Spacetime superpotentials for B-branes in LG models

Suresh Govindarajan, IIT Madras

SG \& Hans Jockers hep-th/0608027= JHEP 10 (2006) 060
SG, Hans Jockers, Wolfgang Lerche \& Nick Warner hep-th/0512208

Motivation

A nice intermediate step to obtaining the standard model from string theory is to look for $\mathcal{N}=1$ compactifications of string theory in four dimensions.
The effective field theory at low energy is specified by the following functions

- The Kähler potential, $K(\phi, \bar{\phi})$,
- The superpotential $\mathcal{W}(\phi)$, and
- The (complexified) gauge coupling constants, $f(\phi)$.

The last two objects are holomorphic (in the chiral superfields) and can be computed in topological string theory.

Motivation

- Superpotentials can arise from fluxes through compact cycles being switched on - usually these are computed using the Gukov-Vafa-Witten formula.
- They can also arise from the worldvolume theory of branes that may be added to cancel tadpoles - say in orientifold theories. This is sometimes called the brane superpotential.
- The superpotential \mathcal{W} has been computed for non-compact examples. Is there a systematic method to compute it in compact examples?

Motivation

- For type II compactifications with $\mathcal{N}=2$ supersymmetry, mirror symmetry has proved useful in summing up non-perturbative contributions coming from worldsheet instantons (Gromov-Witten; Gopakumar-Vafa).
- One important ingredient in mirror symmetry is the closed-string mirror map. This is a highly non-trivial change of variables.
- An important ingredient in this computation is the observation of Candelas et. al. that the change of variables is given by a solution of a Picard-Fuchs differential equation.
- Is there an analogue for open-strings? Yes, for some non-compact examples (Mayr;SG-Jayarman-Sarkar; Mayr-Lerche-Warner). Is there a diff. eqn. for compact examples as well? (walcher)

Matrix Factorizations and Superpotentials

- A matrix factorization of a function $W(z)$ is given by two $N \times N$ matrices $F(z)$ and $G(z)$ satisfying

$$
F(z) \cdot G(z)=G(z) \cdot F(z)=W(z) \mathbf{1}_{N \times N} .
$$

- D-branes in Landau-Ginzburg models can be related to matrix factorizations (Kapustin-Li, Brunner-Herbst-Lerche-Scheuner)
- The open-string spectrum is given by the cohomology of a BRST operator \mathcal{Q} constructed from F and G.
- Open and closed string deformations can obstruct (spoil) matrix factorizations. (Ashok-Diaconescu-Dell' Acqua, Hori-Walcher)
- Such obstructions can be encoded in an effective superpotential, \mathcal{W}. Direct computation can be hard beyond simple examples.

Matrix Factorizations and Superpotentials

- A matrix factorization of a function $W(z)$ is given by two $N \times N$ matrices $F(z)$ and $G(z)$ satisfying

$$
F(z) \cdot G(z)=G(z) \cdot F(z)=W(z) \mathbf{1}_{N \times N} .
$$

- D-branes in Landau-Ginzburg models can be related to matrix factorizations (kapustin-Li, Brunner-Herbst-Lerche-Scheuner)
- Some matrix factorizations can also be represented by simple boundary conditions in LG models with boundary. (sG-Jayaraman-Sarkar; Ezhuthachan-SG-Jayaraman)
- We will discuss a method to compute \mathcal{W} in this setting.

Why are LG models useful?

- They flow to non-trivial CFT's in the infrared (IR).
- One has a better handle on perturbations that appear in the superpotential such as complex structure moduli.
- Some computations are like in free-field theory.

Why are LG models useful?

- They flow to non-trivial CFT's in the infrared (IR).
- One has a better handle on perturbations that appear in the superpotential such as complex structure moduli.
- Some computations are like in free-field theory.

Intrepretation of results can be tricky and need careful analysis.

Why are LG models useful?

- They flow to non-trivial CFT's in the infrared (IR).
- One has a better handle on perturbations that appear in the superpotential such as complex structure moduli.
- Some computations are like in free-field theory.
- The main motivation is that the computation for a Calabi-Yau threefold is not much different from that of a minimal model.

