Spacetime superpotentials for B-branes in LG models

Suresh Govindarajan, IIT Madras

SG & Hans Jockers hep-th/0608027= JHEP 10 (2006) 060 SG, Hans Jockers, Wolfgang Lerche & Nick Warner hep-th/0512208

Motivation

A nice intermediate step to obtaining the standard model from string theory is to look for $\mathcal{N} = 1$ compactifications of string theory in four dimensions. The effective field theory at low energy is specified by the following functions

- The Kähler potential, $K(\phi, \overline{\phi})$,
- The superpotential $\mathcal{W}(\phi)$, and
- The (complexified) gauge coupling constants, $f(\phi)$.

The last two objects are holomorphic (in the chiral superfields) and can be computed in topological string theory.

Motivation

- Superpotentials can arise from fluxes through compact cycles being switched on usually these are computed using the Gukov-Vafa-Witten formula.
- They can also arise from the worldvolume theory of branes that may be added to cancel tadpoles – say in orientifold theories. This is sometimes called the brane superpotential.
- The superpotential W has been computed for non-compact examples. Is there a systematic method to compute it in compact examples?

Motivation

- For type II compactifications with $\mathcal{N} = 2$ supersymmetry, mirror symmetry has proved useful in summing up non-perturbative contributions coming from worldsheet instantons (Gromov-Witten; Gopakumar-Vafa).
- One important ingredient in mirror symmetry is the closed-string mirror map. This is a highly non-trivial change of variables.
- An important ingredient in this computation is the observation of Candelas et. al. that the change of variables is given by a solution of a Picard-Fuchs differential equation.
- Is there an analogue for open-strings? Yes, for some non-compact examples (Mayr;SG-Jayarman-Sarkar; Mayr-Lerche-Warner). Is there a diff. eqn. for compact examples as well? (Walcher)

Matrix Factorizations and Superpotentials

• A matrix factorization of a function W(z) is given by two $N \times N$ matrices F(z) and G(z) satisfying

 $F(z) \cdot G(z) = G(z) \cdot F(z) = W(z) \mathbf{1}_{N \times N} .$

- D-branes in Landau-Ginzburg models can be related to matrix factorizations (Kapustin-Li, Brunner-Herbst-Lerche-Scheuner)
- The open-string spectrum is given by the cohomology of a BRST operator Q constructed from F and G.
- Open and closed string deformations can obstruct (spoil) matrix factorizations. (Ashok-Diaconescu-Dell' Acqua, Hori-Walcher)
- Such obstructions can be encoded in an effective superpotential, *W*. Direct computation can be hard beyond simple examples.

Matrix Factorizations and Superpotentials

• A matrix factorization of a function W(z) is given by two $N \times N$ matrices F(z) and G(z) satisfying

 $F(z) \cdot G(z) = G(z) \cdot F(z) = W(z) \mathbf{1}_{N \times N} .$

- D-branes in Landau-Ginzburg models can be related to matrix factorizations (Kapustin-Li, Brunner-Herbst-Lerche-Scheuner)
- Some matrix factorizations can also be represented by simple boundary conditions in LG models with boundary. (SG-Jayaraman-Sarkar; Ezhuthachan-SG-Jayaraman)
- We will discuss a method to compute \mathcal{W} in this setting.

Why are LG models useful?

- They flow to non-trivial CFT's in the infrared (IR).
- One has a better handle on perturbations that appear in the superpotential such as complex structure moduli.
- Some computations are like in free-field theory.

Why are LG models useful?

- They flow to non-trivial CFT's in the infrared (IR).
- One has a better handle on perturbations that appear in the superpotential such as complex structure moduli.
- Some computations are like in free-field theory.

Intrepretation of results can be tricky and need careful analysis.

Why are LG models useful?

- They flow to non-trivial CFT's in the infrared (IR).
- One has a better handle on perturbations that appear in the superpotential such as complex structure moduli.
- Some computations are like in free-field theory.
- The main motivation is that the computation for a Calabi-Yau threefold is not much different from that of a minimal model.

Kahler moduli space of the quintic

The topological B-model is independent of Kähler moduli at tree level.

