Optimization of Neutrino Factory for large θ_{13}

Sanjib Kumar Agarwalla Sanjib.Agarwalla@ific.uv.es

IFIC/CSIC, University of Valencia, Spain

2011-2012: Important Breakthroughs in 1-3 mixing

T2K (Neutrino 2012): $sin^2 2\theta_{13} = 0.036 - 0.21$ @ 90% C.L.

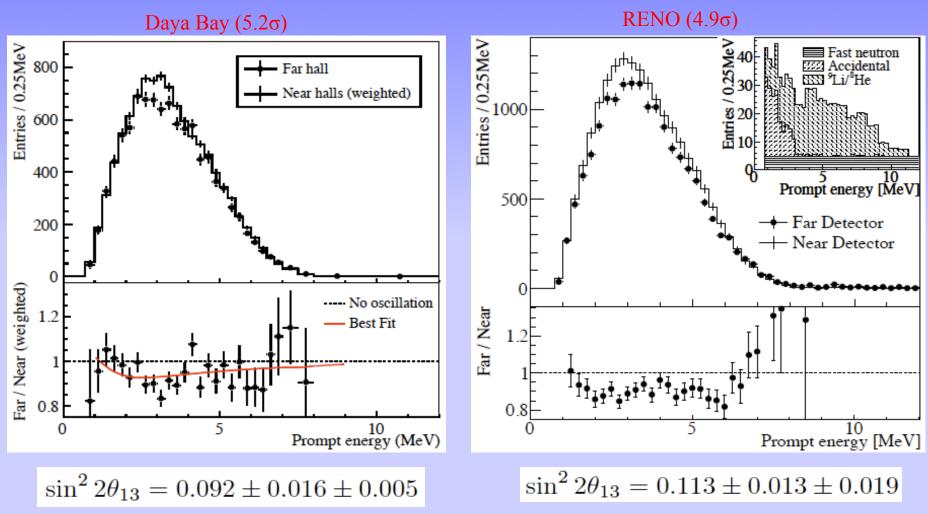
Talk by T. Nakaya at Neutrino 2012 [T2K collaboration]

MINOS (Neutrino 2012): $\sin^2 2\theta_{13} \neq 0$ @ 96% C.L.

Talk by Ryan Nichol at Neutrino 2012 [MINOS collaboration]

Double Chooz (Neutrino 2012): $\sin^2 2\theta_{13} = 0.109 \pm 0.030 \pm 0.025$ @ 68% C.L. Talk by Masaki Ishitsuka at Neutrino 2012 [Double Chooz collaboration]

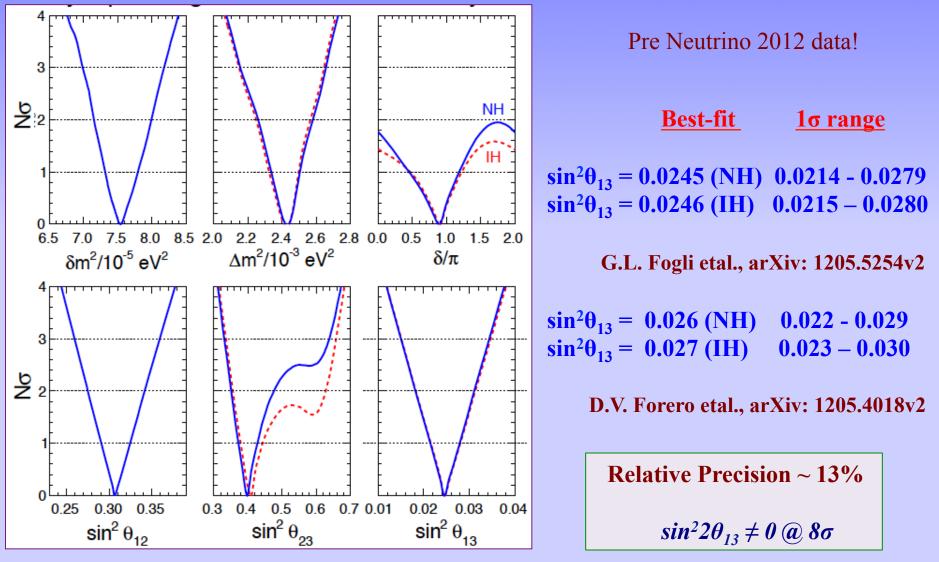
 $sin^2 2\theta_{13} \neq 0$ @ 3.1 σ


Daya Bay (March 2012): $\sin^2 2\theta_{13} = 0.092 \pm 0.016 \pm 0.005$ @ 68% C.L. Daya Bay collaboration, arXiv:1203.1669 [hep-ex]