Kahler moduli space of the quintic

The topological B-model is independent of Kähler moduli at tree level.

Plan of talk

- Motivation
- A quick introduction to topological LG models
- Computing the superpotential - I: the A-minimal models
- Computing the superpotential - II: the cubic torus
- Concluding remarks

LG models

- Two-dimensional LG models with $(2,2)$ supersymmetry are constructed from chiral and anti-chiral superfields.
- Chiral superfields have the following expansion $(\alpha= \pm)$

$$
\Phi=\phi+\sqrt{2} \theta^{\alpha} \psi_{\alpha}+\theta^{\alpha} \theta_{\alpha} F
$$

- The most general renormalizable action for such a theory has an action

$$
\begin{aligned}
S & =S_{K}+S_{W} \\
& =\int d^{2} x\left(\int d^{4} \theta K(\Phi, \bar{\Phi})-\lambda \int d^{2} \theta W(\Phi)-\bar{\lambda} \int d^{2} \bar{\theta} \bar{W}(\bar{\Phi})\right.
\end{aligned}
$$

- We will find it useful to define the following combinations: $\tau=\left(\psi_{+}-\psi_{-}\right) / \sqrt{2}$ and $\xi=\left(\psi_{+}+\psi_{-}\right) / \sqrt{2}$.

LG models

- We will assume that the superpotential W is quasi-homogeneous

$$
W\left(\lambda^{\alpha_{i} / 2} \Phi_{i}\right)=\lambda W\left(\Phi_{i}\right) .
$$

- There is a lot of evidence that such LG models flow in the IR to CFT's with central charge $\hat{c}=\sum_{i}\left(1-\alpha_{i}\right)$.
- In models with several fields, we will be interested in LG orbifolds with projections onto states with (half-)integral R-charge.
- Example 1: It involves a single chiral superfield with $W=\phi^{k+2} /(k+2)$ with $\hat{c}=k /(k+2)$ - the relevant CFT is the A-minimal model.

LG models

- We will assume that the superpotential W is quasi-homogeneous

$$
W\left(\lambda^{\alpha_{i} / 2} \Phi_{i}\right)=\lambda W\left(\Phi_{i}\right) .
$$

- There is a lot of evidence that such LG models flow in the IR to CFT's with central charge $\hat{c}=\sum_{i}\left(1-\alpha_{i}\right)$.
- In models with several fields, we will be interested in LG orbifolds with projections onto states with (half-)integral R-charge.
- Example 2: It involves three chiral superfields and a cubic superpotential $W=c_{i j k} \phi^{i} \phi^{j} \phi^{k}$ and $\mathrm{a} \mathbb{Z}_{3}$ orbifolding. The CFT has $\hat{c}=1$ and is the 1^{3} Gepner model.

Topological LG models

- These are topologically twisted versions of the $(2,2)$ models.
- We will consider the topological B-twist. This has two BRST charges which we will denote by $\mathcal{Q}_{ \pm}$.
- In LG models with boundary, we will assume that one linear combination, \mathcal{Q}, is preserved by the boundary conditions.
- Observables in the topological model are given by the cohomology of \mathcal{Q}.
- In the action, only the holomorphic part of S_{W} is non-trivial. S_{K} for instance, is \mathcal{Q}-exact. Thus, the topological partition function is independent of the Kähler potential and depends holomorphically on the parameters(moduli) in W.

The topological partition function

- The topological partition function is formally defined by the following path-integral:

$$
Z_{t o p} \equiv \int_{\text {disk }}[d \Phi] e^{-S_{K}-S_{W}} P\left(e^{-S_{\partial}}\right)
$$

with S_{∂} representing the boundary perturbations.

- We will treat S_{W} and S_{∂} perturbatively. Let $\langle\langle\cdots\rangle\rangle$ denote correlation functions in the free-theory i.e., with $W=0$. Then,

$$
Z_{\text {top }}=\sum_{m, n=0}^{\infty}\left\langle\left\langle\frac{1}{n!}\left(S_{W}\right)^{n} \frac{1}{m!} P\left(S_{\partial}\right)^{m}\right\rangle\right\rangle,
$$

is formally equivalent to the the path-integral.