Plan of talk

- Motivation
- A quick introduction to topological LG models
- Computing the superpotential I: the A-minimal models
- Computing the superpotential II: the cubic torus
- Concluding remarks

LG models

- Two-dimensional LG models with (2,2) supersymmetry are constructed from chiral and anti-chiral superfields.
- Chiral superfields have the following expansion $(\alpha = \pm)$

$$\Phi = \phi + \sqrt{2}\theta^{\alpha}\psi_{\alpha} + \theta^{\alpha}\theta_{\alpha}F$$

The most general renormalizable action for such a theory has an action

$$S = S_K + S_W$$

= $\int d^2x \left(\int d^4\theta K(\Phi, \bar{\Phi}) - \lambda \int d^2\theta \ W(\Phi) - \bar{\lambda} \int d^2\bar{\theta} \ \bar{W}(\bar{\Phi}) \right)$

• We will find it useful to define the following combinations: $\tau = (\psi_+ - \psi_-)/\sqrt{2}$ and $\xi = (\psi_+ + \psi_-)/\sqrt{2}$.

LG models

We will assume that the superpotential W is quasi-homogeneous

$$W(\lambda^{\alpha_i/2}\Phi_i) = \lambda W(\Phi_i)$$
.

- There is a lot of evidence that such LG models flow in the IR to CFT's with central charge $\hat{c} = \sum_i (1 \alpha_i)$.
- In models with several fields, we will be interested in LG orbifolds with projections onto states with (half-)integral *R*-charge.
- Example 1: It involves a single chiral superfield with $W = \phi^{k+2}/(k+2)$ with $\hat{c} = k/(k+2)$ the relevant CFT is the *A*-minimal model.

LG models

We will assume that the superpotential W is quasi-homogeneous

$$W(\lambda^{\alpha_i/2}\Phi_i) = \lambda W(\Phi_i)$$
.

- There is a lot of evidence that such LG models flow in the IR to CFT's with central charge $\hat{c} = \sum_i (1 \alpha_i)$.
- In models with several fields, we will be interested in LG orbifolds with projections onto states with (half-)integral *R*-charge.
- Example 2: It involves three chiral superfields and a cubic superpotential $W = c_{ijk}\phi^i\phi^j\phi^k$ and a \mathbb{Z}_3 orbifolding. The CFT has $\hat{c} = 1$ and is the 1^3 Gepner model.

Topological LG models

- These are topologically twisted versions of the (2,2) models.
- We will consider the topological B-twist. This has two BRST charges which we will denote by Q_{\pm} .
- In LG models with boundary, we will assume that one linear combination, Q, is preserved by the boundary conditions.
- Observables in the topological model are given by the cohomology of \mathcal{Q} .
- In the action, only the holomorphic part of S_W is non-trivial. S_K for instance, is Q-exact. Thus, the topological partition function is independent of the Kähler potential and depends holomorphically on the parameters(moduli) in W.

The topological partition function

The topological partition function is formally defined by the following path-integral:

$$Z_{top} \equiv \int_{disk} [d\Phi] e^{-S_K - S_W} P\left(e^{-S_\partial}\right)$$

with S_{∂} representing the boundary perturbations.

• We will treat S_W and S_∂ perturbatively. Let $\langle\!\langle \cdots \rangle\!\rangle$ denote correlation functions in the free-theory i.e., with W = 0. Then,

$$Z_{top} = \sum_{m,n=0}^{\infty} \left\langle \! \left\langle \frac{1}{n!} \left(S_W \right)^n \frac{1}{m!} P \left(S_\partial \right)^m \right\rangle \! \right\rangle \,,$$

is formally equivalent to the the path-integral.

$\mathcal{W} = Z_{top}$

- It is known that the open-superstring partition function on a disk gives the open-string field theory action. (Witten; Shatashvili, Kutasov-Martiniec-Moore; Niarchos-Prezas).
- This has been used by Kutasov, Marino and Moore to compute the *exact* action for the tachyons in order to verify Sen's conjectures on tachyon condensation. (see also: Gerasimov and Shatashvili)
- For $\mathcal{N} = 1$ supersymmetric compactifications, Z_{top} can be identified with the the brane superpotential, \mathcal{N} .
- For non-geometric examples, Z_{top} can be identified with the obstruction superpotential these encode higher order obstructions to marginality or obstructions to the existence of matrix factorizations.

