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1. Introduction and Motivation:

The success of string theory lies on its relation to the real world.

* How “standard model' of particle interactions can be obtained from
string theory?

* How the various issues of quantum gravity (like unitarity and
information loss in black holes, microscopic entropy calculation,
singularities etc.) can be understood from string theory?

* How the cosmological observations (like inflation, de Sitter space,
small +ve cosmological constant etc.) can be obtained from string
theory?

There are various ways one can address these questions. We think
non-supersymmetric p-branes of string theory may also help us to

address these 1ssues.
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How?
* Remember how AdS/CFT correspondence was obtained.

Here one looks at the N-coincident BPS D3-brane solution of type I1B
string theory and takes a low energy limit a’ — 0 alongwith N — oo,
This also means that one is going to the near horizon (r — () region
of D3-branes. The geometry in this limit looks like AdS. x S°.

This 1s the closed string description.

The correspondence says that this theory i1s equivalent to the theory
consisting of the open string modes living on the boundary of AdSs
which is D =4, N' = 4 supersymmetric SU(N) gauge theory.

This 1s the open string description

Note that the gauge theory we got is supersymmetric and conformal.
The reason is we started with BPS branes



In order to get QCD-like gauge theory which 1s both non-supersymmetric
and non-conformal from string theory, we must break susy and start from
non-susy branes of string theory.

* Also regarding the 1ssues mentioned for black holes, partial success has
been achieved for supersymmetric as well as for some non-supersymmetric,
extremal black holes. Here also one starts from BPS brane configuration
of string theory. However, to understand the issues for Schwarzschild-like
black holes non-susy branes could be useful.

* Finally, there 1s another class of non-susy branes in string theory and those
are the time-dependent branes called the S-branes. Since time-translation
invariance 1s lost, there 1s no energy or mass conservation. Supersymmetry
1s broken. These solutions can be used to understand various cosmological
scenarios. Space-time singularities (like black hole or cosmolgical) may
be understood from these solutions.
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2. Non-supersymmetric branes

In order to construct the non-supersymmetric branes we start with the
bosonic sector of the standard string effective action given below:

S = (2r3)" @z~ [ 50,00t — 3 1 J,E”'“F[S p]}

We use the magnetically charged p- brane metric ansatz with isometry
I[SO(1,p) x SO(9 — p) with an explicit supersymmetry breaking
and solve the following equations of motion

- g 2. O8—p = g S
-i”“" B _d L'J'(E} @ 2(7T—p) l'F.i CLE---L'LE—,—-FV =, .>_~1|.*_-—3-:L1|'F[-b }]glti:rf:| =
C} ( J;qu,m Fﬁt.:u. HHHHH )
(ll'l;-'fr ._ } ld (Hr"'r_ a“{']} E|Sa_p|'fldrl'Fl[§—p] — U

and the solution we get has the following form:
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d? = F% (—df? + i(dff}?) + F* (HH)™ (dr + r2d02_)

=]
e = F° (E)
H

-F[S—p] = b‘.’rﬂlfﬂg_p}

24

where the various functions in the above are defined as

—

" a3
i (E) cosh? @ — (%) sinh” @

H
TPLAE
H = 1+—
ke
" _ TP
A= 1-—

Here a,3,0,0,w are integration constants and b 1s the charge parameter.
Note that the metric has isometry [SO(1,p) x SO(9 — p). Also the dilaton

coupling a = (p — 3)/2 for RR branes and (3 - p)/2 for NSNS branes.
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Note that among the parameters @, 3,8,0,w and b not all are independent.

From the consistency of the EOM we find three relations among them
given by,

a— G=pd
1 1 : 8 —
—é‘z—l— % ala — ao) = t £

- — P
b= (7T—p)la-+ ._'3}“-:7_*“ sinh 2¢

Using these we can eliminate three constants and so, the non-susy p-branes

contain three independent parameters 0,0,w (say). Since these solutions

involve harmonic function H = 1 —w™?/

/TP they have a potential
singularity at 7 = w . The solution 1s well defined only for 7 = W -

Note here that the uniqueness theorem does not apply for these

kind of singular solutions and so, they can be characterized by more than
two (corresponding to mass and charge) parameters.
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Note that since all the functions defined below,

—

" a3
i (E) cosh? @ — (%) sinh” @

H
i T
A = 142
ke
" TP
=1~

approaches unity asymptotically as » — oo so, the solution

ds? = F—° (dferT(dr )+F (HE)™ (dr® + r?d0Z_,)
=1
26
“ = r(8)
Flg_y = bVol(Qs,)