 $sin^2 2\theta_{13} \neq 0$ @ 5.2 σ

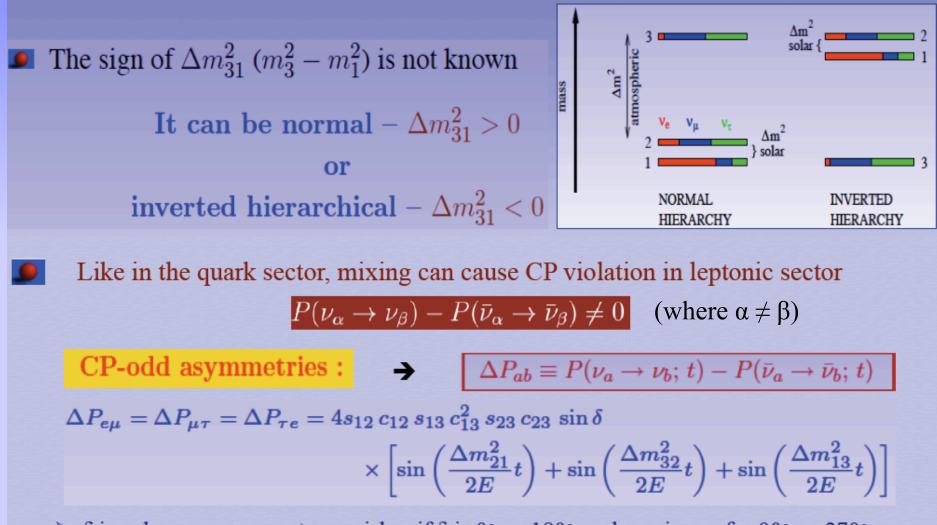
RENO (April 2012): $sin^2 2\theta_{13} = 0.113 \pm 0.013 \pm 0.019$ @ 68% C.L.

RENO collaboration, arXiv:1204.0626v2 [hep-ex]


The θ_{13} Revolution

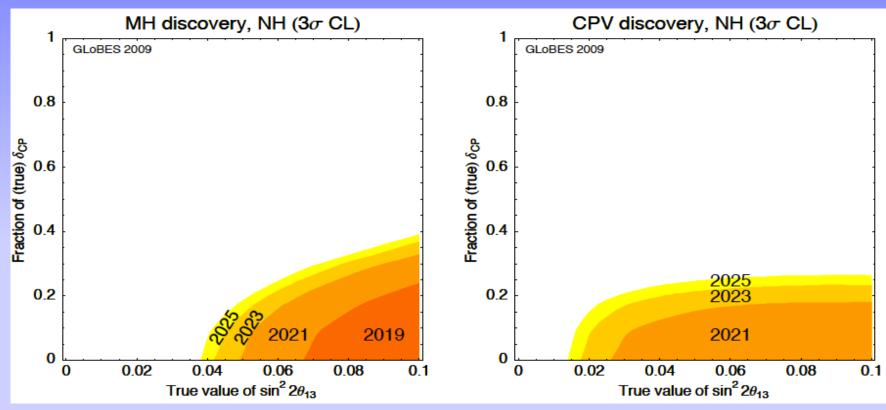
Big News: We have discovered the 1-3 mixing angle!

By the end of 2012, this will be the most precisely known mixing angle in the PMNS matrix!


Global Analysis of World Neutrino Data

G.L. Fogli etal., arXiv: 1205.5254v2 See also, the talk by M. Tortola (in this meeting)

S. K. Agarwalla, 4th EUROnu Annual Meeting, APC, Paris, 13th June, 2012


Big Issues in Neutrino Oscillation

> δ is unknown, asymmetry vanishes if δ is 0° or 180° and maximum for 90° or 270°

> Need at least 3 generations to observe leptonic CP-violation, suppressed by θ_{13}

MH & CPV discovery without new experiments

P. Huber etal., JHEP 11 044 (2009)

Expectation in 2025 without new facilities at 3σ C.L.

Combined results expected from: T2K + NOvA + Double Chooz + Daya Bay + RENO (Including Project X and T2K operating at 1.66 MW)

More than 70% of parameter space are not accessible. New experiments needed

S. K. Agarwalla, 4th EUROnu Annual Meeting, APC, Paris, 13th June, 2012

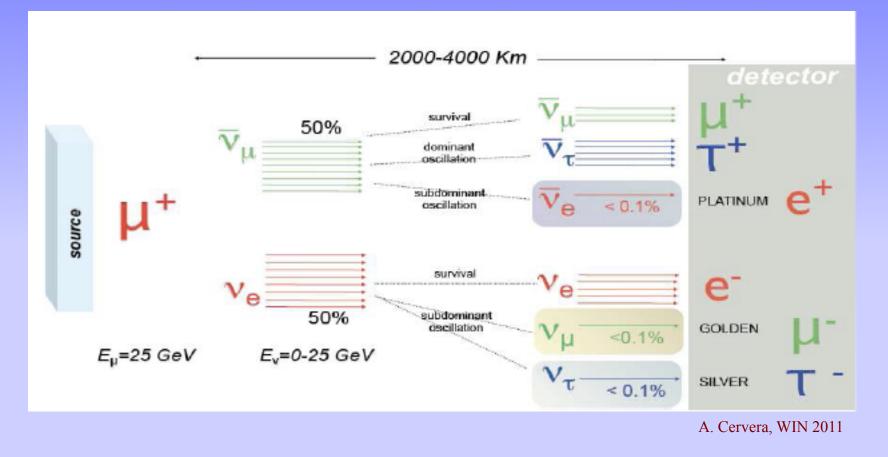
Neutrino Factory: Ultimate Facility

Powerful tool for CP violation discovery for large θ_{13} Excellent sensitivity to neutrino mass hierarchy for 100% values of δ_{CP} Marvelous sensitivity to θ_{23} , can resolve the issue of θ_{23} octant

