$$A = \pm 2\sqrt{2}G_F N_e E \quad 0$$

or

$$A(eV^2) = 0.76 \times 10^{-4} \rho \text{ (g/cc)} E(GeV)$$

 N_e = electron number density, + (-) for neutrinos (anti-neutrinos), ρ = matter density in Earth

Matter term changes sign when we switch from neutrino mode to anti-neutrino mode

$$P(\nu_{\alpha} \to \nu_{\beta}) - P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}) \neq 0$$

even if $\delta_{CP} = 0$, causes fake CP asymmetry

Matter term modifies oscillation probability differently depending on the sign of Δm^2

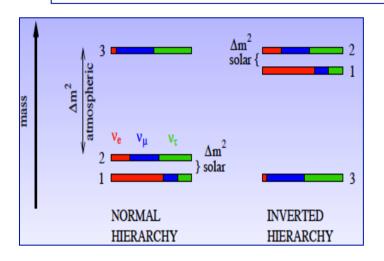
$$\Delta m^2 \simeq A \quad \Leftrightarrow \quad E_{\rm res}^{\rm Earth} = 6 - 8 \, {\rm GeV}$$

Resonant conversion – Matter effect

2002	ν	$ar{ u}$
$\Delta m^2 > 0$	MSW	
$\Delta m^2 < 0$	_	MSW

Resonance occurs for neutrinos (anti-neutrinos) if Δm^2 is positive (negative)

Oscillation Parameters After Neutrino 2014


	bfp $\pm 1\sigma$	3σ range	Relative 1σ Precision
$\sin^2 \theta_{12}$	$0.304^{+0.012}_{-0.012}$	$0.270 \rightarrow 0.344$	TO T Tecision
$ heta_{12}/^\circ$	$33.48^{+0.77}_{-0.74}$	$31.30 \rightarrow 35.90$	4%
$\sin^2 \theta_{23}$ θ_{23} θ_{23} Non-maximal	$\left[0.451^{+0.001}_{-0.001}\right] \oplus 0.577^{+0.001}_{-0.001}$		9.6%
$\theta_{23}/^{\circ}$ No. 1.40	$[42.2^{+0.1}_{-0.1}] \oplus 49.4^{+1.0}_{-2.0}$	$38.4 \rightarrow 53.3$	7.0 /0
$\sin^2\theta_{13}$ Non-Zero	$0.0219^{+0.0010}_{-0.0011}$	$0.0188 \rightarrow 0.0251$	4.8%
$\theta_{13}/^{\circ}$	$8.52^{+0.20}_{-0.21}$	$7.87 \rightarrow 9.11$	4.0 /0
$\delta_{\rm CP}/\circ$ sin $\delta_{\rm CP}/\circ$ C.L.	251 ⁺⁶⁷ ₋₅₉ See a F. D.	Iso the work by Capozzi etal $0 o 360$	(Not Known)
$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.50^{+0.19}_{-0.17}$	$7.03 \rightarrow 8.09$	2.4%
$\frac{\Delta m_{31}^2}{10^{-3} \text{ eV}^2} \text{ (N)}$	$\left[+2.458^{+0.002}_{-0.002}\right]$	$+2.325 \to +2.599$	1 00/
$\frac{\Delta m_{32}^2}{10^{-3} \text{ eV}^2} \text{ (I)}$	$-2.448^{+0.047}_{-0.047}$	$-2.590 \to -2.307$	1.9%

Based on the data available after Neutrino 2014 conference

Gonzalez-Garcia, Maltoni, Salvado, Schwetz, http://www.nu-fit.org

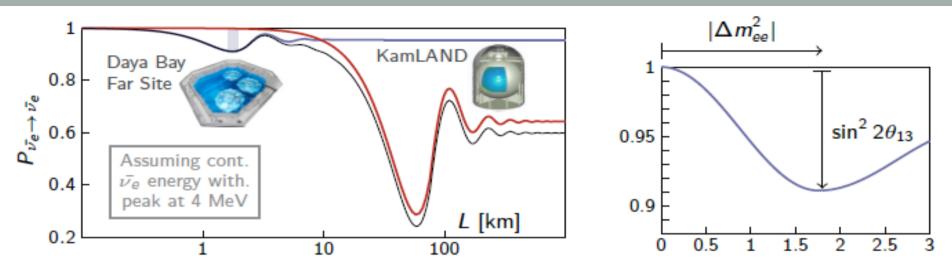
Fundamental Unknowns in Neutrino Oscillation

1. What is the hierarchy of the neutrino mass spectrum, normal or inverted?

- The sign of $\Delta m_{31}^2 = m_3^2 m_1^2$ is not known!
- Currently do not know which neutrino is the heaviest?
- Only have a lower bound on the mass of the heaviest v!

$$\sqrt{2.5 \cdot 10^{-3} \mathrm{eV}^2} \sim 0.05 \; \mathrm{eV}$$

2. What is the octant of the 2-3 mixing angle, lower ($\theta_{23} < 45^{\circ}$) or higher ($\theta_{23} > 45^{\circ}$)?


Measure θ_{23} precisely, Establish deviation from maximality at higher C.L. Then look for Octant

2. Is there CP violation in the leptonic sector, as in the quark sector?

Mixing can cause CP violation in the leptonic sector (if δ_{CP} differs from 0° and 180°) Need to measure the CP-odd asymmetries: $\Delta P_{\alpha\beta} \equiv P(\nu_{\alpha} \to \nu_{\beta}; L) - P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}; L)$ ($\alpha \neq \beta$)

With current knowledge of θ_{13} , resolving these unknowns fall within our reach Sub-leading 3 flavor effects are extremely crucial in current & future oscillation expts

Short Baseline Reactor Neutrino Oscillation

 θ_{13} measured by seeing the deficit of reactor anti-neutrinos at ~ 2 km

 θ_{13} governs overall size of electron anti-neutrino deficit

Effective mass-squared difference $|\Delta m_{ee}^2|$ determines deficit dependence on L/E

$$P_{\bar{\nu_e} \to \bar{\nu_e}} = 1 - \frac{\sin^2 2\theta_{13} \sin^2 \left(\Delta m_{ee}^2 \frac{L}{4E}\right)}{\text{Short Baseline}} - \frac{\sin^2 2\theta_{12} \cos^4 2\theta_{13} \sin^2 \left(\Delta m_{21}^2 \frac{L}{4E}\right)}{\text{Long Baseline}}$$

$$+ \sin^2 \theta_{12} \sin^2 \left(\Delta m_{31}^2 \frac{L}{4E}\right)$$

$$\left|\Delta m^2_{ee}\right| \simeq \left|\Delta m^2_{32}\right| \pm 5.21 \times 10^{-5} {\rm eV}^2$$
 +: Normal Hierarchy -: Inverted Hierarchy

Hierarchy discrimination requires $\sim 2\%$ precision on both Δm_{ee}^2 and $\Delta m_{\mu\mu}^2$

Crucial Issues in Reactor Experiment and Possible Solutions

☐ Problem: Statistics

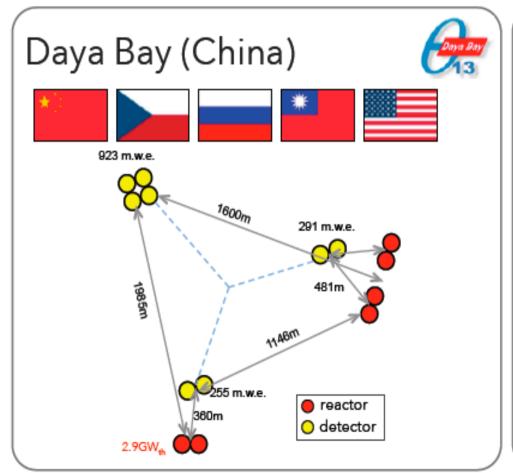
Solution: Powerful Reactors (17.6 GW_{th}) and

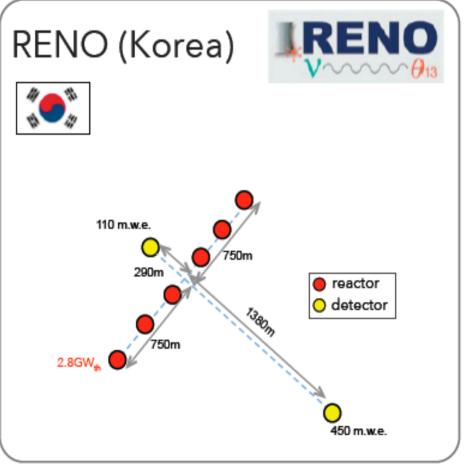
Large Detectors (80 ton at Far Site)