1s asymptotically flat.
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Also if we look at the metric

—

(HH) (m + r2d02_ ;)

" (—dt? + TP (dz)?) 4+ F*=

ds? =

we note that the metric functions associated with ISO(/, p) and the SO(9 — p)
parts satisfy

(p—i—l)lnF 7 )lu(PJ‘Sr (HH) ):ln(HH)#G

Since the right hand side is non-vanishing, it implies that the solution is

indeed non-supersymmetric. We will later compare this solution with
the BPS p-brane solution.

We would like to point out that the non-susy p-brane solutions we have
written 1s given 1n isotropic coordinate and 1s expresed in terms of two
harmonic functions /' and H. However, we can express the solution

also 1n terms of a single harmonic function if we write the solution in
Schwarzschild-like coordinate as follows,
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Let us make a coordinate transformation,

'—ll-‘iz.;'?_p P
Where we have defined, f=1—-———=1- ’GE
pr - R
The above implies, B = 2
L 44/Ff
B
L+Vf
So, from here we get, E — f—%
H




Using the three relations we can express the non-susy p-brane solution

-

— (d?‘g i ?‘Edﬂg—p)

F—p P _— p+1 ”
ds> = F~% (—df? + Z(d.r‘F) + F'5 (HH)

=1

25
g = " (E)
\H
F[S—p] = bVol(f2z_,) o e i
In terms of the single harmonic function f = 1 — r— L= p{;_p
P P

as follows,
5 Pp . -4 9 g = il ﬂ_’pg B s
dS — -FI_ g _df_ _I_ Z(d-ﬂz} —|_ F 8 j_T_T' T ‘|_ .'O df}w

Y2,
=1
E}';'L-a - F—af—ﬁ
F[S_p] — b\-"_ﬂl(ﬂg_p}
where now :
H " 2 H ; 2 Y 2 2 2
Fir)i= (E) cosh” @ — — sinh“f = f~z cosh® @ — fzsinh® 8 = F(p)
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The parameter relations remain the same as before

a— 3= ad

1 8 —
ala — ad) = 2
2 ;—p

f:r — (7 — p)(a + B)w" Psinh 26

_{53 e o

Note that the singularity isnow at P = po = g (7=p)

We can also shift the singularity by making another coordinate

transformation ﬁ?— ,O?_P TS L
The solution in this case can be written in terms of the harmonic function
Ayt B
g =l as,
p r
: 7 102 & s
ds® = ( dt> + Z (dz') ) + P g™ ('ﬁ g + ;B‘Edi’l;_p)
. .
Ei'r.-- _ F—aqﬁ
F[g_p] — bVol(Qs_ )
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Now the singularity of the non-susy p-branes appears at ¢ =0 like the
BPS p-brane.

Again the parameter relations remain the same as before,

o= 0= ad

1 8 —
—é‘z—l— a(n—ad} £
r=p

b—(; — p)(a + 3)w" Fsinh 260

Note that the solution

,.!.

ds? = F~ % ( dt” + T dz') ) + % (HH)™ (dr® + r%d02_,)

== l

24
» - ()
Fis_py = bVol(Qs_,)

represents the magnetically charged non-susy p-brane, the corresponding
electrically charged solution can be obtained by Flpq2) = €™ * Fiz_,) .
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3. Comparison with BPS branes

Let us for comparison write the magnetically charged BPS p-brane solution
of Horowitz and Strominger,

ds = H™% (—df“rz (dz') )+H (dr® +r?d9_,)

=1

e = H°
Fls—p) = bVol(s—;)
where H = 1 + : ?_p and the charge parameter b 1s given as
b= £(7 - p)o - . Where the +, - sign refers to brane or anti-brane.

So, unlike the non-susy p-branes which 1s characterized by three parameters
BPS p-brane is characterized by a single parameter b (or) w

We also note that the metric functions associated with ISO(/, p) and the

SO(9 — p) parts satisty (p + 1) In (H—P_TF) +(7—p)ln (HF’L ) —
(BPS property) unlike in the non-susy case.
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Let us now write both the BPS p-brane and non-susy p-brane solutions here
for better comparison,

BPS p-brane
2 = 2 3
gy = ( —di —I—Zidr )—I—H (d —I—;rd_b p)
Ei'r.-a . H—a
F[g_p] = bi.-"_i]l(ﬂg_p}
Non-susy p-brane
ds® = F~° ( dt” + T(dr ) +F* (HA)™ (dr® +r2d0d_)
=]
25
& = (E)
H
Fig_pyy = bVol(Qs_,)

So, if somehow we could send H, H — 1, and F' — H then these two
will precisely match. We will see how this can be achieved.