Better than all other proposed facilities

Best bet to look for NSI, Non-Unitarity

An incremental approach can also be adopted VLENF → LENF → HENF (if needed !)


A good candidate for short baseline searches and cross-section measurement

It may be the first step towards the high energy frontier in form of a muon collider

IDS-NF 1.0

- Two magnetized iron calorimeters (fiducial mass 50 kt) at L = 4000 km and L = 7500 km
- Two racetrack-shaped storage rings pointing towards these detectors
- 2.5 × 10²⁰ useful muon decays per polarity, decay straight, and year, *i.e.*, 10^{21} useful muon decay per year
- Total run time of 10 years, *i.e.*, 10²² useful muon decay in total
- In The parent muon energy is assumed to be $E_{\mu} = 25 \,\mathrm{GeV}$

Signal

Requires a detector which can distinguish μ^- from μ^+

MIND can do that with a magnetic field of around 1 T

Oscillation Channels & Backgrounds

- **D** ν_{μ} appearance: $\nu_{e} \rightarrow \nu_{\mu}$ for μ^{+} stored
- **I** $\bar{\nu}_{\mu}$ appearance: $\bar{\nu}_{e} \rightarrow \bar{\nu}_{\mu}$ for μ^{-} stored
- **I** ν_{μ} disappearance: $\nu_{\mu} \rightarrow \nu_{\mu}$ for μ^{-} stored
- **I** $\bar{\nu}_{\mu}$ disappearance: $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$ for μ^+ stored
- $\blacksquare Include backgrounds from \Rightarrow$
 - 1. charge mis-identification
 - 2. (electron) flavor mis-identification
 - 3. neutral current

We use the GLoBES software for the simulation

P. Huber etal, hep-ph/0407333 and hep-ph/0701187

Golden Channel (P_{eu}) & Eight-fold Degeneracy

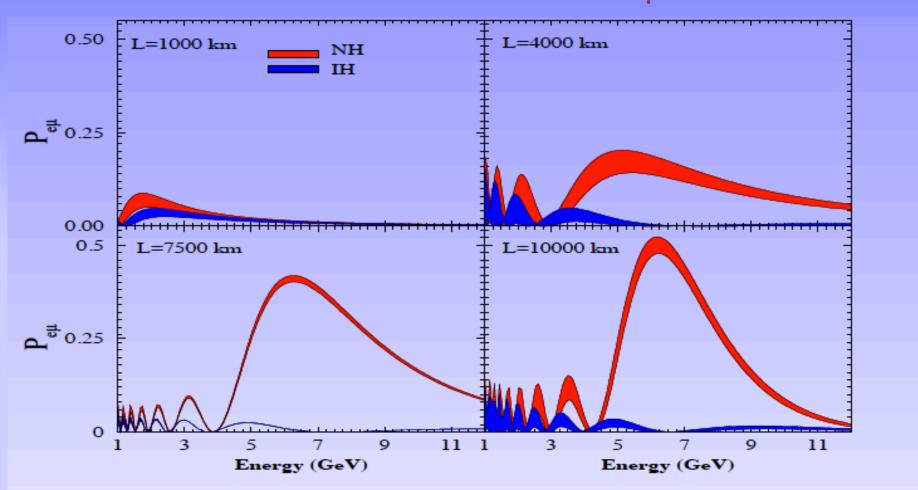
The appearance probability $(\nu_e \rightarrow \nu_\mu)$ in matter, upto second order in the small parameters $\alpha \equiv \Delta m_{21}^2 / \Delta m_{31}^2$ and $\sin 2\theta_{13}$,

$$P_{e\mu} \simeq \sin^2 2\theta_{13} \sin^2 \theta_{23} \frac{\sin^2[(1-\hat{A})\Delta]}{(1-\hat{A})^2} \Longrightarrow \theta_{13} \text{ Driven}$$
$$\sin(\hat{A}\Delta) \sin[(1-\hat{A})\Delta]$$

$$+ \alpha \sin 2\theta_{13} \xi \sin \delta_{CP} \sin(\Delta) \frac{\sin(A\Delta)}{\hat{A}} \frac{\sin[(1-A)\Delta]}{(1-\hat{A})} \Longrightarrow CP \text{ odd}$$

+
$$\alpha \sin 2\theta_{13} \xi \cos \delta_{CP} \cos(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})} \Longrightarrow$$
 CP even