☐ Problem: Reactor-related uncertainty

Solution: Far/Near relative measurement

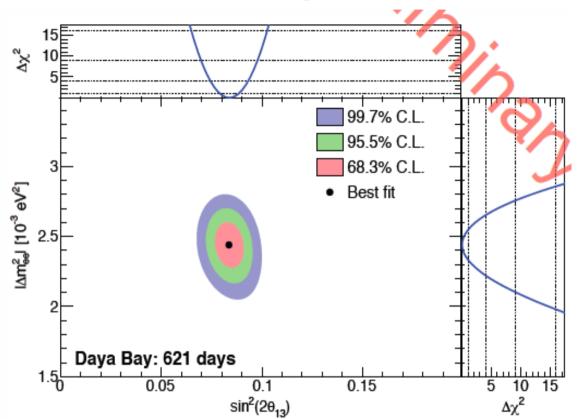
☐ Problem: Detector-related uncertainty


Solution: Multiple functional identical detectors (4 Near + 4 Far)


☐ Problem: Background

Solution: Deep underground (860 m.w.e. at far site)

Currently Running Reactor θ_{13} Experiments


Key Features of three Reactor Experiments

Experiment	Double Chooz	Daya Bay	RENO
# of reactors (total power)	2 (9.4 GW)	3 (17.4 GW)	6 (16.8 GW)
Reactor configuration	2	3	6 inline
Detector configuration	1 near + 1 far	2 near + 1 far	1 near + 1 far
Baseline [m]	(400, 1050)	(364, 480, 1912)	(290, 1380)
Overburden [m.w.e.]	(120, 300)	(280, 300, 880)	(120, 450)
Target mass [ton]	(8.3, 8.3)	(40, 40, 80)	(16, 16)
Detector geometry	Cylindrical detector (Gd-LS, γ-catcher, buffer)		
Outer shield	0.5m of LS & 0.15 m of steel	2.5m water	1.5m of water
Muon veto system	LS & Scinti-Strip	Water Cerenkov & RPC	Water Cerenkov
Designed sensitivity (90% C.L.)	~0.03	~0.01	~0.02

Daya Bay Strategy: Go strong, big and deep!

Latest Oscillation Results from Daya Bay

Rate + Shape Oscillation Results [Announced in Neutrino 2014]

$$\sin^2 2\theta_{13} = 0.084^{+0.005}_{-0.005}$$

 $|\Delta m^2_{ee}| = 2.44^{+0.10}_{-0.11} \times 10^{-3} \text{eV}^2$
 $\chi^2/NDF = 134.7/146$

6% precision in $\sin^2 2\theta_{13}$ achieved

Strong confirmation of oscillation-interpretation of observed $\bar{\nu_e}$ deficit

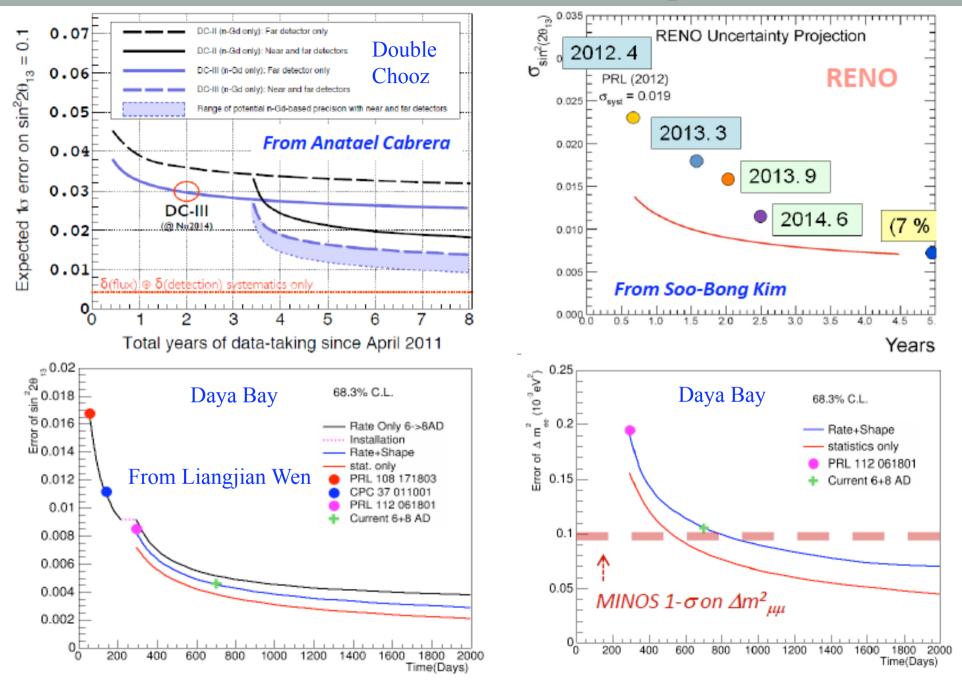
	Normal MH Δm_{32}^2 [10 ⁻³ eV ²]	Inverted MH Δm_{32}^2 [10 ⁻³ eV ²]
From Daya Bay Δm_{ee}^2	$2.39^{+0.10}_{-0.11}$	$-2.49^{+0.10}_{-0.11}$
From MINOS $\Delta m_{\mu\mu}^2$	$2.37^{+0.09}_{-0.09}$	$-2.41^{+0.11}_{-0.09}$

Latest Oscillation Results from RENO & Double Chooz

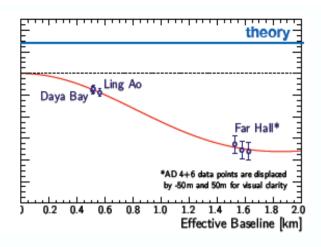
Preliminary Rate-only Results from RENO based on ~800 days data set (Neutrino 2014)

$$\sin^2 2\theta_{13} = 0.101 \pm 0.008 \text{ (stat.)} \pm 0.010 \text{ (sys.)}$$

7.8 σ confirmation of non-zero θ_{13} and 13% precision achieved


Improved Results from Double Chooz Gd-III with 2 times more statistics (Neutrino 2014)

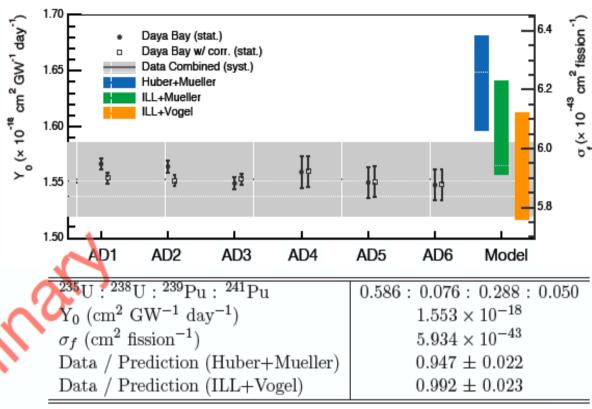
$$\sin^2 2\theta_{13} = 0.09 \pm 0.03$$
 (Rate+Shape)

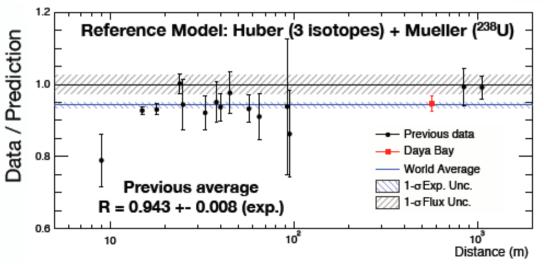

33% precision achieved

Independent confirmation from all the three reactor experiments is very crucial

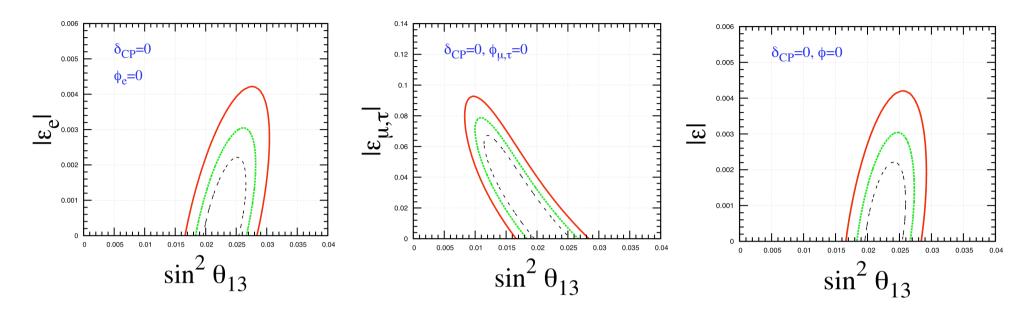
Ultimate Precision in Reactor Experiments