$\mathcal{W}=Z_{\text {top }}$

- It is known that the open-superstring partition function on a disk gives the open-string field theory action. (witten; Shatashvili, Kutasov-Martiniec-Moore; Niarchos-Prezas).
- This has been used by Kutasov, Marino and Moore to compute the exact action for the tachyons in order to verify Sen's conjectures on tachyon condensation. (see also: Gerasimov and Shatashvili)
- For $\mathcal{N}=1$ supersymmetric compactifications, $Z_{\text {top }}$ can be identified with the the brane superpotential, \mathcal{W}.
- For non-geometric examples, $Z_{t o p}$ can be identified with the obstruction superpotential - these encode higher order obstructions to marginality or obstructions to the existence of matrix factorizations.

Our goal

Compute $\mathcal{W} \equiv Z_{\text {top }}$ in the topological LG model as a function of both closed string parameters and open-string deformations.

Such a computation was first done for the quintic(!), where the first correction from closed-string moduli was computed.
(Douglas, SG, Jayaraman \& Tomasiello)

As we will see, the surprise is that the computation of \mathcal{W} can be carried out to all orders.

Example 1: The A-minimal model

The A_{k+1}-minimal model

- The superpotential for the A_{k+1}-minimal model is

$$
W_{0}=\frac{\phi^{k+2}}{k+2} \equiv g_{0} \phi^{k+2}
$$

- The central charge is $\hat{c}=\frac{k}{k+2}$.
- The $U(1)_{R}$-assignments are fixed by requiring that W_{0} have scaling dimension 2

ϕ	(τ, ξ)	$(\bar{\tau}, \bar{\xi})$	W_{0}
$\frac{2}{k+2}$	$\frac{-k}{k+2}$	$\frac{k}{k+2}$	2

- The (closed string) BRST observables form the chiral ring $\mathbb{C}[\phi] / d W_{0}$. Explicitly, the elements of the ring are the chiral primaries: $1, \phi, \ldots, \phi^{k}$.

Bulk perturbations

- The CFT can be perturbed by adding relevant perturbations given by elements of the chiral ring. In the LG model, this corresponds to deforming W_{0}.

$$
W=W_{0}-\sum_{j=2}^{k+2} g_{j}(t) \phi^{k+2-j}
$$

where t_{j} are flat-coordinates and $g_{j}(t)=t_{j}+\cdots$.

- For instance,

$$
W=\frac{\phi^{5}}{5}-t_{2} \phi^{3}-t_{3} \phi^{2}-\left(t_{4}-t_{2}^{2}\right) \phi-\left(t_{5}-t_{2} t_{3}\right)
$$

Bulk perturbations

- The CFT can be perturbed by adding relevant perturbations given by elements of the chiral ring. In the LG model, this corresponds to deforming W_{0}.

$$
W=W_{0}-\sum_{j=2}^{k+2} g_{j}(t) \phi^{k+2-j},
$$

where t_{j} are flat-coordinates and $g_{j}(t)=t_{j}+\cdots$.

- [DVV] In terms of flat coordinates, the three-point function is given by the third derivative (w.r.t. t_{i}) of the topological partition function, $F\left(t_{i}\right)$

$$
c_{i j k}(t) \equiv\left\langle\mathcal{O}_{i} \mathcal{O}_{j} \mathcal{O}_{k}\right\rangle=\partial_{i} \partial_{j} \partial_{k} F(t),
$$

where $\mathcal{O}_{j}=-\partial_{j} W=\phi^{k+2-j}+\cdots$.

Adding a boundary

- Take the topology of the worldsheet to be the upper half plane: $x \in(-\infty,+\infty)$ and $y \geq 0$. The boundary is the x-axis.
- We need to specify boundary conditions in the LG model. We will consider boundary conditions that preserve half of the $(2,2)$ supersymmetry and is compatible with the topological B-twist.
- We choose the Dirichlet boundary condition $\phi=0$ and $\tau=0$.
- Naively, one cannot impose a Neumann boundary condition due to the presence of the Warner term.
- This is to be identified with the boundary state $|L=0\rangle_{B}$ in the CFT.