Our goal

Compute $W \equiv Z_{top}$ in the topological LG model as a function of both closed string parameters and open-string deformations.

Such a computation was first done for the quintic(!), where the first correction from closed-string moduli was computed. (Douglas, SG, Jayaraman & Tomasiello)

As we will see, the surprise is that the computation of $\ensuremath{\mathcal{W}}$ can be carried out to all orders.

Example 1: The *A*-minimal model

The A_{k+1} -minimal model

• The superpotential for the A_{k+1} -minimal model is

$$W_0 = \frac{\phi^{k+2}}{k+2} \equiv g_0 \ \phi^{k+2}$$

- The central charge is $\hat{c} = \frac{k}{k+2}$.
- The $U(1)_R$ -assignments are fixed by requiring that W_0 have scaling dimension 2

$$egin{array}{c|c} \phi & (au,\xi) & (ar{ au},ar{\xi}) & W_0 \ \hline rac{2}{k+2} & rac{-k}{k+2} & rac{k}{k+2} & 2 \end{array}$$

• The (closed string) BRST observables form the chiral ring $\mathbb{C}[\phi]/dW_0$. Explicitly, the elements of the ring are the chiral primaries: 1, ϕ , ..., ϕ^k .

Bulk perturbations

The CFT can be perturbed by adding relevant perturbations given by elements of the chiral ring. In the LG model, this corresponds to deforming W₀.

$$W = W_0 - \sum_{j=2}^{k+2} g_j(t) \phi^{k+2-j} ,$$

where t_j are flat-coordinates and $g_j(t) = t_j + \cdots$. • For instance,

$$W = \frac{\phi^5}{5} - t_2\phi^3 - t_3\phi^2 - (t_4 - t_2^2)\phi - (t_5 - t_2t_3) .$$

Bulk perturbations

The CFT can be perturbed by adding relevant perturbations given by elements of the chiral ring. In the LG model, this corresponds to deforming W₀.

$$W = W_0 - \sum_{j=2}^{k+2} g_j(t) \phi^{k+2-j} ,$$

where t_j are flat-coordinates and $g_j(t) = t_j + \cdots$.

• [DVV] In terms of flat coordinates, the three-point function is given by the third derivative (w.r.t. t_i) of the topological partition function, $F(t_i)$

$$c_{ijk}(t) \equiv \langle \mathcal{O}_i \mathcal{O}_j \mathcal{O}_k \rangle = \partial_i \partial_j \partial_k F(t) ,$$

where $\mathcal{O}_j = -\partial_j W = \phi^{k+2-j} + \cdots$.

Adding a boundary

- Take the topology of the worldsheet to be the upper half plane: $x \in (-\infty, +\infty)$ and $y \ge 0$. The boundary is the *x*-axis.
- We need to specify boundary conditions in the LG model. We will consider boundary conditions that preserve half of the (2,2) supersymmetry and is compatible with the topological *B*-twist.
- We choose the Dirichlet boundary condition $\phi = 0$ and $\tau = 0$.
- Naively, one cannot impose a Neumann boundary condition due to the presence of the Warner term.
- This is to be identified with the boundary state $|L = 0\rangle_B$ in the CFT.

Boundary perturbations

- The only Q-closed boundary operator one can construct is $\overline{\xi}$.
- One can turn on boundary perturbations using this operator it has *R*-charge $\frac{k}{k+2} < 1$ and is a relevant perturbation.
- We will also need to consider integrated operators. One has (X is the boundary coupling constant)

$$\Psi^{(0)} = X \bar{\xi} \quad , \quad \Psi^{(1)} = X \partial_y \bar{\phi}$$
$$R-\text{charge}: \quad \frac{k}{k+2} \quad , \quad \frac{-2}{k+2}$$

 $S_{\partial} = X \int dx \Psi^{(1)}$ is the perturbation added to the action.