Absolute Reactor Anti-neutrino Flux




Flux Measurement Uncertainty

	Uncertainty
statistics	0.2%
θ_{13}	0.2%
reactor	0.9%
detector efficiency	2.1%
Total	2.3%


Daya Bay's reactor flux measurement is consistent with previous short baseline experiments

Daya Bay: Neutrino 2014

Probing Non-Standard Interactions at Daya Bay

$$P_{\bar{\nu}_{e}^{S} \to \bar{\nu}_{e}^{d}}^{NSI-e} \simeq P_{\bar{\nu}_{e} \to \bar{\nu}_{e}}^{SM} + 4|\varepsilon_{e}|\cos\phi_{e} + 4|\varepsilon_{e}|^{2} + 2|\varepsilon_{e}|^{2}\cos2\phi_{e}$$

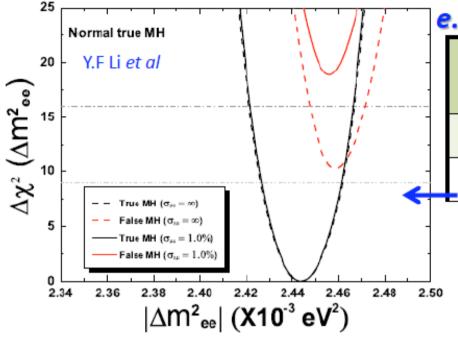
$$P_{\bar{\nu}_{e}^{S} \to \bar{\nu}_{e}^{d}}^{NSI-\mu} \simeq P_{\bar{\nu}_{e} \to \bar{\nu}_{e}}^{SM} + 2|\varepsilon_{\mu}|^{2} - 4\{s_{23}^{2}|\varepsilon_{\mu}|^{2} + 2s_{13}s_{23}|\varepsilon_{\mu}|\cos(\delta - \phi_{\mu})\}\sin^{2}\Delta_{31}$$

$$P_{\bar{\nu}_{e}^{S} \to \bar{\nu}_{e}^{d}}^{NSI-\alpha} \simeq P_{\bar{\nu}_{e} \to \bar{\nu}_{e}}^{SM} + 4|\varepsilon|\cos\phi + 2|\varepsilon|^{2}(4 + \cos2\phi)$$

$$- 4\{|\varepsilon|^{2} + 2s_{23}c_{23}|\varepsilon|^{2} + 2s_{13}|\varepsilon|\cos(\delta - \phi)(s_{23} + c_{23})\}\sin^{2}\Delta_{31}$$

Agarwalla, Bagchi, Forero, Tortola, in preparation

NSI at production and detection


New Constraints on NSI from Daya Bay

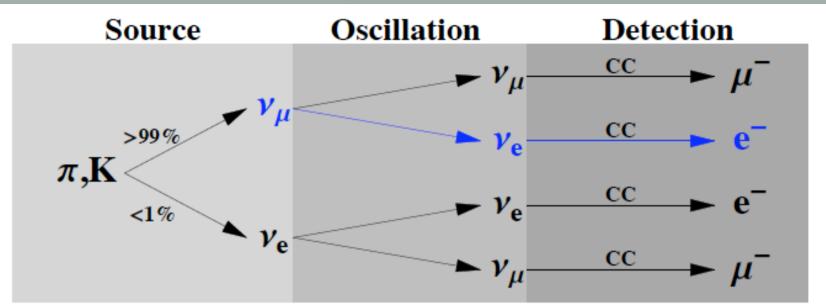
phases	$\sin^2 \theta_{13}$	ε		
•	electron-type NSI coupling			
$\delta = \phi_e = 0$	$0.019 \le \sin^2 \theta_{13} \le 0.027$	$ \varepsilon_e \le 0.0024$		
$\delta = 0, \phi_e \text{ free}$	$0.019 \le \sin^2 \theta_{13} \le 0.027$	$ \varepsilon_e $ unbound		
m	uon-tau type NSI coupling	S		
$\delta = \phi_{\mu,\tau} = 0$	$0.011 \le \sin^2 \theta_{13} \le 0.026$	$ \varepsilon_{\mu,\tau} \le 0.070$		
$(\delta - \phi_{\mu,\tau})$ free	$0.011 \le \sin^2 \theta_{13} \le 0.045$	$ \varepsilon_{\mu,\tau} \le 0.069$		
	universal NSI couplings			
$\delta = \phi_{\alpha} = 0$	$0.019 \le \sin^2 \theta_{13} \le 0.026$	$ \varepsilon \le 0.0024$		
δ free, $\phi_{\alpha} = 0$	$0.019 \le \sin^2 \theta_{13} \le 0.028$	$ \varepsilon \le 0.0023$		
$\delta = 0, \phi_{\alpha} \text{ free}$	$\sin^2\theta_{13} \le 0.026$	$ \varepsilon \le 0.116$		
δ and ϕ_{α} free	$\sin^2\theta_{13} \le$	$ \varepsilon \leq$		

90% C.L. bounds (1 d.o.f.) taking fixed normalization of reactor flux

Agarwalla, Bagchi, Forero, Tortola, in preparation

Medium-baseline Reactor Oscillation Experiments

Ref: Y.F Li et al, PRD 88, 013008 (2013)	Relative Meas.	(a)Use absolute ∆m²
Ideal case	4σ	5σ
(b)Realistic case	3σ	4σ


- (a) If accelerator experiments, e.g NOvA, T2K, can measure $\Delta M^2_{\mu\mu}$ to ~1% level
- (b) Take into account multiple reactor cores, uncertainties from energy non-linearity, etc

	30	- \	. , ,	¬.
	25 -	PRD 88,	6 years Ideal distribution	
Î	20	013008 (2013)	L = 52 km	」
$\Delta\chi^{_{2}}$ (MH)	15			
\triangleleft	10	·		
	5 -			
	٥			
	2.0	2.5 3.0 <i>E</i> res		4.0

	Current	e.g JUNO
Δm_{12}^2	~3%	~0.5%
Δm^2_{23}	~4%	~0.6%
$sin^2\theta_{12}$	~7%	~0.7%
$sin^2\theta_{23}$	~15%	N/A
$sin^2\theta_{13}$	~6 %→ ~4%	~ 15%

Courtesy Liangjian Wen, talk at Neutrino 2014

Superbeams

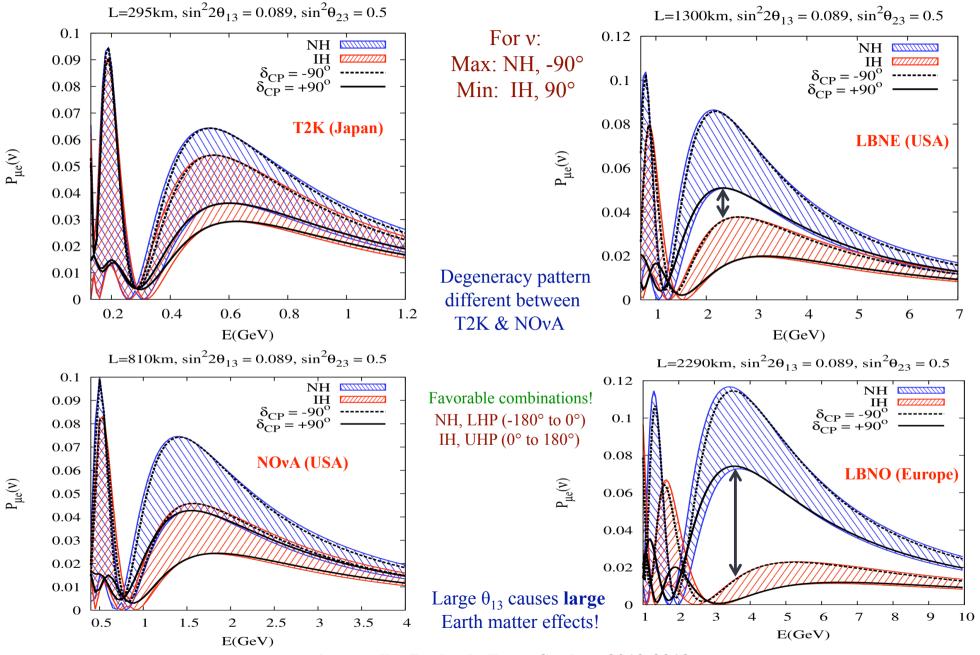
Traditional approach: Neutrino beam from pion decay