19



Note that H, H — 1, if we send w — 0 and in that case the function

" 3
B = ( E) cosh? § — (E) sinh?@ simplifies to
H H

- |
Flesl - (a+ 3) cosh 20 4 (a — 3)]
i (T~ E
There are two ways one can have H =1 + s from F
-
?_ £ ?_ . . .
1. & F = & _p Note here that € is a dimensionless
sinh 260 = L parameter € — 0 and w = finite.
e(a + 3)
Note also that in case 1, a + 3
7 WP = 2T remains finite. It can be checked from
gl = G the parameter relation that o, 3

. can never be infinity.
==E l g)H i ; _h]- ﬂ}H — __J.
ainhdf =~ coshdd—=¢
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So, in order to recover supersymmetry we always have w — 0 and 8 — oo
We will keep this in mind.

Now let us compare here the BPS and non-susy brane solutions:

* Both solutions are asymptotically flat.

* In isotropic coordinates BPS brane are given in terms of a single harmonic
function H , but the non-susy branes are given in terms of two harmonic

function H and H . In Schwarzschild-like coordinate non-susy branes can
also be given 1n terms of a single harmonic function.

* BPS branes are well defined for 7 > 0 | and has a singularity at » = 0,
whereas non-susy branes is well defined for r > w , and has

singularity at 7 = w . But we have noted that the singularity can be
shifted to p = 0 in Schwarzschild-like coordinate , as in the BPS case.

* Due to supersymmetry BPS branes satisty no-force condition. When two
BPS brane are placed parallel to each other, there 1s no force acting

between them. No-force condition is violated for non-susy branes.
21



* BPS brane will always contain a non-zero charge due to the relation

b= (7—p)w P , whereas from the relation

b= (7—p)(a+ 3)w Psinh 26 , we notice that the non-susy branes could
be either charged or chargeless. We note that b could be zero either for

8 = 0 or for a + 3 = 0 . Note that in both cases the function

. = ke
e (E) cosh? 0 — (E) sinh? @
H M

H
simplifies to F = (

H) . For the first case the solution depends on two
parameters 0,w whereas for the second case the solution depends on single
parameter w (eventhough here @ = finite, but it gets eliminated from the

solution). In order to understand the one parameter dependence we
note that from the parameter relatlon

—5‘3—|— .-:1(::1 —ad) = S

i~
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that we can obtain

\ 7T—p 4 2

g = |HE-H gof @)

| \ 7T—p 4 2
so a+ 3 =0 implies 0 = +— : /2(8 —_p)
T—p\ p+1

Unlike the BPS branes the non-susy branes are usually unstable. It was
argued by Brax, Mandal and Oz (PRD63 (2001) 064008, hep-th/0005242)
that the non-susy branes can be regarded as brane-antibrane system and
then the three parameters of the solution can be naturally interpreted as
the number of branes ( V), number of anti-branes (/N ) and the tachyon
parameter ( 7"). This 1s not unreasonable since from open string viewpoint
we know that non-susy branes contain tachyon on their world-volume.
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- V(T)
Let us look at the tachyon potential

V(T) as a function of tachyon parameter

T given on the right. At the top of

the potential the brane system 1is

unstable and given by the I= —m/2

non-susy brane configuration.
Whereas as the tachyon condenses
at the bottom of the potential 7= £7m/2

we get BPS configuration. Using

this open string theory argument of

Sen, we can relate the three supergravity parameters w, €, 0 to the
microscopic parameters N, N. T as follows,

(—p )% 2K
Qs

/2(8 — p)
(o + ,3)(&-‘1-’?)1-’!3 cos T V 7T—0p

24

1, cosT

|
{___ ]
o
)
|
B

sinh 26




and

1 © (N — N)2
T O vy
2¢, |a| |ﬂ|\, cosTh ANN cos?T
o (N — N)2 28 — p) | 5
—\ a2 (CDS‘ET o INF cos2 T 44 - .*:-5 —cos2T

Here a = (p — 3)/2 and G is an unknown constant depending on p but is

bounded as 7—p / P+ 1
Gy =~
4 \2(8-p)

for O toremain real.