+
$$\alpha^2 \cos^2 \theta_{23} \sin^2 2\theta_{12} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2}$$
; \Longrightarrow Solar Term


where $\Delta \equiv \Delta m_{31}^2 L/(4E)$, $\xi \equiv \cos \theta_{13} \sin 2\theta_{21} \sin 2\theta_{23}$, and $\hat{A} \equiv \pm (2\sqrt{2}G_F n_e E)/\Delta m_{31}^2$

(\(\theta_{13}, \delta_{CP}\)) intrinsic degeneracy
 (sgn(\(\Delta m_{31}^2\)), \(\delta_{CP}\)) degeneracy
 (\(\theta_{23}, \pi/2 - \theta_{23}\)) degeneracy

Severely deteriorates the sensitivity

How can we get rid of these degeneracies?

Transition Probability (P_{eµ})

Agarwalla, Choubey, Raychaudhuri, hep-ph/0610333

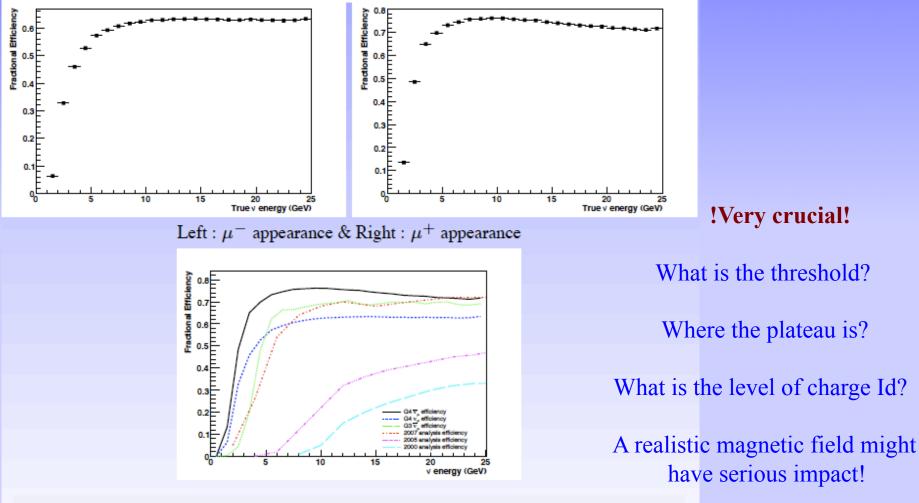
Normal .vs. Inverted hierarchy

$$\sin^2 2\theta_{13} = 0.1$$

MIND Simulations

■ Migration matrices for MIND are available ⇒ map the incident to the reconstructed neutrino energy for all individual signal and background channels

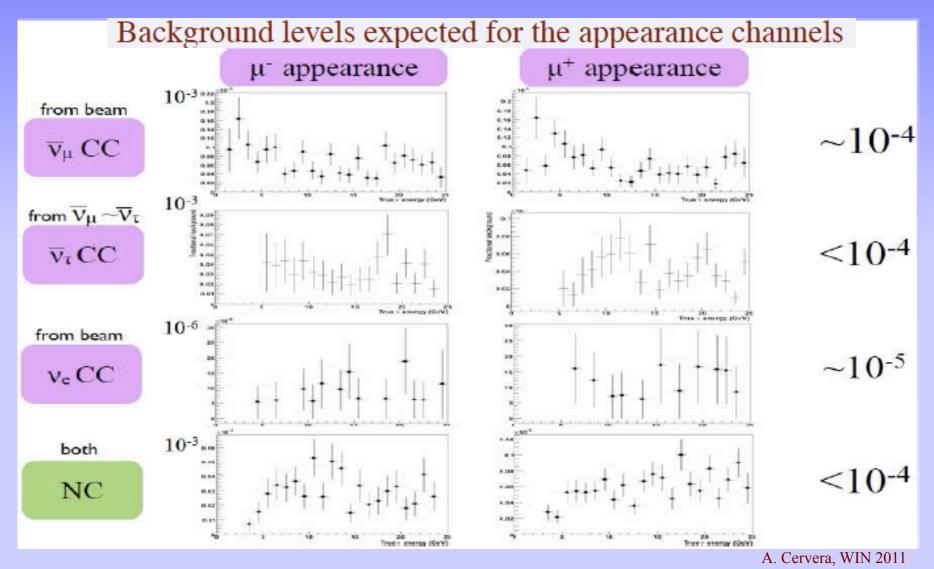
Cervera, Laing, Martin-Albo, Soler, arXiv:1004.0358 [hep-ex]


A. Laing's Ph.D. thesis, Glasgow university (2010)

- Optimized cuts have lead to a ⇒ lower threshold and higher signal efficiencies than in previous versions, while the background level has been maintained in the most recent analysis
- Separate response functions for ν and $\bar{\nu}$ are available \Rightarrow detection efficiency is better for $\bar{\nu}_{\mu}$ compared to ν_{μ}

For latest simulation results on MIND: attend the talks in WP5 (tomorrow)!