Current Generation Experiments:

Tokai to Kamioka (T2K): 295 km (2.5° off-axis, 1st Osc. Max = 0.6 GeV)

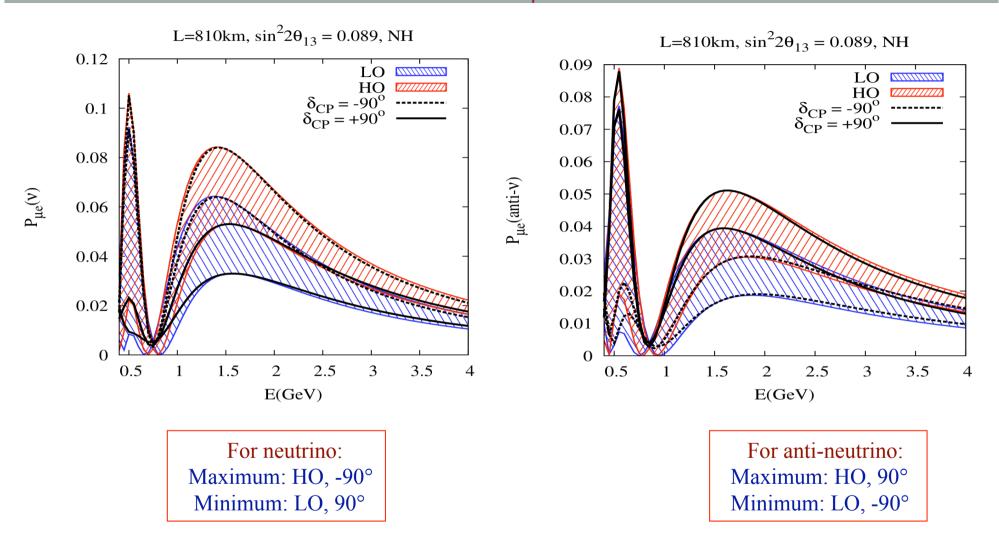
J-PARC Beam: 0.75 MW, Total 7.8 × 10²¹ protons on target, 5 years v run

Detector: Super-Kamiokande (22.5 kton fiducial volume)


FNAL to Ash River (NOvA): 810 km (0.8° off-axis, 1st Osc. Max = 1.7 GeV) NuMI Beam: 0.7 MW, Total 3.6×10^{21} protons on target, 3 yrs v + 3 yrs anti-v Detector: 14 kton Totally Active Scintillator Detector (TASD)

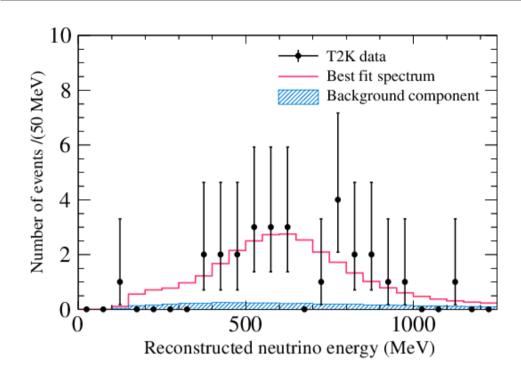
Three Flavor Effects in $v_{\mu} \rightarrow v_{e}$ oscillation probability

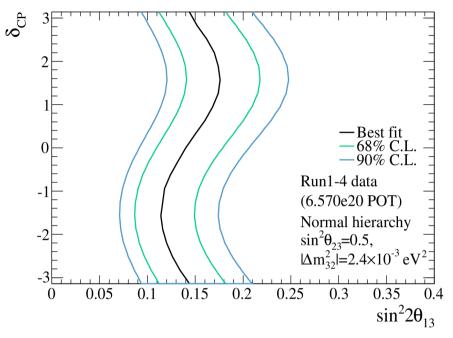
The appearance probability $(\nu_{\mu} \rightarrow \nu_{e})$ in matter, upto second order in the small parameters $\alpha \equiv \Delta m_{21}^2/\Delta m_{31}^2$ and $\sin 2\theta_{13}$, $\frac{\sin^2 2\theta_{13} \sin^2 \theta_{23}}{(1-\hat{A})^2} \frac{\sin^2 [(1-\hat{A})\Delta]}{(1-\hat{A})^2} \rightarrow \theta_{13} \text{ Driven}$ $\alpha \frac{1}{\alpha} \frac{\sin 2\theta_{13} \xi \sin \delta_{CP} \sin(\Delta)}{\hat{A}} \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})} \implies \text{CP odd}$ Resolves octant + $\alpha \sin 2\theta_{13} \xi \cos \delta_{CP} \cos(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})} \implies \text{CP even}$ $+\underbrace{\alpha^2\cos^2\theta_{23}\sin^22\theta_{12}}_{0.0000};$ \Longrightarrow Solar Term where $\Delta \equiv \Delta m_{31}^2 L/(4E)$, $\xi \equiv \cos \theta_{13} \sin 2\theta_{21} \sin 2\theta_{23}$, and $\hat{A} \equiv \pm (2\sqrt{2}G_F n_e E)/\Delta m_{31}^2$ Cervera etal., hep-ph/0002108 Freund etal., hep-ph/0105071 changes sign with $sgn(\Delta m_{31}^2)$ changes sign with polarity See also, Agarwalla etal., arXiv:1302.6773 [hep-ph] key to resolve hierarchy! causes fake CP asymmetry!


This channel suffers from: (Hierarchy – δ_{CP}) & (Octant – δ_{CP}) degeneracy! How can we break them?

Hierarchy – δ_{CP} degeneracy in $v_{\mu} \rightarrow v_{e}$ oscillation channel

Agarwalla, Prakash, Raut, Sankar, 2012-2013

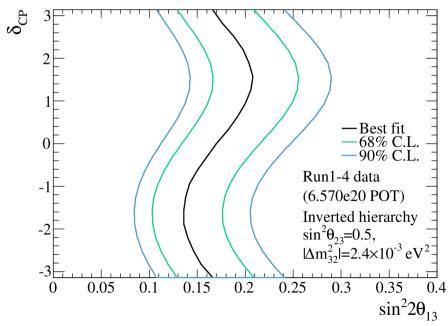

$Octant - \delta_{CP}$ degeneracy in $v_{\mu} \rightarrow v_{e}$ oscillation channel



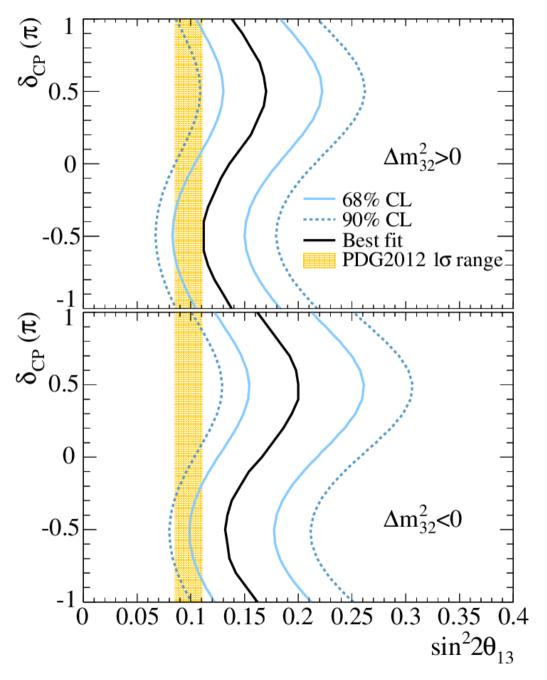
Unfavorable CP values for neutrino are favorable for anti-neutrino & vice-versa