It can be easily checked that using these relations the ADM mass of the
non-susy p-branes takes the form:

+ o
M = __} 2(7T—p)w' Fl(a+ 3)cosh 20 + (a — 3)]
e
— T,\/(N+ N)2 - 4NN(1 — castT)
< TN 4+ N}
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We mention that the three parameters

s T [l BNIY
(7T—pw = \/2(8—3})(4\}%)

’ Note that as

2K, T L0 N —(
T, cosT A 0,4 , .

Qs p I — +m/2,

| N-R 28—p w0
sinh 20 = e - 8 — oo as
(a+ B)(NN)Y2¢cosT\| 7—p
i we remarked
i @ (N — N)2 earlier for the
- M T 2 = . .
B = 2¢, |a| e o™t ANN cos?T susy limit.

. . (N — N)? 2(8 —p) . .

=
gives the correct supersymmetry limit wheni) N — 0,1ii) N — 0
and 1i1) 7" — =47 /2 . The corresponding mass formula also correctly gives
the ADM mass of the system both at the top and at the bottom of the
potential and also inthe N — 0, /N — 0 limit as can be seen from

M=, \/ (N+N)2—4NN(1 —costT) .
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We would like to make a couple of remarks here:

The relation between the sugra parameters w, €, 6 with the microscopic

physical parameters N, N,7 we got match exactly with the relations
obtained by Asakawa, Kobayashi and Matsuura (hep-th/0409044) in

the boundary state approach in the limit |N — N| — oo .
Also we would like to mention that
L al | (NN
0 = —— lcos2 T —
2¢, |al : \ cosTE ANN cos?T
a (N — N)2 28 — p) k]
—\ a2 (CDSE T + NN ooz T + 4 - .-:-5 — cos2T
is obtained from the quadratic relation —§2 4+ %(_“[({1 —ad) = E% i
2 [P

and we have kept only one root keeping in mind that the parameters
a, B appearing in the metric must be real and this gives a bound
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for 0 , which follows from

e = :
i = i p}—é? 1_i _|_@
\ F—p 4 2
= S p)—a‘ﬂ(l—ﬂ—)—@
\ { — P 4 P,
4 2[R
as 0] < = ( _p)
(—pY p+1

However, for the other root of ¢ , there is no such bound and the solution

in that case can become complex (except for some special case) signalling
a possible phase transition in the system.
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4. Intersecting non-supersymmetric branes

By intersecting branes here we mean that there are two kinds of branes,
namely, a p-brane and a g-brane (where ¢ < p) intersecting on an r-brane

(where r < ¢g). Here we will consider the simple case where r = g. So,
g-brane will be inside the p-brane.

In order to obtain these solutions both for the BPS case and in the non-susy
case one has to solve the equations of motion with two kinds of form fields

Fiz—;) and Fjz_, and also one might need to include the Chern-Simons
term in the action (of type IIA or IIB).

However, we will not obtain them that way. We will use a solution
generating technique to obtain them.

Note that we can obtain a D(p+1)-brane from a Dp-brane by applying
T-duality 1n the transverse direction of the Dp-brane. Here we do not
generate two kinds of branes, but for the non-susy branes we will

generate two kinds of branes, one charged and the other chargeless.
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The reason for this difference is that the T-duality will always give isotropic
BPS-branes (due to single parameter), which is not true for non-susy branes
(due to more parameters). Also since BPS branes can not be chargeless,

we always need two form-fields to get intersecting solutions of two kinds

of branes, which 1s again not true for non-susy branes.

We will in fact use T-duality to obtain non-susy p-brane intersecting with
non-susy g-brane (g p), where the non-susy p-brane 1s charged and the
g-brane 1s chargeless.

But taking T-duality 1s a bit subtle here. For BPS case, starting from a
Dp-brane, an isometry in the transverse direction 1s produced by placing
an infinite array of Dp-branes periodically along the transverse direction
(possible due to no-force condition) and then taking the continuum limit.
This produces a Dp-brane delocalized along the transverse direction which
1s also the 1sometry direction. Then T-duality 1s taken along the isometry
direction to produce a D(p+1)-brane.
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For, non-susy branes this procedure will not work since there is interaction.
So, before taking T-duality we have to obtain a delocalized (in one of the

transverse directions to produce the isometry direction) non-susy p-brane by
some other method.