S. K. Agarwalla, 4th EUROnu Annual Meeting, APC, Paris, 13th June, 2012


Improved Signal Efficiencies

QES & RES events added, threshold ~ 2 GeV, plateau ~ 5 GeV

For E_{μ} = 10 GeV, the average neutrino energy is around 6.5 GeV How safe is to fully rely around plateau?

Fractional Backgrounds

For large θ_{13} , event rates are higher, can we relax the cuts to allow more backgrounds which can also increase the efficiency?

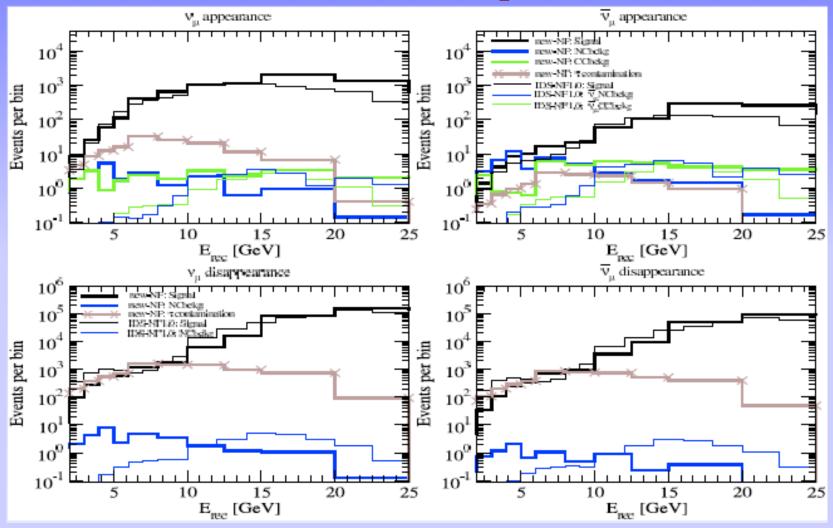
v_{τ} contamination

Issue of ν_{τ} contamination

■ App.:
$$\nu_e \to \nu_\tau \to \tau^- \stackrel{17\%}{\to} \mu^-$$
 (background) versus $\nu_e \to \nu_\mu \to \mu^-$ (signal)

Disapp.:
$$\bar{\nu}_{\mu} \to \bar{\nu}_{\tau} \to \tau^+ \stackrel{17\%}{\to} \mu^+$$
 (background) versus
 $\bar{\nu}_{\mu} \to \bar{\nu}_{\mu} \to \mu^+$ (signal)

MIND cannot resolve the second vertex from the \(\tau\) decay, in contrast to OPERA-like emulsion cloud chamber


For the ν_{τ} contamination ($\nu_e \rightarrow \nu_{\tau}$ and $\nu_{\mu} \rightarrow \nu_{\tau}$ channels), we use the migration matrix from

A. Donini et al., arXiv:1005.2275

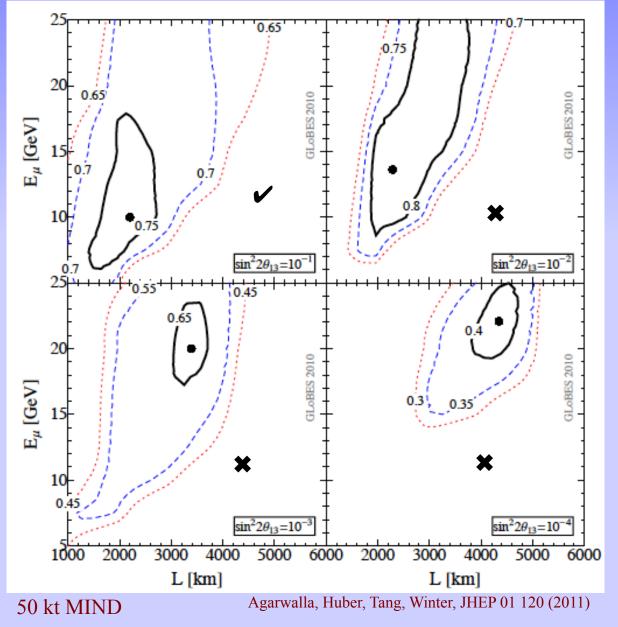
See also, D. Indumathi et al., arXiv:0910.2020

Recent study with improved MIND suggests, this issue is not going to affect the CP violation and mass hierarchy discovery! may affect the θ_{23} precision!