Agarwalla, Prakash, Sankar, arXiv: 1301.2574

T2K v_e Appearance Results


Observed events: 28

Expected background: 4.92 ± 0.55

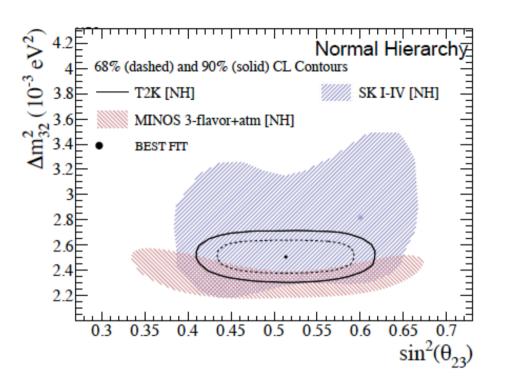

If $\sin^2 2\theta_{13} = 0.1$, $\sin^2 \theta_{23} = 0.5$, and $\delta_{CP} = 0$ 21.6 events expected

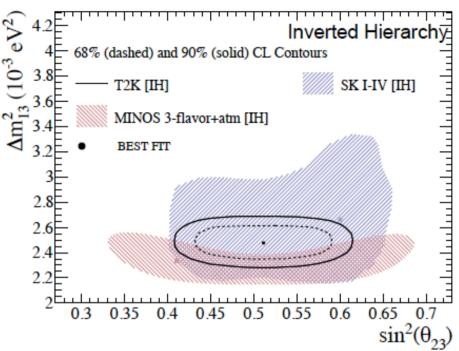
7.3 σ confirmation for non-zero θ_{13}

Important Synergy between Reactor and Accelerator data

First hint of δ_{CP} combining Reactor and Accelerator data

Best overlap is for Normal hierarchy & $\delta_{CP} = -\pi/2$

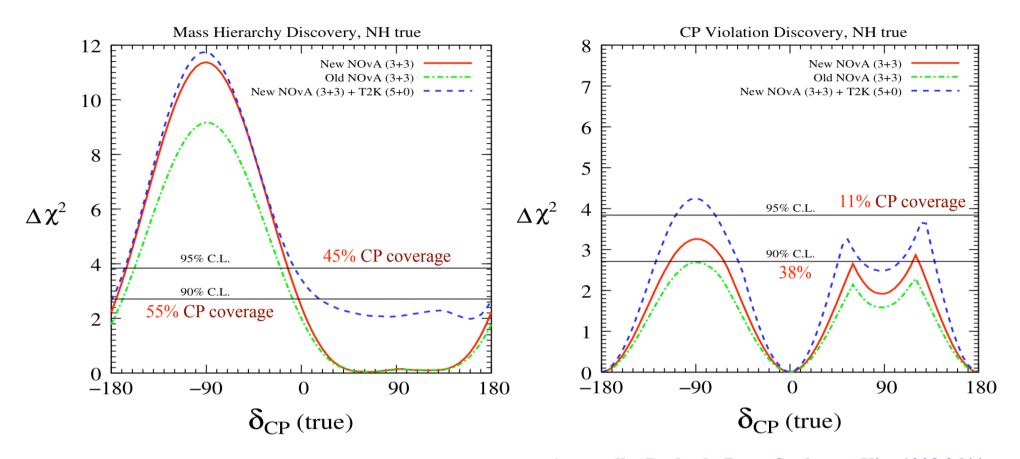

- **★** Is Nature very kind to us?
- **★** Are we very lucky?
- **★ Is CP violated maximally?**


Strong motivation for anti-neutrino run in T2K

In these plots, atmospheric parameters are marginalized over

Courtesy C. Walter (T2K Collaboration) Talk at Neutrino 2014

T2K Disappearance Results

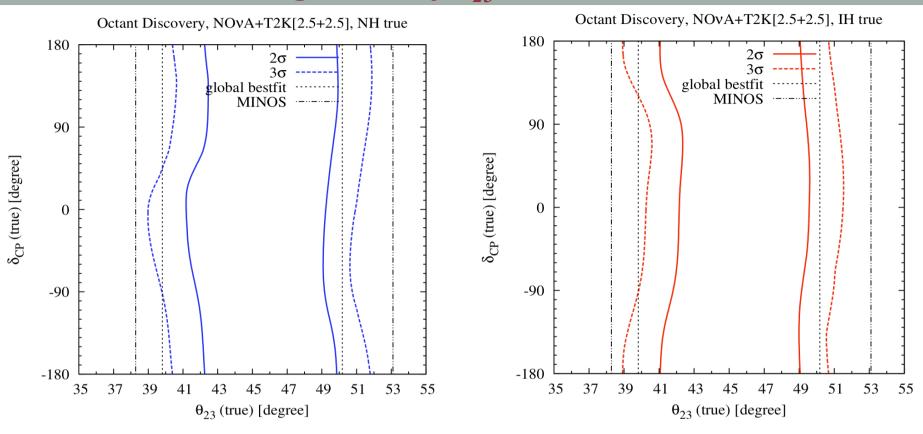


		Best-fit ± FC 68% CL (Δm² units 10 ⁻³ eV²/c⁴)
NILL	$\sin^2\!\theta_{23}$	0.514+0.055
NH	Δm_{32}^2	2.51 ± 0.10
	$\sin^2\!\theta_{23}$	0.511 ± 0.055
IH	Δm_{12}^2	2.48 ± 0.10

Mixing angle is better constrained by T2K in comparison to SK and MINOS

Talk by C. Walter in Neutrino 2014

Mass Hierarchy & CP Violation Discovery with T2K and NOvA

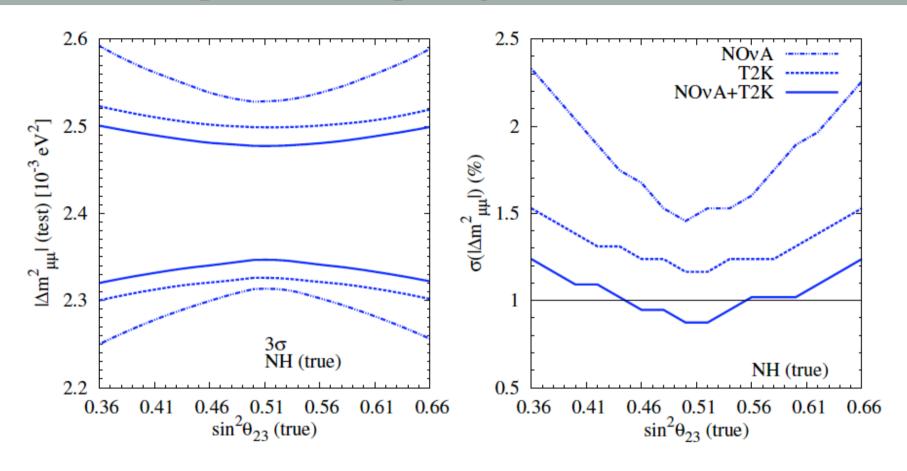


Agarwalla, Prakash, Raut, Sankar, arXiv: 1208.3644

Adding data from T2K and NOvA is useful to kill the intrinsic degeneracies

CP asymmetry ∞ 1/sin2 θ_{13} , large θ_{13} increases statistics but reduces asymmetry, Systematics are important

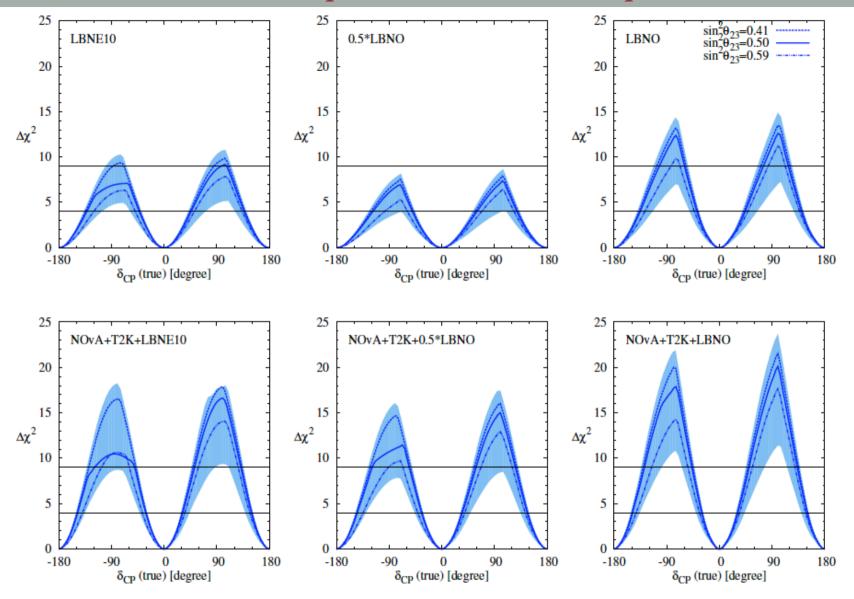
Resolving Octant of θ_{23} with T2K and NOvA



Agarwalla, Prakash, Sankar, arXiv:1301.2574 [hep-ph]

If θ_{23} < 41° or θ_{23} > 50°, we can resolve the octant issue at 2 σ irrespective of δ_{CP} If θ_{23} < 39° or θ_{23} > 52°, we can resolve the octant issue at 3 σ irrespective of δ_{CP}

Important message: T2K must run in anti-neutrino mode in future!