We explicitly solve the equations of motion to obtain this delocalized
non-susy brane solution with an appropriate metric ansatz. The solution
for a non-susy g-brane delocalized in (p — g)-directions has the form:

> L ysprta B =2y ST
ds? = F(HH)™ (—)

= (dr? + r2d022_,)

T—q . z ; ot Tt WEEN s
+F 7§ (—dt‘ngZ(df)z)JrFT 3 (—) (dx?™ )2
=7 =0 H
; H 351 .
g = P8 (E) . Py = bVol(Ds-,) Ade®™. .. Adr
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Here the functions have exactly the same form as before,
3

P = (E) cosh? 8 — (E) sinh” @
H H
u;“_p
B = l4=
R
" I L .
H = 1— —
(AL

and the parameters satisfy
a— 3=ad

L. 5. "I
55-‘1’3 + Er:r(r:r — ady) +

o g 3=
2E5 0 60 _ 1—pfla? e
r==a 2 4 T

b= (7 —p)w P(a+ 3)sinh 20

Note that the equation here has (p — g + 6) parameters
(they are @, 3,0,01,02,...,0p—g41,w,b ) , but because of the above three

relations only (p — g + 3) are independent.
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We now take T-duality transformation on all the (p — g) delocalized
directions and demand that the resulting solution has the isometry

[SO(1,q) x SO(p — q) x SO(9 — p) corresponding to a p-brane
intersecting with a g-brane. For this we need to set 05 = 03 = - -+ = p—g+1
So, out of (p - g + 3) parameters (p — g -1) will be eliminated and we will
be left with 4 parameters. The solution is given as,

o Ifr—q']51_|_l.'r—-ﬂl.'3—xﬂt'53

_ o > g 2(7=p) . ; ‘
ds’ = F's (HH)™ (E) (dr3+r3d.ﬂg_p)

T—p H M _E. 2 F 1 a g
LR (—) (—dtz - Z(di}l)z)
H =

T, . H = (p—q—8)+ {n—q;4‘_|52 N
T ¥ (H) (dz?)?
i=g+l
= s—p f H %':4_33+q:'—2fp—q)52
e = 7 (E) , F[S—p] - E}Vﬂl(ﬂg_p)



The various functions are given exactly as before:

AL e
L
H = 1+—
g
/ 1T_.P
i - L
H = I=
pi=p

ke ;
= (E) cosh? @ — E sinh? @
il H

Note that we have seven parameters ( 01, 09,8, w, a, 3,b ) in the solution.
There are three relations among them which are given as,
a— 3= ad
_L:‘if 3 _iﬂ{m — aoy) + (p-g)p-e- “52 = (1 — (p — q)0;, )
2 2 (—p T —p
b= (7 —p)w' P(a+ 3)sinh 26

3—p

We therefore have four independent parameters in the solution. In order to
understand that the solution indeed represents intersecting non-susy p-brane
with chargeless non-susy g-brane we proceed as follows:
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g

We redefine [ — (E) cosh? 8 — (%) sinh? 6 = F| (E)

H H
S
Hy™® : H LoRs :
where F — (—) cosh? 8 — (—) sinh? @ with
H H
a+a=a, and By —a=03 .
Now defining new parameters a = L . pﬂ"g == { = qé
¢ = i
0y = —p (az +6)
2(7—q)
b = —tdap+-—28
—4 [l

We can rewrite the solution in terms of these new parameters as follows:
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ds*=F,* F,* (HH)™ (dr® +r%d0k_,)

P o ] s ; . _Fw  wEl pq i
+F, B F,F (—df;’ +Z(df}3> + 8 T EY Y (deff
p==1 j=gq-k1
| 50 3-q s F\2 - |
e? = F il (E) : Fig_p) = bVol({23_;)

-

B1,2
¥ & ; HY 7 sas
where F) 5, = (E) cosh? 8, 5 — (E) sinh? 6,

Note that in the above we actually have #; = 0 and 6, — 0 and because

b0y =0, F3 = (E) . This 1s precisely the form we get from the solution

given on s33. 6, = 0 also implies that the charge associated with the g-brane

is zero which is also manifested by the absence of Fz—q] above.