Event Rate Comparison

Agarwalla, Huber, Tang, Winter, JHEP 01 120 (2011)

Thin curves : IDS-NF 1.0 and thick curves : new-NF including backgrounds from ν_{τ} Muon energy = 25 GeV, detector mass = 50kt, L = 4000 km, $\theta_{13} = 5.6^{\circ}$ & $\delta_{CP} = 0$


Event Rates

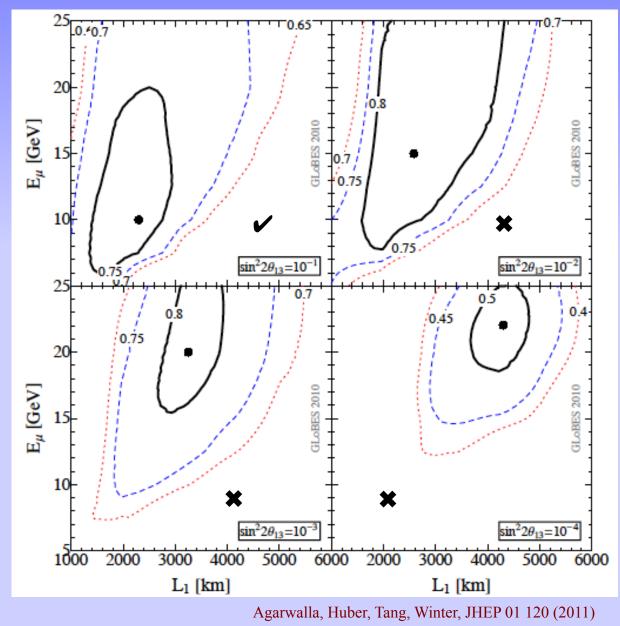
	Signal	NC bckg	CC bckg	ν_{τ} bckg
$ u_{\mu}$ (app)	7521	20	25	142
$\bar{\nu}_{\mu}$ (app)	924	45	39	13
ν_{μ} (disapp)	$4.0 imes 10^5$	31	-	8154
$\bar{\nu}_{\mu}$ (disapp)	2.4×10^5	8	-	4337

Event rates for new-NF τ 50kt detector, L = 4000 km, muon energy of 25 GeV NH, $\theta_{13} = 5.6^{\circ}$ and $\delta_{CP} = 0$

Agarwalla, Huber, Tang, Winter, JHEP 01 120 (2011)

Optimization with one baseline

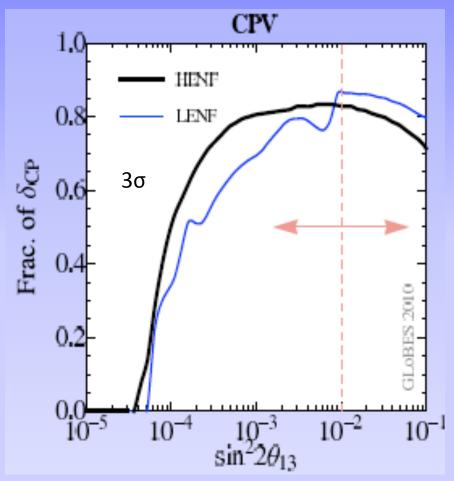
For large 1-3 mixing! Best CPV discovery at:


> $E_{\mu} = 10 \text{ GeV}$ L = 2000 km

CP fraction reach is 0.77

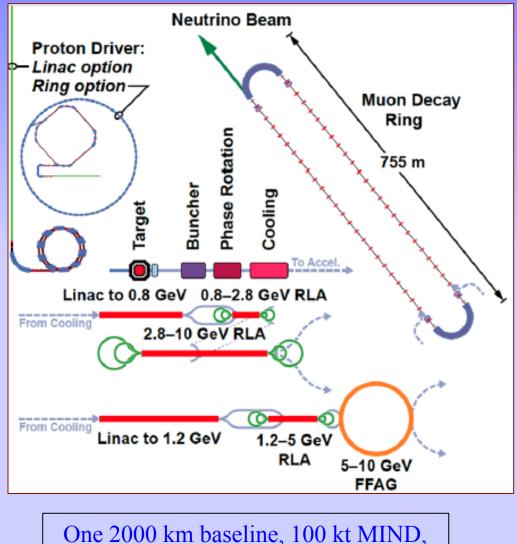
New Baseline design!

S. K. Agarwalla, 4th EUROnu Annual Meeting, APC, Paris, 13th June, 2012


Optimization: Do we need the 2nd Baseline (7500 km)?

Two 50 kt MIND detectors: One at L_1 & other at 7500 km For large 1-3 mixing! 2nd Baseline (magic) is not needed! Optimum choice still holds! $E_{\mu} = 10 \text{ GeV}, L = 2000 \text{ km}$ **CP fraction reach is 0.77 New Baseline design! Only one storage ring!** Can we store all the muons in one storage ring? Place (50+50) = 100 kt detector at one baseline

S. K. Agarwalla, 4th EUROnu Annual Meeting, APC, Paris, 13th June, 2012


LENF.vs. HENF with MIND

Agarwalla, Huber, Tang, Winter, JHEP 01 120 (2011)

LENF: Single baseline at 2000 km, 10 GeV muons, all the muons at this baseline HENF: Two baseline (4000km and 7500 km) with 25 GeV muons