Atmospheric Mass Splitting with T2K and NOvA

True $\sin^2 \theta_{23}$	$T2K(5\nu)$	$NO\nu A (3\nu + 3\bar{\nu})$	$T2K + NO\nu A$
0.36	1.53%	2.33%	$1.24\% \ (2.41^{+0.09}_{-0.09})$
0.50	1.16%	1.45%	$0.87\% \ (2.41^{+0.07}_{-0.06})$
0.66	1.53%	2.26%	$1.24\% \ (2.41^{+0.09}_{-0.09})$

Agarwalla, Prakash, Wang, arXiv:1312.1477 [hep-ph]

T2K and NOvA help Next Generation Experiments

Agarwalla, Prakash, Sankar, arXiv:1304.3251 [hep-ph]

T2K and NOvA will play crucial role in the first phase of LBNE and LBNO

T2K and NOvA help Next Generation Experiments

Catana	Fraction of $\delta_{\mathrm{CP}}(\mathrm{true})$	
Setups	2σ confidence level	3σ confidence level
LBNE10 (10 kt)	0.51	0.03
$LBNE10 + T2K + NO\nu A$	0.63	0.43
0.5*LBNO (10 kt)	0.40	0.0
$0.5*LBNO + T2K + NO\nu A$	0.63	0.37
LBNO (20 kt)	0.51	0.23
$LBNO + T2K + NO\nu A$	0.69	0.46

Agarwalla, Prakash, Sankar, arXiv:1304.3251 [hep-ph]

T2K and NOvA will play crucial role in the first phase of LBNE and LBNO

A Personal View of Sheldon Lee Glashow

Is observable CP violation confined to hadrons?

I would assign very high priority to experiments that could demonstrate the existence of CP violating effects in the neutrino sector

The other important mass-related issue is the binary choice between two orderings of neutrino masses

The accuracy with which oscillation parameters are already known surely suffices for the design of an experiment that can accomplish this goal

Particle Physics in the United States
A Personal View
Sheldon Lee Glashow
arXiv:1305.5482v1 [hep-ph]

!! Let us work together and resolve these fundamental issues!!

Thank you!

CKM vs. PMNS Precision

Recent discovery of θ_{13} signifies an important breakthrough in establishing the standard three flavor oscillation picture of neutrinos

It has opened up exciting possibilities for current & future oscillation experiments

At present, we have:

$$|U|_{\text{LEP}(3\sigma)} = \begin{pmatrix} 0.799 \to 0.844 & 0.515 \to 0.581 & 0.129 \to 0.173 \\ 0.212 \to 0.527 & 0.426 \to 0.707 & 0.598 \to 0.805 \\ 0.233 \to 0.538 & 0.450 \to 0.722 & 0.573 \to 0.787 \end{pmatrix}$$

Satisfactory progress in last 15 years but still very far from the 'dream' precision:

$$|V|_{\text{CKM}} = \begin{pmatrix} 0.97427 \pm 0.00015 & 0.22534 \pm 0.0065 & (3.51 \pm 0.15) \times 10^{-3} \\ 0.2252 \pm 0.00065 & 0.97344 \pm 0.00016 & (41.2^{+1.1}_{-5}) \times 10^{-3} \\ (8.67^{+0.29}_{-0.31}) \times 10^{-3} & (40.4^{+1.1}_{-0.5}) \times 10^{-3} & 0.999146^{+0.000021}_{-0.000046} \end{pmatrix}$$

Present Understanding of the 2-3 Mixing Angle

Information on θ_{23} comes from: a) atmospheric neutrinos and b) accelerator neutrinos

In two-flavor scenario:
$$P_{\mu\mu} = 1 - \sin^2 2\theta_{\rm eff} \sin^2 \left(\frac{\Delta m_{\rm eff}^2 L}{4E}\right)$$

For accelerator neutrinos: relate effective 2-flavor parameters with 3-flavor parameters:

$$\Delta m_{\text{eff}}^2 = \Delta m_{31}^2 - \Delta m_{21}^2 (\cos^2 \theta_{12} - \cos \delta_{\text{CP}} \sin \theta_{13} \sin 2\theta_{12} \tan \theta_{23})$$

$$\sin^2 2\theta_{\text{eff}} = 4\cos^2 \theta_{13}\sin^2 \theta_{23} \left(1 - \cos^2 \theta_{13}\sin^2 \theta_{23}\right)$$
 where $\frac{|U_{\mu 3}|^2}{|U_{\tau 3}|^2} = \tan^2 \theta_{23}$

Nunokawa etal, hep-ph/0503283; A. de Gouvea etal, hep-ph/0503079

Combining beam and atmospheric data in MINOS, we have:

MINOS Collaboration: arXiv:1304.6335v2 [hep-ex]

$$\sin^2 2\theta_{\rm eff} = 0.95^{+0.035}_{-0.036} \ (10.71 \times 10^{21} \ \rm p.o.t) \\ \sin^2 2\bar{\theta}_{\rm eff} = 0.97^{+0.03}_{-0.08} \ (3.36 \times 10^{21} \ \rm p.o.t)$$

Atmospheric data, dominated by Super-Kamiokande, still prefers maximal value of $\sin^2 2\theta_{eff} = 1 \ (\geq 0.94 \ (90\% \ C.L.))$

Talk by Y. Itow in Neutrino 2012 conference, Kyoto, Japan

Bounds on θ_{23} from the global fits

In v_{μ} survival probability, the dominant term mainly sensitive to $sin^22\theta_{23}!$

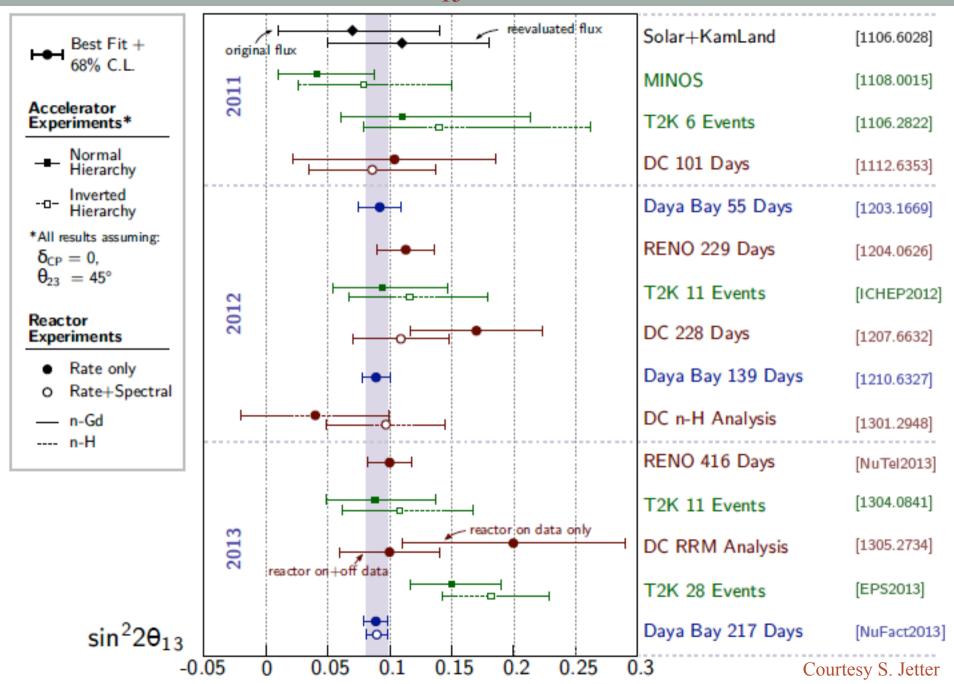
If $\sin^2 2\theta_{23}$ differs from 1 (as indicated by recent data), we get two solutions for θ_{23} :

one in lower octant (LO: θ_{23} < 45 degree), other in higher octant (HO: θ_{23} > 45 degree)