Boundary perturbations

- The only \mathcal{Q}-closed boundary operator one can construct is $\bar{\xi}$.
- One can turn on boundary perturbations using this operator - it has R-charge $\frac{k}{k+2}<1$ and is a relevant perturbation.
- We will also need to consider integrated operators. One has (X is the boundary coupling constant)

$$
\begin{array}{rlc}
\Psi^{(0)}=X \bar{\xi} & , & \Psi^{(1)}=X \partial_{y} \bar{\phi} \\
R \text {-charge : } \frac{k}{k+2} & , & \frac{-2}{k+2}
\end{array}
$$

$S_{\partial}=X \int d x \Psi^{(1)}$ is the perturbation added to the action.

Boundary perturbations

- The only \mathcal{Q}-closed boundary operator one can construct is $\bar{\xi}$.
- One can turn on boundary perturbations using this operator - it has R-charge $\frac{k}{k+2}<1$ and is a relevant perturbation.
- Similarly, for the bulk deformations, one has

$$
\begin{array}{rll}
\mathcal{O}_{f}^{(0)}=f_{d}(\phi) & , & \mathcal{O}_{f}^{(2)}=-\frac{\partial^{2} f_{d}}{\partial \phi^{2}} \tau \xi \\
R \text {-charge }: & \frac{2 d}{k+2} \quad, \quad\left(\frac{2 d}{k+2}-2\right)
\end{array}
$$

where $f_{d}(\phi)$ is a function of ϕ of degree $d \leq k$.

The topological partition function

- The topological partition function is formally defined by the following path-integral:

$$
\mathcal{W} \equiv \int_{\text {disk }}[d \Phi] e^{-S_{K}-S_{W}} P\left(e^{-S_{\boldsymbol{\rho}}}\right) .
$$

- We will treat S_{W} and S_{∂} perturbatively. Let $\langle\langle\cdots\rangle\rangle$ denote correlation functions in the free-theory i.e., with $W=0$. Then,

$$
\mathcal{W}=\sum_{m, n=0}^{\infty}\left\langle\left\langle\frac{1}{n!}\left(S_{W}\right)^{n} \frac{1}{m!} P\left(S_{\partial}\right)^{m}\right\rangle\right\rangle,
$$

is formally equivalent to the the path-integral.

Issues to consider

- Need to fix $S L(2, \mathbb{R})$ invariance We fix this by choosing one bulk operator as a zero-form located at the point $\left(x_{0}, y_{0}\right)$ and one boundary operator as a zero-form located at $x=+\infty$. All other operators are chosen to be integrated ones.
- R-charge selection rule The only non-vanishing correlators $\langle\langle\cdots\rangle\rangle$ occur when the sum of the R-charges of all operators equals $\hat{c}=k /(k+2)$.
- Fermion zero-modes There is one fermion zero-mode coming from $\bar{\xi}$. The bulk topological theory has one more zero-mode which is removed by the boundary condition.
- All the fields must be contracted with some other field.

The computation

- For the A-minimal model, one finds that the only non-vanishing contribution occurs when there is one bulk insertion.
- Recall that the LG superpotential including bulk deformations is

$$
W=\sum_{j=0, j \neq 1}^{k+2} g_{j}(t) \phi^{k+2-j}=\sum_{j=0, j \neq k+1}^{k+2} g_{k+2-j}(t) \phi^{j} .
$$

- For one bulk operator $(\phi)^{j}$, the R-charge constraint requires $(j+1)$ boundary operators.
$\frac{\partial^{2} \mathcal{W}}{\partial \lambda \partial X}=\sum_{j=0}^{k+2} \frac{g_{k+2-j}(t) X^{j}}{j!}\left\langle\left\langle\phi^{j}\left(x_{0}, y_{0}\right) P\left(\prod_{i=1}^{j} \int d x_{i} \partial_{y} \bar{\phi}\right) \bar{\xi}(+\infty)\right\rangle\right\rangle$

The computation

- Above, each line indicates the bulk-boundary contraction between $\phi\left(x_{0}, y_{0}\right)$ and $\partial_{y} \bar{\phi}\left(x_{i}\right)$ given by the free-field propagator (for a Dirichlet b.c.)

$$
\left\langle\phi\left(x_{0}, y_{0}\right) i \partial_{y} \bar{\phi}\left(x_{i}\right)\right\rangle=\frac{1}{\pi} \frac{y_{0}}{\left(x_{0}-x_{i}\right)^{2}+y_{0}^{2}} .
$$

- The integrals are easy to do and each is normalised to give 1.
- The total number of possible contractions equals j !.