IDS-NF updated baseline design

10 GeV muons, 10²¹ useful decays/year

♦ Proton Driver

HARP: primary beam on production target

♦ Target, Capture and Decay

MERIT: first create π and later decay into μ

♦ Bunching and Phase Rotation

Reduce the spread in energy (ΔE) of bunch

♦ Cooling

MICE: Reduce the transverse emittance

♦ Acceleration

EMMA: go from 130 MeV to 10 GeV with RLAs or FFAGs

♦ Decay Ring

Store for roughly 1000 turns; long straight sections

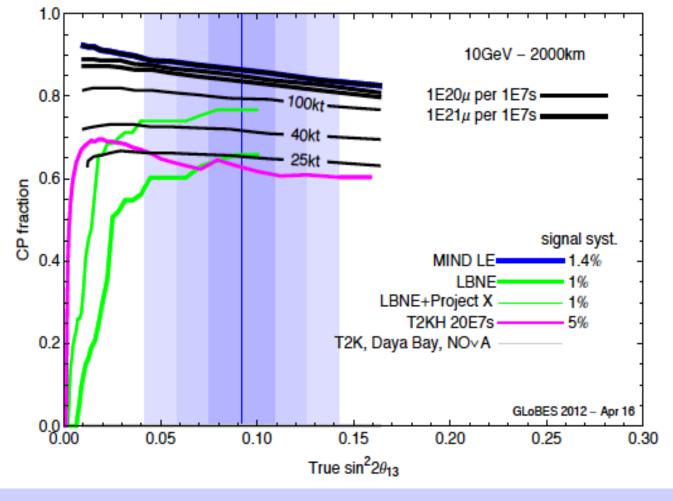
A Staged Approach is conceivable with outstanding physics cases at each stage!

An Incremental Approach!

Conventional Staging: Low energy, 1 Baseline setups to high energy, 2 baseline setups

First discussed by Tang, Winter, PRD81, (2010) 033005

For large 1-3 mixing: we need only low energy and one baseline around 2000 km!


Stage 1: A very low energy neutrino factory (VLENF or vSTORM) LOI: P. Kyberd etal., arXiv:1206.0294 [hep-ex] Precise cross-section and flux measurements, Sterile Neutrino searches!

Stage 2: Present IDS-NF baseline: 10 GeV neutrino factory with a baseline of 2000 km, 100 kt MIND detector + near detector

CPV and MH discovery, precise measurement of 2-3 mixing, New physics

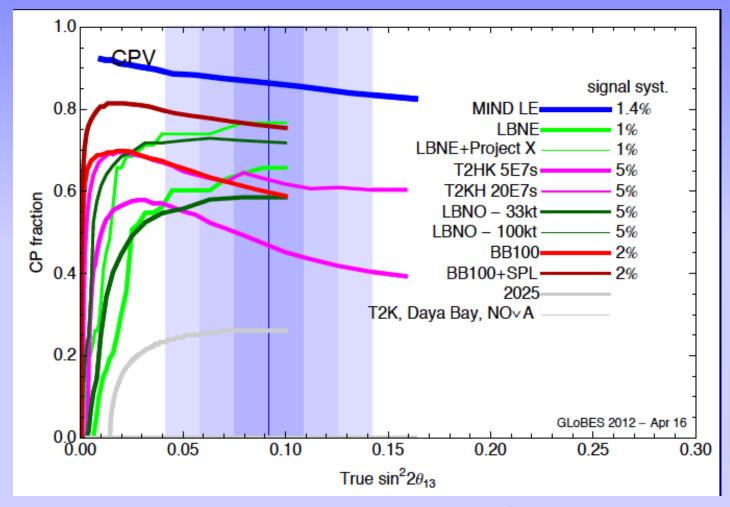
Stage 3: Is it worthwhile to use 25 GeV muons?

Does staging work for us?

Talk by P. Huber at 8th IDS-NF Plenary meeting

Start with 25 times less luminosity as compared To default setup!