In other words, if $(0.5 - \sin^2\theta_{23})$ is +ve (-ve) then θ_{23} belongs to LO (HO)

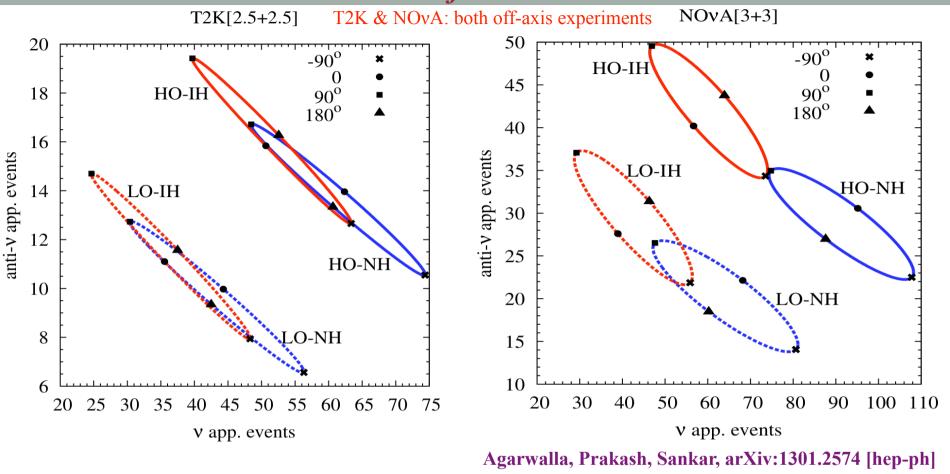
This is known as the octant ambiguity of θ_{23} !

Fogli and Lisi, hep-ph/9604415


Conferences	After Neutrino 2012	After NeuTel 2013	After TAUP 2013
$\sin^2 \theta_{23}$	$0.41^{+0.037}_{-0.025} \oplus 0.59^{+0.021}_{-0.022}$	$0.437^{+0.061}_{-0.031}$	$0.446^{+0.007}_{-0.007} \oplus 0.587^{+0.032}_{-0.037}$
3σ range	$0.34 \to 0.67$	$0.357 \rightarrow 0.654$	$0.366 \to 0.663$
1σ precision (relative)	13.4%	11.3%	11.1%

Based on Gonzalez-Garcia, Maltoni, Salvado, Schwetz, http://www.nu-fit.org

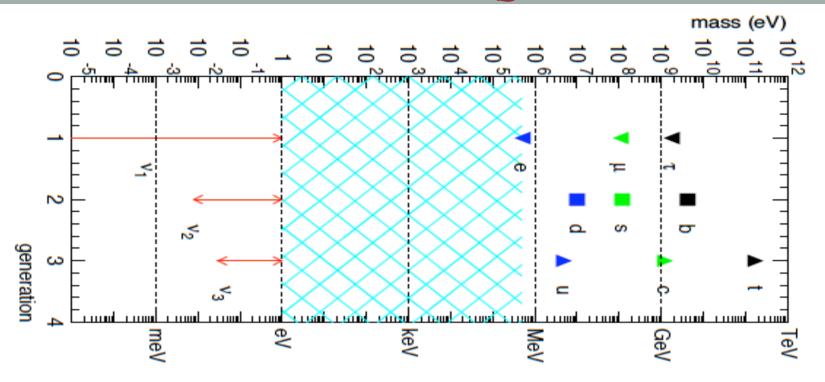
Global fit disfavors maximal 2-3 mixing at 1.4 σ confidence level (mostly driven by MINOS) v_{μ} to v_{e} oscillation data can break this degeneracy!


The preferred value would depend on the choice of the neutrino mass hierarchy!

The θ_{13} Revolution

S. K. Agarwalla, Alumni Day Celebration, Institute of Physics, Bhubaneswar, India, 3rd September, 2014

Bi-Event Plots for T2K and NOvA

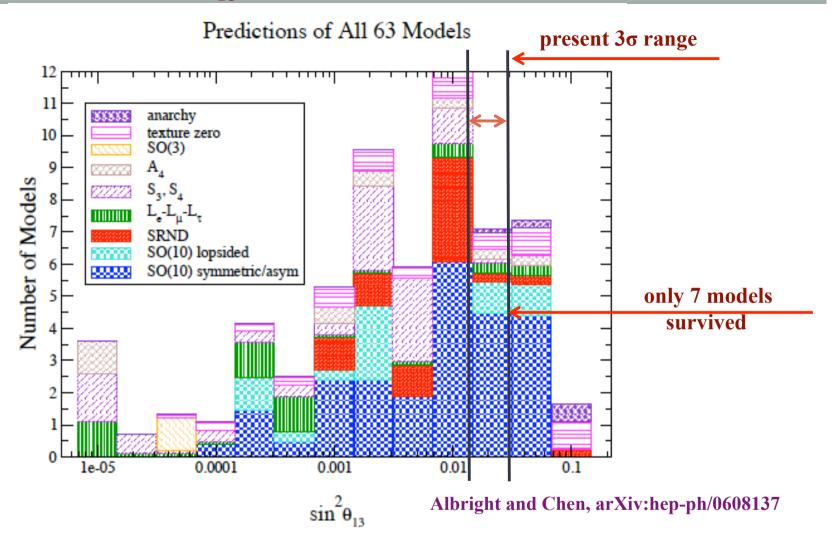

v vs. anti-v events for various octant-hierarchy combinations, ellipses due to varying δ_{CP} !

If $\delta_{CP} = -90^{\circ}$ (90°), the asymmetry between v and anti-v events is largest for NH (IH)

Hierarchy discovery: data from two experiments with widely different baselines mandatory!

Octant discovery: balanced v & anti-v runs needed in each experiment!

The Two Fundamental Questions


Why are neutrinos so light? The origin of Neutrino Mass!

	Neutrinos (PMNS)	Quarks (CKM)
θ_{12}	35°	13°
θ_{32}	43°	2°
θ_{13}	9°	0.2°
δ	unknown	68°

Why are lepton mixings so different from quark mixings?

The Flavor Puzzle!

Latest Results on θ_{13} : What happened to Mass models?

Survey of 63 v mass models in June 2006 by Carl H. Albright and Mu-Chun Chen

Future high precision measurements of mixing angles, new information on neutrino mass ordering and CP phase will severely constrain these presently allowed models

Implications of Recent Measurement of θ_{13}

Simplest models that are ruled out!

■ Bimaximal mixing: [Vissani (97), Barger, Pakvasa, Weiler, Whisnant (98)]

It predicts: $\theta_{12} = 45^{\circ}$, $\theta_{23} = 45^{\circ}$, and $\theta_{13} = 0^{\circ}$

predicted in flavor symmetry models with symmetry groups like A4, S4, A5

■ Tri-bimaximal mixing: [Vissani (97), Harrison, Perkins, Scot (02)]

$$U_{\text{TBM}} = R_{32} \left(\theta_{32} = \frac{\pi}{4} \right) R_{13} (\theta_{13} = 0) R \left(\theta_{21} = \tan^{-1} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{6}} \begin{pmatrix} 2 & \sqrt{2} & 0 \\ -1 & \sqrt{2} & \sqrt{3} \\ 1 & -\sqrt{2} & \sqrt{3} \end{pmatrix}$$

■ Golden ratio: [Datta, Ling, Ramond (03), Kajiyama, Raidal, Strumia (07)] It predicts: $\theta_{12} = 31.7^{\circ}$, $\theta_{23} = 45^{\circ}$, and $\theta_{13} = 0^{\circ}$

Simplest models that are still alive!