The result

Combining all this we get (after integrating),

$$
\mathcal{W}=\sum_{j=0}^{k+2} g_{k+2-j}(t) \frac{X^{j+1}}{j+1}
$$

- The above result can be extended to the include the $L \neq 0$ boundary states that appear in CFT.
- For instance, the $L=1$ boundary state is the bound state of two $L=0$ states.
- This is incorporated in the LG model using the Chan-Paton trick. Making X into a 2×2 matrix with arbitrary entries is equivalent to two $L=0$ boundaries.
- Then the above result can be carried over with the replacement: $X^{j+1} \rightarrow \operatorname{Tr}\left(X^{j+1}\right)$.

The HLL conjecture

So we finally obtain a very simple result that is valid for all bound states of the $L=0$ boundary state in CFT. This is known to give all the CFT boundary states.

$$
\mathcal{W}(t, X)=\sum_{j=0}^{k+2} g_{k+2-j}(t) \frac{\operatorname{Tr}(X)^{j+1}}{j+1}
$$

This result was conjectured by Herbst, Lazaroiu and Lerche in hep-th/0402110. It was obtained (algebraically and experimentally) by imposing A_{∞}-constraints, bulk-boundary crossing symmetry and the Cardy (sewing) constraint on the TFT correlators for specific minimal models at low values of k.

This is a proof of the HLL conjecture.

Example 2: The cubic torus

The cubic torus

- The LG description involves three chiral superfields Φ^{i} with a superpotential

$$
W=c_{i j k} \phi^{i} \phi^{j} \phi^{k}=g_{0}\left(\left(\phi^{1}\right)^{3}+\left(\phi^{2}\right)^{3}+\left(\phi^{3}\right)^{3}\right)+g_{1} \phi^{1} \phi^{2} \phi^{3}
$$

- There is an orbifold action:

$$
\phi^{i} \rightarrow \omega \phi^{i} \quad \text { where } \quad \omega=e^{2 \pi i / 3} .
$$

So one is dealing with an orbifold of a LG model.

- The IR fixed point of the LG model is the 1^{3} Gepner model.
- Without the superpotential, one has a $\mathbb{C}^{3} / \mathbb{Z}_{3}$ orbifold. This is the analogue of the free theory in the previous example.

The cubic torus

- Geometrically, the torus \mathcal{T} is given by the hypersurface $W=0$ in \mathbb{P}^{2} with complex structure modulus (and flat coordinate) τ implicitly given by $\frac{g_{1}}{g_{0}}=-3 a(\tau)$.
- The relationship between a and τ is given through the j-function

$$
j(\tau)=\left(\frac{3 a\left(a^{3}+8\right)}{a^{3}-1}\right)^{3}
$$

Note that a fixed value of τ gives 12 values of a.

- In the differential equation for the periods, one needs to set

$$
\left(g_{0}\right)^{-1}=\sqrt{\frac{1-a^{3}(\tau)}{3 a^{\prime}(\tau)}}=\frac{1}{3 \sqrt{2 \pi i}} \frac{\eta(\tau)}{\eta^{3}(3 \tau)}
$$

- The mirror torus $\hat{\mathcal{T}}$ is one with complex structure $\hat{\tau}=e^{2 \pi i / 3}$ and (complexified) Kähler modulus $\hat{\rho}=\tau$.

Adding a boundary

We shall focus on the situation where one imposes Dirichlet boundary conditions on all fields: $\phi^{i}=\tau^{i}=0$. In the Gepner model, this boundary condition gets mapped to the $L_{i}=0$ Recknagel-Schomerus states.