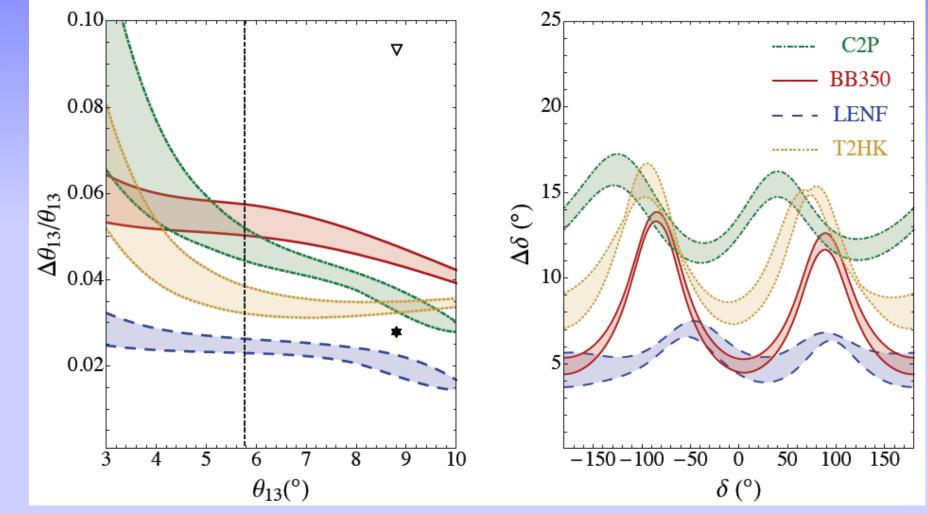
Reduce the beam power! 4 MW →800 kW


Reduce the MIND size! $100 \text{ kt} \rightarrow 20 \text{ kt}$

Still the NF performance is comparable with best Superbeam option

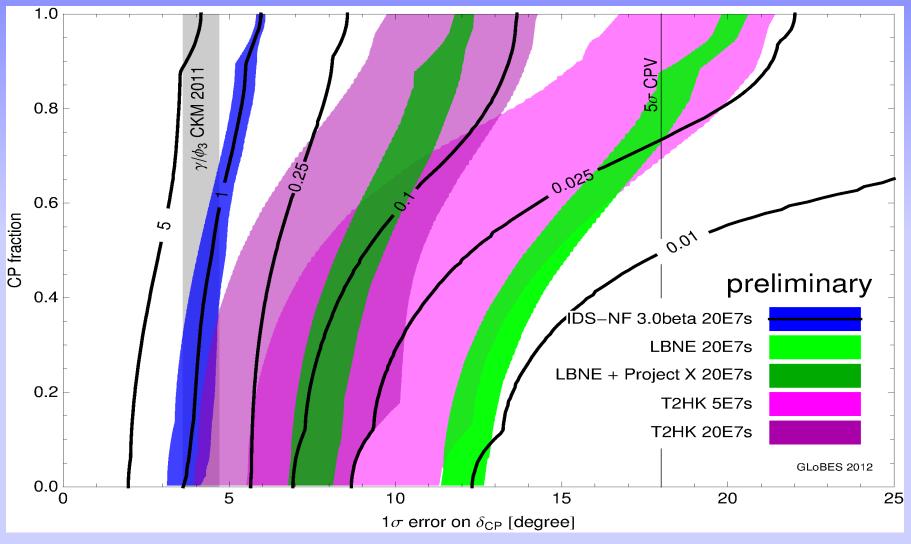
No Project X, no cooling! Detailed R&D required!

Staging is possible for NF with excellent physics reach at each stage!


Compare Neutrino Factory with other facilities

Talk by P. Huber at 8th IDS-NF Plenary meeting

MIND LE: 100 kt MIND at 2000 km with 10 GeV Muons Superbeam can reach 0.7 to 0.75 CP fraction; NF can reach 0.85 to 0.9


The Issue of Precision

Coloma, Donini, Fernandez-Martinez, Hernandez, arXiv:1203.5651

NF is the best precision machine!

The Impact of Systematics for CP precision

Coloma, Huber, Kopp, Winter, in preparation

Bands represent variation of input systematics!

Possible Baseline options

1	CIEDNI	T-NIA T	I DADO	DAL
	CERN	FNAL	J-PARC	RAL
	(46.24, 6.05)	(41.85,-88.28)	(36.47, 140.57)	(51.57, -1.32)
Asia:				
CJPL (28.15,101.71)	7660	10420	3690	7840
Kamioka (36.14,137.24)	8770	9160	300	8640
YangYang (37.77,128.89)	8350	9300	1050	8270
INO (9.92,78.12)	7360	11410	6570	7820
Europe:				1
LNGS (42.37.13.44)	730	7350	8840	1510
Pyhäsalmi (63.68,25.98)	2290	6630	7090	2080
Slanic (45.27,25.95)	1540	7780	8150	2110
Boulby (54.56,-0.81)	1050	5980	8480	340
Canfranc (42.76,-0.51)	650	6550	9280	980
Fréjus (45.20,6.67)	130	6830	8900	920
SUNLAB (51.22,16.16)	930	6980	8190	1210
Umbria (42.98,12.64)	640	7280	8830	1420
Gran Canaria (28.39,-16.59)	2780	6240	10570	2850
North America:				
Soudan (47.82,-92.24)	6590	730	8500	5900
WIPP (32.37,-104.23)	8160	1760	8900	7540
Homestake (44.35,-103.77)	7360	1290	8250	6690
SNOLAB (46.47,-81.19)	6090	760	8950	5400
Henderson (39.77,-105.86)	7750	1500	8410	7110
Icicle Creek (47.56,-120.78)	7810	2610	7240	7160
San Jacinto (33.86,-116.56)	8600	2610	8170	8000
Kimballton (37.37,-80.67)	6580	820	9560	5950

Agarwalla, Huber, Tang, Winter, JHEP 01 120 (2011)

Conclusions

 Improved simulations on MIND suggest that it can work well at low energy and small baseline scenario

* In the light of large θ_{13} , we need to optimize again the detector characteristics to get the best out of it

* Systematics affect the performance of Low energy neutrino factory setup

* A clear understanding of detector systematics is needed !