- Anarchy (v mass matrix completely random): [Hal, Murayama, Weiner (99), de Gouvea, Murayama (03, 12)] It predicts: large θ_{13} , okay with observed value of θ_{13}
- Quark-Lepton Complementarity: [Minakata, Smirnov (94), Raidal (04)]

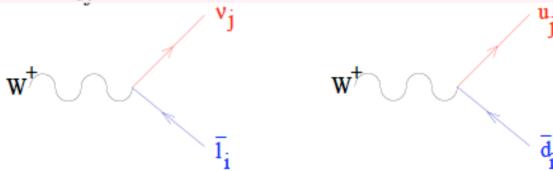
Based on observation: θ_{12} (PMNS) + θ_{12} (CKM) = 45°

It predicts: $\sin \theta_{13} \approx \sin \theta_{C} / \sqrt{2} \approx 0.16$ (close to the observed value, other relations needs to be tested!)

Backup Slides

The New Minimal Standard Model

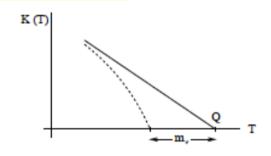
- Minimal Extensions to give Mass to the Neutrino:
 - * Introduce ν_R AND impose L conservation \Rightarrow Dirac $\nu \neq \nu^c$:


$$\mathcal{L} = \mathcal{L}_{SM} - M_{\nu} \overline{\nu_L} \nu_R + h.c.$$

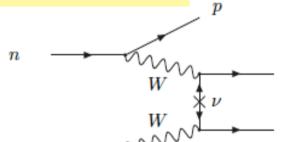
* NOT impose L conservation \Rightarrow Majorana $\nu = \nu^c$

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{2} M_{\nu} \overline{\nu_L} \nu_L^C + h.c.$$

The charged current interactions of leptons are not diagonal (same as quarks)


$$\frac{g}{\sqrt{2}} W_{\mu}^{+} \sum_{ij} \left(U_{\rm LEP}^{ij} \, \overline{\ell^{i}} \, \gamma^{\mu} \, L \, \nu^{j} \, + \, U_{\rm CKM}^{ij} \, \overline{U^{i}} \, \gamma^{\mu} \, L \, D^{j} \right) \, + \, h.c.$$

Backup Slides


Neutrino Mass Scale

Single β decay: Dirac or Majorana ν mass modify spectrum endpoint

$$m_{\nu_e}^2 = \sum m_j^2 |U_{ej}|^2 = c_{13}^2 c_{12}^2 m_1^2 + c_{13}^2 s_{12}^2 m_2^2 + s_{13}^2 m_3^2$$

 ν -less Double- β decay: \Leftrightarrow Majorana $\nu's$ sensitive to Majorana phases

If
$$m_{
u}$$
 only source of $\Delta L ~ (T_{1/2}^{0
u})^{-1} \propto (m_{ee})^2$

$$m_{ee} = |\sum U_{ej}^2 m_j|$$

COSMO Neutrino mass (Dirac or Majorana) modify the growth of structures

Backup Slides (Neutrinoless double beta decay)

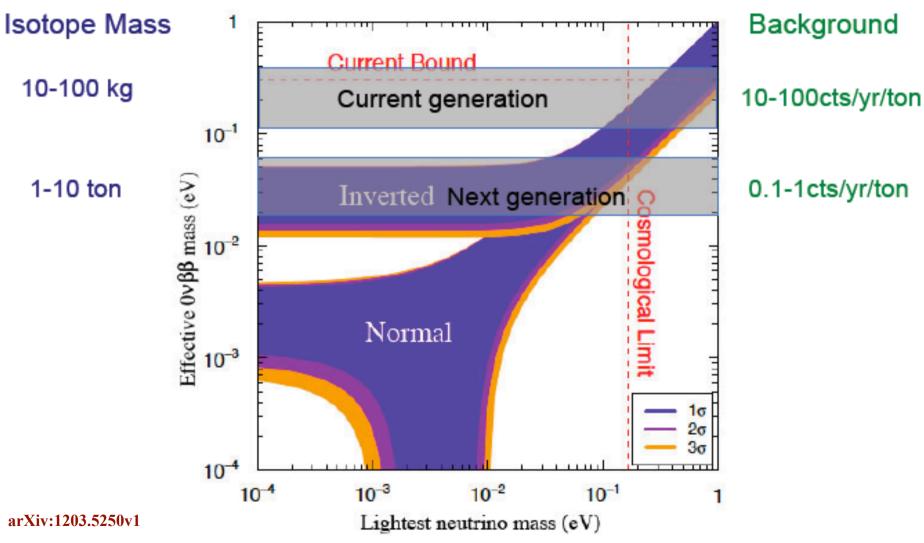
Experimental Limits

Isotope	0vββ half life	Experiment	<m> eV</m>
⁴⁸ Ca	> 1.4*10 ²² (90%CL)	ELEGANT-VI	< 7 - 44
⁷⁶ Ge	> 1.9*10 ²⁵ (90%CL)	Heidelberg-Moscow	< 0.35
⁷⁶ Ge	2230+440 ₋₃₁₀ (90%CL)	Subset of HM coll.	0.32 +/- 0.03
⁷⁶ Ge	> 2.1*10 ²⁵ (90%CL)	GERDA†	< 0.2 – 0.4
⁸² Se	> 2.1*10 ²³ (90%CL)	NEMO-3	<1.2 – 3.2
¹⁰⁰ Mo	> 5.8*10 ²³ (90%CL)	NEMO-3	< 0.6 – 2.7
¹¹⁶ Cd	> 1.7*10 ²³ (90%CL)	Solotvino	< 1.7
¹³⁰ Te	> 2.8*10 ²⁴ (90%CL)	Cuoricino	< 0.41 - 0.98
¹³⁶ Xe	> 1.9*10 ²⁵ (90%CL)	KamLAND-Zen††	< 0.12 - 0.25
¹³⁶ Xe	> 1.6×10 ²⁵ (90%CL)	EXO-200†††	< 0.14 - 0.38
¹⁵⁰ Nd	> 1.8*10 ²² (90%CL)	NEMO-3	

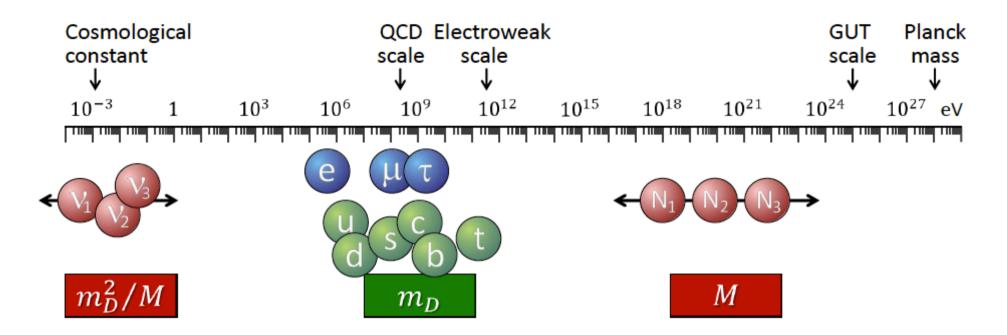
Courtesy to Liang Yang

[F. Avignone, S. Elliot, J. Engel, arXiv:0708: 1033v2 (2007)]

† [GERDA Collaboration, arXiv:1307.4720 (2013]


†† [KamLAND-Zen Collaboration, Phys. Rev. Lett. 110, 062502(2013)]

††† [EXO Collaboration, Phys. Rev. Lett.109, 0322505 (2012)]


Backup Slides (Neutrino Mass)

Experimental Sensitivity to Neutrino Mass

Courtesy to Liang Yang

Backup Slides (See-Saw & Neutrino Mass)

Mass matrix for one family of ordinary and heavy r.h. neutrinos

$$(\overline{\nu}_L, \overline{N}_R)\begin{pmatrix} \mathbf{0} & m_D \\ m_D & \mathbf{M} \end{pmatrix}\begin{pmatrix} \nu_L \\ N_R \end{pmatrix}$$

Diagonalization

$$(\overline{\nu}_L, \overline{N}_R)\begin{pmatrix} m_D^2/M & 0 \\ 0 & M \end{pmatrix}\begin{pmatrix} \nu_L \\ N_R \end{pmatrix}$$

One light and one heavy Majorana neutrino

Courtesy to George Raffelt