Boundary perturbations

- The only Q-closed boundary operator one can construct is $\overline{\xi}$.
- One can turn on boundary perturbations using this operator it has *R*-charge $\frac{k}{k+2} < 1$ and is a relevant perturbation.
- Similarly, for the bulk deformations, one has

$$\mathcal{O}_{f}^{(0)} = f_{d}(\phi) \qquad , \qquad \mathcal{O}_{f}^{(2)} = -\frac{\partial^{2} f_{d}}{\partial \phi^{2}} \tau \xi$$
$$R-\text{charge}: \quad \frac{2d}{k+2} \qquad , \qquad \left(\frac{2d}{k+2}-2\right)$$

where $f_d(\phi)$ is a function of ϕ of degree $d \leq k$.

The topological partition function

The topological partition function is formally defined by the following path-integral:

$$\mathcal{W} \equiv \int_{disk} [d\Phi] e^{-S_K - S_W} P\left(e^{-S_\partial}\right)$$

• We will treat S_W and S_∂ perturbatively. Let $\langle\!\langle \cdots \rangle\!\rangle$ denote correlation functions in the free-theory i.e., with W = 0. Then,

$$\mathcal{W} = \sum_{m,n=0}^{\infty} \left\langle \! \left\langle \frac{1}{n!} \left(S_W \right)^n \frac{1}{m!} P \left(S_\partial \right)^m \right\rangle \! \right\rangle \,,$$

is formally equivalent to the the path-integral.

Issues to consider

- Need to fix SL(2, ℝ) invariance We fix this by choosing one bulk operator as a zero-form located at the point (x₀, y₀) and one boundary operator as a zero-form located at x = +∞. All other operators are chosen to be integrated ones.
- *R*-charge selection rule The only non-vanishing correlators $\langle\!\langle \cdots \rangle\!\rangle$ occur when the sum of the *R*-charges of all operators equals $\hat{c} = k/(k+2)$.
- Fermion zero-modes There is one fermion zero-mode coming from $\overline{\xi}$. The bulk topological theory has one more zero-mode which is removed by the boundary condition.
- All the fields must be contracted with some other field.

The computation

- For the A-minimal model, one finds that the only non-vanishing contribution occurs when there is one bulk insertion.
- Recall that the LG superpotential including bulk deformations is

$$W = \sum_{j=0, j\neq 1}^{k+2} g_j(t) \ \phi^{k+2-j} = \sum_{j=0, j\neq k+1}^{k+2} g_{k+2-j}(t) \ \phi^j$$

• For one bulk operator $(\phi)^j$, the R-charge constraint requires (j + 1) boundary operators.

$$\frac{\partial^2 \mathcal{W}}{\partial \lambda \partial X} = \sum_{j=0}^{k+2} \frac{g_{k+2-j}(t) X^j}{j!} \left\langle\!\!\left\langle \phi^j(x_0, y_0) P\left(\prod_{i=1}^j \int dx_i \partial_y \bar{\phi}\right) \frac{\bar{\xi}(+\infty)}{k!}\right\rangle\!\!\right\rangle\!\!$$

The computation

• Above, each line indicates the bulk-boundary contraction between $\phi(x_0, y_0)$ and $\partial_y \overline{\phi}(x_i)$ given by the free-field propagator (for a Dirichlet b.c.)

$$\langle \phi(x_0, y_0) i \partial_y \bar{\phi}(x_i) \rangle = \frac{1}{\pi} \frac{y_0}{(x_0 - x_i)^2 + y_0^2}$$

- The integrals are easy to do and each is normalised to give 1.
- The total number of possible contractions equals j!.

The result

Combining all this we get (after integrating),

$$\mathcal{W} = \sum_{j=0}^{k+2} g_{k+2-j}(t) \; \frac{X^{j+1}}{j+1}$$

- The above result can be extended to the include the $L \neq 0$ boundary states that appear in CFT.
- For instance, the L = 1 boundary state is the bound state of two L = 0 states.
- This is incorporated in the LG model using the Chan-Paton trick. Making X into a 2×2 matrix with arbitrary entries is equivalent to two L = 0 boundaries.
- Then the above result can be carried over with the replacement: $X^{j+1} \rightarrow \text{Tr}(X^{j+1})$.