Boundary deformations

- On the boundary now there are several \mathcal{Q}-closed operators. One can consider $\bar{\xi}_{i}(R$-charge $1 / 3)$ - this is similar to the minimal model.
- There are more $-\bar{\xi}_{i} \bar{\xi}_{j}$ and $\bar{\xi}_{1} \bar{\xi}_{2} \bar{\xi}_{3}$ with R-charges $2 / 3$ and 1 , respectively.
- We will focus on two boundary perturbations:

$$
\begin{array}{rll}
\Psi^{(0)}=X^{i} \bar{\xi}_{i} & , \quad \Psi^{(1)}=X^{i} \partial_{y} \bar{\phi}_{i} \\
\Omega^{(0)}=U \epsilon^{i j k} \bar{\xi}_{i} \bar{\xi}_{j} \bar{\xi}_{k} & , \quad \Omega^{(1)}=3 U \epsilon^{i j k} \bar{\xi}_{i} \bar{\xi}_{j} \partial_{y} \bar{\phi}_{k}
\end{array}
$$

- Using the R-charge assignments, we see that the X-perturbation is a relevant one while the Ω-perturbation is a marginal one.

Boundary deformations

- However, since the free theory is an orbifold, there are three boundary states corresponding to fractional zero-branes.
- This is incorporated by using Chan-Paton factors which take into account the spectrum of open-strings connecting the various fractional zero-branes.

$$
X^{i}=\left(\begin{array}{ccc}
0 & x_{12}^{i} & 0 \\
0 & 0 & x_{23}^{i} \\
x_{31}^{i} & 0 & 0
\end{array}\right) \quad, \quad U=\left(\begin{array}{ccc}
u_{1} & 0 & 0 \\
0 & u_{2} & 0 \\
0 & 0 & u_{3}
\end{array}\right)
$$

- Thus the X^{i} are boundary condition changing operators while U is a boundary condition preserving operator.

4×4 matrix factorizations

- As already mentioned, these b.c.'s are related to matrix factorizations where F and G are 4×4 matrices with W being the cubic superpotential of the LG model.
- The open-string spectrum for this matrix factorization matches the one we discussed. (sG-Jockers-Lerche-Warner; Hori-Walcher)
- This is not always true. There can be extra deformations.
- The marginal deformation given by Ω deforms the matrix factorization to a 3×3 matrix factorization.
(Brunner-Herbst-Lerche-Scheuner; SG-Jockers-Lerche-Warner)

The topological partition function

- It is useful to separate the partition function by the number of bulk insertions: $\mathcal{W}=\sum_{n=0}^{\infty} \mathcal{W}_{n}$.
- R-charge considerations imply that \mathcal{W}_{n} (for $n \neq 0$) equals

$$
\left\langle\left\langle\frac{1}{n!} V_{W}^{(0)}\left(\int V_{W}^{(2)}\right)^{n-1} \frac{P}{n!3!}\left[\left(\int \Omega^{(1)}\right)^{n}\left(\int \Psi^{(1)}\right)^{3}\right] \Omega^{(0)}(\infty)\right\rangle\right\rangle
$$

- When there are no bulk insertions, one has

$$
\begin{gathered}
\mathcal{W}_{0}=\left\langle\left\langle\Psi^{(0)}(0) \Psi^{(0)}(1) \Psi^{(0)}(\infty)\right\rangle\right\rangle=\operatorname{Tr}\left(X^{i} X^{j} X^{k}\right)\left\langle\left\langle\bar{\xi}_{i} \bar{\xi}_{j} \bar{\xi}_{k}\right\rangle\right\rangle \\
=\epsilon_{i j k} \operatorname{Tr}\left(X^{i} X^{j} X^{k}\right)
\end{gathered}
$$

This is known to be the $\mathbb{C}^{3} / \mathbb{Z}_{3}$ superpotential.

The systematics

The \mathcal{W}_{n} can be written as

$$
\mathcal{W}_{n}=\mathcal{I}_{n} \mathcal{C}_{n} g_{0}^{n}\left(u_{1}+u_{2}+u_{3}\right)^{n}
$$

where

- \mathcal{I}_{n} includes the contribution from the integrals,
- \mathcal{C}_{n} contains the contractions of the n copies of the
\square tensor of $S U(3), c_{i j k}$ with the boundary X 's and the antisymmetric tensor $\epsilon^{i j k}$ from the Ω 's.
- One can show that only the combination $u \equiv\left(u_{1}+u_{2}+u_{3}\right)$ appears.