But because of non-zero ¢, and F[z_;] , the p-brane is charged. The

above solution therefore represents intersecting non-susy p-brane with

chargeless non-susy g-brane where g < p. The parameter relations are:
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— 3
&1—,51: (u—g)ﬂg—FP—é

2 2
b= - ) _p(ﬂl + 1) sinh 26
1 e o . .
E( 1 “2>
_ A= (p + 1)(’?' —p) 2 (g+1)(7—¢q) » (¢+1)T—p)
32 L 32 2 16 sk

Also to verify that the our solution indeed represents intersecting
solution, we have compared it with the known intersecting solutions when

p —q =4 and 2 and both the branes are charged, by putting the charge of
the g-brane to zero.

These intersecting solutions we have obtained just by applying T-duality
transformation on the non-susy g-brane delocalized in (p — g) directions.
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5. Intersecting non-susy branes as black branes and
bubbles

Here we will show how for particular values of the parameters we recover
the black-branes and bubbles from our intersecting non-susy solutions.

(a) Black-branes

Let us look at the solution:

ds?= F. 5 F, % (HH) (dr? +r2a02_)

T

Lo - e 4 ol - P wid F ag
S, ® 0 (—df.z—l—z'(df)z) o R Z (d.rj)g
=1

i=q+1

= N\ 28
FL Fz (E) :- Fls—p) = m’rﬂl(ﬂﬁ—p)

and put g = 0. The above solution simplifies to,
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M — FT ( Fig. . = BVal(f
where the parameters satisty,
| p p—3
DR R | R o
Sl (2 )“3+’ 2

b= (7—p)w Plar + 3;)sinh 26

1 — 3 3 8
B—p lpellt—=pm s T 3
7—m 32 32 16
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Now we will use the coordinate transformation to go to Schwarzschild-like

coordinate we had before, : _2
r—pp+wﬁ)ﬂ

2

where T L =9
f o Rt O
e pr

In P coordinate the solution reduces to,

. Bl o BT, i oo [
dic = [ 6 1622t 75 (% —|‘P2ff i p)

Ty et >y Y -
+ GTF fE e (‘def} +Z“€IE}E>

ba |-

and

T

=7 i

e 2

w-ee=d B = bVol(Qs_,)

where G = cosh 511111 0 and the parameter relations

remain the same.
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. w1+ 3 ) :
It is clear that for a; + 3, =2 , G = cosh® @ — ) = sinh?@ reduces
pi? sinh? 4

pre
and 6 = —2(6 — p) /(7 — p), the solution

. phl o g L 1 d p? -
ds® = Gs LRI e + pPdS2s .
f o

T T (LD : P . e 4
L @ T ey (—f?dff +Z{d.rf}3>
=1

g Fig_, = bVol(Qs_,)

to (+ = I—:T — 1 ke . Also for ) = 2!{(7_?) , Oip — )

€ 2eh

reduces to,

_ —gmm P10 i
st = H¥ (}d,ag—kpzdﬂg_p) s

; (— fdt? 4 i(cﬁ.ﬁ)g)

& = H7, Fis_p) = bVol(Qs_,)
This 1s precisely the Horowitz-Strominger black p-brane.
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Note that the black-brane has two parameters po and € corresponding to
the mass and the charge of the black-brane. However, the original
intersecting non-susy solution had four parameters s, 0, pg, and @ so,

two of the parameters a3, and 0 got fixed while obtaining the black-brane
solution.

Note that after we made the T-duality we obtained the intersecting solution
in the form:

ds? = F%(HH)T—F(T)
H

(p—q)dy ik (p—qlds

F—p H & 2 ; g i
77 () (_dfz 4 g(df)z)

(p—gldy 2 (p—gl(2—p)ds
3 2(7—p)

(dr® +r*d0g_,)

s P H %fp—q—@]—l— l’J!—q;—*l"_lr.'ig |
+F7F ) (E) (dz?)?
j=g+1
g 5 oo P %H—Hq)—ﬁp—q)ﬁz



Here the independent parameters are ¢, d,,w = pg/4 and @ . They are
related to 2,9, pg, and € as,

[ —p P—dq _

g = — 9y — = 0
[ —gq [ — g

by = — (g8

2 2(7 = q}( 2+ 0)

8 = —}_}_qﬂzﬂL i_pé

[ — g [ — g

So, for § = —2(6 — p) /(7 — p) and @2 = 2 | we have
0y = —12/7 and 6, = —1/7 and so they are universal in the sense

that they are independent of p. We will use this fact to make some

comments on the phase structure of the parameter space.