The HLL conjecture

So we finally obtain a very simple result that is valid for all bound states of the L = 0 boundary state in CFT. This is known to give all the CFT boundary states.

$$\mathcal{W}(t,X) = \sum_{j=0}^{k+2} g_{k+2-j}(t) \ \frac{\operatorname{Tr}(X)^{j+1}}{j+1}$$

This result was conjectured by Herbst, Lazaroiu and Lerche in hep-th/0402110. It was obtained (algebraically and experimentally) by imposing A_{∞} -constraints, bulk-boundary crossing symmetry and the Cardy (sewing) constraint on the TFT correlators for specific minimal models at low values of k.

This is a proof of the HLL conjecture.

Example 2: The cubic torus

The cubic torus

The LG description involves three chiral superfields Φ^i with a superpotential

$$W = c_{ijk}\phi^i\phi^j\phi^k = g_0\left((\phi^1)^3 + (\phi^2)^3 + (\phi^3)^3\right) + g_1\phi^1\phi^2\phi^3$$

There is an orbifold action:

$$\phi^i \to \omega \phi^i$$
 where $\omega = e^{2\pi i/3}$

So one is dealing with an orbifold of a LG model.

- The IR fixed point of the LG model is the 1³ Gepner model.
- Without the superpotential, one has a C³/Z₃ orbifold.
 This is the analogue of the free theory in the previous example.

The cubic torus

- Geometrically, the torus \mathcal{T} is given by the hypersurface W = 0 in \mathbb{P}^2 with complex structure modulus (and flat coordinate) τ implicitly given by $\frac{g_1}{g_0} = -3a(\tau)$.
- The relationship between a and τ is given through the *j*-function $(2 a (a^3 + 8))^3$

$$j(\tau) = \left(\frac{3a(a^3+8)}{a^3-1}\right)^{\epsilon}$$

Note that a fixed value of τ gives 12 values of a.

- In the differential equation for the periods, one needs to set $(g_0)^{-1} = \sqrt{\frac{1 - a^3(\tau)}{3 a'(\tau)}} = \frac{1}{3\sqrt{2\pi i}} \frac{\eta(\tau)}{\eta^3(3\tau)}$
- The mirror torus \hat{T} is one with complex structure $\hat{\tau} = e^{2\pi i/3}$ and (complexified) Kähler modulus $\hat{\rho} = \tau$.

Adding a boundary

We shall focus on the situation where one imposes Dirichlet boundary conditions on all fields: $\phi^i = \tau^i = 0$. In the Gepner model, this boundary condition gets mapped to the $L_i = 0$ Recknagel-Schomerus states.

Boundary deformations

- On the boundary now there are several Q-closed operators. One can consider $\bar{\xi}_i$ (*R*-charge 1/3) this is similar to the minimal model.
- There are more $-\bar{\xi}_i \bar{\xi}_j$ and $\bar{\xi}_1 \bar{\xi}_2 \bar{\xi}_3$ with *R*-charges 2/3 and 1, respectively.
- We will focus on two boundary perturbations:

$$\Psi^{(0)} = X^i \,\bar{\xi}_i \qquad , \qquad \Psi^{(1)} = X^i \,\partial_y \bar{\phi}_i$$
$$\Omega^{(0)} = U \epsilon^{ijk} \bar{\xi}_i \bar{\xi}_j \bar{\xi}_k \qquad , \qquad \Omega^{(1)} = 3U \epsilon^{ijk} \bar{\xi}_i \bar{\xi}_j \partial_y \bar{\phi}_k$$

Using the *R*-charge assignments, we see that the *X*-perturbation is a relevant one while the Ω-perturbation is a marginal one.