The integrals simplify in the limit when we take the bulk zeroform operator close to the boundary.

Some details

$$
\mathcal{C}_{1}=3 c_{i j k} \operatorname{Tr}\left(X^{i} X^{j} X^{k}\right)
$$

$$
\mathcal{W}_{1}=3 \mathcal{I}_{0}\left(3 \kappa_{111}-\frac{3}{2} a\left(\kappa_{123}+\kappa_{132}\right)\right) g_{0} u
$$

where we define the following useful combinations:

$$
\begin{aligned}
& \kappa_{111}=\frac{1}{3} \sum_{i} \operatorname{Tr}\left(X^{i} X^{i} X^{i}\right), \\
& \kappa_{123}=\operatorname{Tr}\left(X^{1} X^{2} X^{3}\right), \\
& \kappa_{132}=\operatorname{Tr}\left(X^{1} X^{3} X^{2}\right) .
\end{aligned}
$$

Some details

\mathcal{C}_{2} vanishes. So the next non-vanishing term is given by the third-order term.

$$
\mathcal{W}_{3}=\mathcal{I}_{3}\left(-\frac{9}{2} a^{2} \kappa_{111}+\left(3-\frac{3}{4} a^{3}\right)\left(\kappa_{123}+\kappa_{132}\right)\right)\left(g_{0} u\right)^{3}
$$

General result $\left(\kappa_{123}-\kappa_{132}\right)$ appears only in $\mathcal{W}_{2 n}$ while $\left(\kappa_{123}+\kappa_{132}\right)$ and κ_{111} appear in $\mathcal{W}_{2 n+1}$ alone.

Summing up

$\mathcal{W}_{B}=\Delta_{111}^{B}\left(\tau, g_{0} u\right) \kappa_{111}(X)+\Delta_{123}^{B}\left(\tau, g_{0} u\right) \kappa_{123}(X)+\Delta_{132}^{B}\left(\tau, g_{0} u\right) \kappa_{132}$
From the properties of the \mathcal{W}_{n}, we find

$$
\begin{aligned}
& \Delta_{111}^{B}\left(\tau,-g_{0} u\right)=-\Delta_{111}^{B}\left(\tau,-g_{0} u\right) \\
& \Delta_{123}^{B}\left(\tau,-g_{0} u\right)=-\Delta_{132}^{B}\left(\tau,-g_{0} u\right)
\end{aligned}
$$

We will see that these properties are compatible with the computation done on the mirror torus.
The Δ^{B} can be viewed as an open-string three-point function deformed by the bulk and boundary modulus, τ and u.

Verifying the results

Under mirror symmetry, the topological B-model gets mapped to the topological A-model on the mirror.

Superpotentials are classical objects in the B-model while they are quantum objects in the A-model. All contributions arise from worldsheet instantons. (Kachru-Katz-Lawrence-McGreevy)

The simplicity of our example enables us to easily write out the disk instanton contributions and we use it as a check of our computation.

The mirror theory

Under the mirror transform, B-branes get mapped to A-branes. The three branes that we considered thus get mapped to branes that are special Lagrangian one-cycles on the mirror torus $\hat{\mathcal{T}}$.

The boundary changing operators $\left(x_{a b}^{i}\right)$ are operators located at the intersection points - there are nine of them. The boundary moduli, u_{i} are the positions of the three branes.

The A-model result

The three-point functions in the topological A-model vanish perturbatively and get contributions only from worldsheet instantons - these are disk instantons. Schematically, one finds

$$
\Delta_{i j k} \sim \sum_{l} e^{2 \pi A_{i j k}^{(l)}(\hat{\beta})} e^{2 \pi i W_{i j k}^{(l)}(\hat{\alpha})}
$$

where $\hat{u}=\sum_{i} \hat{u}_{i}=\hat{\alpha}+\hat{\rho} \beta$ is the position modulus, $A_{i j k}^{(l)}$ is the area of the disk instanton and $W_{i j k}^{(l)}$ is the Wilson line contribution.

This result has been computed by Polishchuk-Zaslow; Cremades-IbanezMarchesano. We quote their result as adapted by Brunner, Herbst, Lerche and Walcher.