Boundary deformations

- However, since the free theory is an orbifold, there are three boundary states corresponding to fractional zero-branes.
- This is incorporated by using Chan-Paton factors which take into account the spectrum of open-strings connecting the various fractional zero-branes.

$$X^{i} = \begin{pmatrix} 0 & x_{12}^{i} & 0 \\ 0 & 0 & x_{23}^{i} \\ x_{31}^{i} & 0 & 0 \end{pmatrix} , \quad U = \begin{pmatrix} u_{1} & 0 & 0 \\ 0 & u_{2} & 0 \\ 0 & 0 & u_{3} \end{pmatrix}$$

Thus the Xⁱ are boundary condition changing operators while U is a boundary condition preserving operator.

4×4 matrix factorizations

- As already mentioned, these b.c.'s are related to matrix factorizations where F and G are 4 × 4 matrices with W being the cubic superpotential of the LG model.
- The open-string spectrum for this matrix factorization matches the one we discussed. (SG-Jockers-Lerche-Warner; Hori-Walcher)
- This is not always true. There can be extra deformations.
- The marginal deformation given by Ω deforms the matrix factorization to a 3 × 3 matrix factorization.
 (Brunner-Herbst-Lerche-Scheuner; SG-Jockers-Lerche-Warner)

The topological partition function

- ✓ It is useful to separate the partition function by the number of bulk insertions: $W = \sum_{n=0}^{\infty} W_n$.
- Provide the second structure of the second structu

When there are no bulk insertions, one has

$$\mathcal{W}_0 = \left\langle\!\!\left\langle \Psi^{(0)}(0)\Psi^{(0)}(1)\Psi^{(0)}(\infty)\right\rangle\!\!\right\rangle = \operatorname{Tr}(X^i X^j X^k) \left\langle\!\!\left\langle \bar{\xi}_i \bar{\xi}_j \bar{\xi}_k \right\rangle\!\!\right\rangle$$
$$= \epsilon_{ijk} \operatorname{Tr}(X^i X^j X^k)$$

This is known to be the $\mathbb{C}^3/\mathbb{Z}_3$ superpotential.

The systematics

The \mathcal{W}_n can be written as

$$\mathcal{W}_n = \mathcal{I}_n \ \mathcal{C}_n \ g_0^n (u_1 + u_2 + u_3)^n$$

where

- \mathcal{I}_n includes the contribution from the integrals,
- C_n contains the contractions of the *n* copies of the \square tensor of SU(3), c_{ijk} with the boundary *X*'s and the antisymmetric tensor ϵ^{ijk} from the Ω 's.
- One can show that only the combination $u \equiv (u_1 + u_2 + u_3)$ appears.

The integrals simplify in the limit when we take the bulk zeroform operator close to the boundary.

Some details

where we define the following useful combinations:

$$\kappa_{111} = \frac{1}{3} \sum_{i} \operatorname{Tr} \left(X^{i} X^{i} X^{i} \right) ,$$

$$\kappa_{123} = \operatorname{Tr} \left(X^{1} X^{2} X^{3} \right) ,$$

$$\kappa_{132} = \operatorname{Tr} \left(X^{1} X^{3} X^{2} \right) .$$

Some details

 C_2 vanishes. So the next non-vanishing term is given by the third-order term.

Summing up

$$\mathcal{W}_B = \Delta^B_{111}(\tau, g_0 u) \kappa_{111}(X) + \Delta^B_{123}(\tau, g_0 u) \kappa_{123}(X) + \Delta^B_{132}(\tau, g_0 u) \kappa_{132}(X) + \Delta^B_{132}(\tau, g_0 u) \kappa_{132}(\tau, g_0 u) \kappa_{13$$

From the properties of the \mathcal{W}_n , we find

$$\Delta^{B}_{111}(\tau, -g_0 u) = -\Delta^{B}_{111}(\tau, -g_0 u)$$

$$\Delta^{B}_{123}(\tau, -g_0 u) = -\Delta^{B}_{132}(\tau, -g_0 u)$$

We will see that these properties are compatible with the computation done on the mirror torus.

The Δ^B can be viewed as an open-string three-point function deformed by the bulk and boundary modulus, τ and u.

Verifying the results

Under mirror symmetry, the topological *B*-model gets mapped to the topological *A*-model on the mirror.

Superpotentials are classical objects in the *B*-model while they are quantum objects in the *A*-model. All contributions arise from worldsheet instantons. (Kachru-Katz-Lawrence-McGreevy)

The simplicity of our example enables us to easily write out the disk instanton contributions and we use it as a check of our computation.

The mirror theory

Under the mirror transform, *B*-branes get mapped to *A*-branes. The three branes that we considered thus get mapped to branes that are special Lagrangian one-cycles on the mirror torus \hat{T} .

The boundary changing operators (x_{ab}^i) are operators located at the intersection points – there are nine of them. The boundary moduli, u_i are the positions of the three branes.

The A-model result

The three-point functions in the topological A-model vanish perturbatively and get contributions only from worldsheet instantons – these are disk instantons. Schematically, one finds

$$\Delta_{ijk} \sim \sum_{l} e^{2\pi A_{ijk}^{(l)}(\hat{\beta})} e^{2\pi i W_{ijk}^{(l)}(\hat{\alpha})}$$

where $\hat{u} = \sum_{i} \hat{u}_{i} = \hat{\alpha} + \hat{\rho}\beta$ is the position modulus, $A_{ijk}^{(l)}$ is the area of the disk instanton and $W_{ijk}^{(l)}$ is the Wilson line contribution.

This result has been computed by Polishchuk-Zaslow; Cremades-Ibanez-Marchesano. We quote their result as adapted by Brunner, Herbst,

Lerche and Walcher.

Disk Instantons in the A-model

These are θ -functions of characteristic three.

Disk Instantons in the A-model

Disk Instantons in the A-model

Finding the open-string mirror map

- We need to figure out the change of variables that is needed to match our computation to the A-model result.
- We make the following ansatz

$$u_A = \mathcal{N}_u(\tau)u_B + u_0(\tau)$$
$$X_A = \mathcal{N}_X(\tau, u_B)X_B$$

- The normalizations depend on the closed-string modulus τ .
- The additivity of the u's implies that the change of variable from u_A to u_B must be linear.
- R-charge considerations imply that X_A must be proportional to X_B however, its normalization can depend on u_B as well.

Figuring out the normalization

We match the two results by requiring

$$\mathcal{N}_X^3 \ \mathcal{W}_A(\tau, \mathcal{N}_u u_B + u_0, X_B) = \mathcal{W}_B(\tau, g_0 u_B)$$

• The choice of g_0 from the diff. eqn. for periods makes \mathcal{N}_u , a τ independent constant. This implies that u_B transforms like a point on the torus.

$$\mathcal{N}_X = \frac{3i\mathcal{I}_0}{\eta(\tau)} \exp\left(2G_2(\tau)\mathcal{N}_u^2 u^2/3\right) f(\tau, u^2) .$$

where $G_{2k} = \sum_{m,n\in\mathbb{Z}}' (m\tau + n)^{-2k}$ is the Eisenstein series of weight 2k. $f(\tau, u^2) = 1 + \mathcal{O}(u^4)$ is a modular invariant function.

Remarks

- The open-string mirror map is highly overdetermined and hence its very existence is a non-trivial check of the perturbative treatment.
- From a practical viewpoint, we have checked terms to several orders.
- We have also made use of the modular properties to have additional checks.
- The Eisenstein series $G_2(\tau)$ is actually not a modular form – $\hat{G}_2 = G_2 - \pi/\text{Im}(\tau)$ has nice modular transformation properties but is not holomorphic. Holomorphic anomaly?
- Using matrix factorizations, Brunner, Herbst, Lerche and Walcher have also computed the three-point function which matches our results.

Conclusion

- The computation works for Calabi-Yau threefolds though modular properties are not well understood. (see recent paper by Aganagic *et al..*)
- Walcher has recently obtained differential equation in the *B*-model which matches the disk instantons for a special class of disk instantons!
- Is there a differential equation satisfied by \mathcal{N}_X ?
- The theta functions satisfy the heat equation can one derive this from first principles for the superpotential that we computed?
- Need to extend this method to include short branes on the torus.

THANK YOU