Disk Instantons in the A-model

A contribution to Δ_{111}

$$
\Delta_{111}=\sum_{m \in \mathbb{Z}} q^{\frac{3}{2}\left(m-\frac{1}{2}\right)^{2}} e^{2 \pi i\left(m-\frac{1}{2}\right)\left(u_{A}-\frac{1}{2}\right)} .
$$

These are θ-functions of characteristic three.

Disk Instantons in the A-model

A contribution to Δ_{123}

$$
\Delta_{123}=e^{\frac{2}{3} i \pi} \sum_{m \in \mathbb{Z}} q^{\frac{3}{2}\left(-\frac{1}{3}+m-\frac{1}{2}\right)^{2}} e^{2 \pi i\left(-\frac{1}{3}+m-\frac{1}{2}\right)\left(u_{A}-\frac{1}{2}\right)}
$$

Disk Instantons in the A-model

A contribution to Δ_{132}
$\Delta_{132}=e^{\frac{-2}{3} i \pi} \sum_{m \in \mathbb{Z}} q^{\frac{3}{2}\left(-\frac{2}{3}+m-\frac{1}{2}\right)^{2}} e^{2 \pi i\left(-\frac{2}{3}+m-\frac{1}{2}\right)\left(u_{A}-\frac{1}{2}\right)}$.

Finding the open-string mirror map

- We need to figure out the change of variables that is needed to match our computation to the A-model result.
- We make the following ansatz

$$
\begin{aligned}
u_{A} & =\mathcal{N}_{u}(\tau) u_{B}+u_{0}(\tau) \\
X_{A} & =\mathcal{N}_{X}\left(\tau, u_{B}\right) X_{B}
\end{aligned}
$$

- The normalizations depend on the closed-string modulus τ.
- The additivity of the u 's implies that the change of variable from u_{A} to u_{B} must be linear.
- R-charge considerations imply that X_{A} must be proportional to X_{B} - however, its normalization can depend on u_{B} as well.

Figuring out the normalization

- We match the two results by requiring

$$
\mathcal{N}_{X}^{3} \mathcal{W}_{A}\left(\tau, \mathcal{N}_{u} u_{B}+u_{0}, X_{B}\right)=\mathcal{W}_{B}\left(\tau, g_{0} u_{B}\right)
$$

- The choice of g_{0} from the diff. eqn. for periods makes \mathcal{N}_{u}, a τ independent constant. This implies that u_{B} transforms like a point on the torus.

$$
\mathcal{N}_{X}=\frac{3 i \mathcal{I}_{0}}{\eta(\tau)} \exp \left(2 G_{2}(\tau) \mathcal{N}_{u}^{2} u^{2} / 3\right) f\left(\tau, u^{2}\right)
$$

where $G_{2 k}=\sum_{m, n \in \mathbb{Z}}^{\prime}(m \tau+n)^{-2 k}$ is the Eisenstein series of weight $2 k$. $f\left(\tau, u^{2}\right)=1+\mathcal{O}\left(u^{4}\right)$ is a modular invariant function.

Remarks

- The open-string mirror map is highly overdetermined and hence its very existence is a non-trivial check of the perturbative treatment.
- From a practical viewpoint, we have checked terms to several orders.
- We have also made use of the modular properties to have additional checks.
- The Eisenstein series $G_{2}(\tau)$ is actually not a modular form $-\hat{G}_{2}=G_{2}-\pi / \operatorname{Im}(\tau)$ has nice modular transformation properties but is not holomorphic. Holomorphic anomaly?
- Using matrix factorizations, Brunner, Herbst, Lerche and Walcher have also computed the three-point function which matches our results.

Conclusion

- The computation works for Calabi-Yau threefolds though modular properties are not well understood. (see recent paper by Aganagic et al..)
- Walcher has recently obtained differential equation in the B-model which matches the disk instantons for a special class of disk instantons!
- Is there a differential equation satisfied by \mathcal{N}_{X} ?
- The theta functions satisfy the heat equation - can one derive this from first principles for the superpotential that we computed?
- Need to extend this method to include short branes on the torus.

THANK YOU