Also note that the original intersecting non-susy brane solution has
a singularity, but for these special values of the parameters a regular
horizon 1s formed.
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(b) Bubbles

Let us again look at the four -parameter intersecting brane solution

g1

pri
dSEZFlb FQE

(HH) (dr? +r2d02_ )

_r=~p _ ¥—uq T wpk B P
i, © Ey " ( dt’ —I—Z (dz') )—I—F TAg™ ¥ (dz?)?
p==1] J=g+1
=0 /H 25 |
_F*F,> (E)  Flegr— Vel )
and let us put g = p — 1, then the solution reduces to (put F5 = (E) )

i EES H Y a2 2 2 1092
ds? = F's (HH)™» (E) (dr? +r?d0Z_,)

T H %ﬂz e H Eﬂz ‘
F~ & (—) dt? d g (—) dz?)?
-+ & ( +- Z( m ) 5 (dz¥)

_ i H Tpcug—I—Eﬁ
EEQ’J — FT (T) . F[S—
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The parameter relation takes the form:
3 P—-3

a1 — By = —5 04 -+ 3 0
lles: cian e
h— E{T—p)pé (ay + 1) sinh 260
i pp— \ 2
é(é_}}__[ 31’:[1— _l_ll’_'l;r)
_8—p (@t1T—p) , pB—p ,
N { =P 32 ! 32

p(7 — p)
16

Y Qo

The above solution represents intersecting non-susy Dp-brane with
chargeless non-susy D(p — 1)-brane having the four independent parameters

a9, 0, pg, and 6

Now again we make the coordinate transformation to go to Schwarzschild

|

like coordinate by, e
(52
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Under this transformation the solution

e e HY w2 2 2 102
ds® = F (HH)™ (E) (dr? + r?d0Z_,)

gl H %ﬂz T—p H %D‘E :
F~ & (—) dt’ d = (—) dz?)?
L = ( - Z( ') ) + = (dx”)

- e ) H Tpﬂz—'_gﬁ
E'th == 7 (T) i F[g_

~ = b Vol(Qs_,)

p]

takes the form

: P L . T d i :
i = @F ot (%ﬂfdﬂé—p)

A

( dt* + Z(dr f?(drﬂ?)

= G B = Vel
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. . w1+ 3 : .
Where again (3 = cosh” 6 — F = sinh2 @ and the parameter relation

remains the same. Again for oy + 3; = 2, we have
- "“Psinh? @
= =1 Po ;_ If we now put,

the solution

2
2 = 3 | 'T1_|_Tl '_%CL]__F_;‘L-L:'—F _i_| d110‘_ 2 2
ds = {5 B f LE s (=1 (T —|—I,|C" dﬂg_p
RE B pano Pl g
+ G E fm et mE e P+ (de')’ 4 [T 7 (daP)’
i=1

Dl TR P A 8 -

. & W 3T g Fla—p) = bVol(Qs—p)

reduces to,

I—H

i 2
i — (‘fiwgcmz_

===

2 o 3
£ = H - F[g

) + A (dﬁ + i(df)z + f(dz”)

|



We recognize the solution

2 _ it dp’ 2 71092 o
ds = I @ (T—l_pdﬂﬁ—p)—l_ﬂ

L
]

3 (dtﬂ +- E(df)g + f(drp)g)

g
A ot R &

g = HE ; F[g_p] = E}ﬁ\f[ll(-ﬂg_p)

to be the bubble solution. Note that the bubble solution can be obtained from
the black p-brane solution by a Wick rotation ¢ — 1z”, =¥ — it .

47F . A
pte = gt

intersecting non-susy Dp-brane with chargeless non-susy D(p — 1)-brane had

a singularity at ¢ = po, the singularity 1s completely gone for the particular
choice of the parameters.

Also in the above f—=1 —

. So, although the original

We would like to mention that the black-brane to bubble transition is actually

a special case of intersecting non-susy Dp/D0 to non-susy Dp/D(p - 1)
transition by the above Wick rotation.
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We had remarked before in the context of simple non-susy Dp-brane how it
can be regarded as a system of brane-antibrane where the three supergravity
parameters can be related to the nuber of branes, number of anti-branes

and the tachyon parameter. These relations

T— 5 2 2
(7T—plw P = \/ (NN)z ™ Tyco8T

2(8 P) Q‘S—p
h28 — =
R (a+ B)(NN)Y2cosT \/ T—p
]_ a j (J‘.’\,T r— J?E,T)E
e T ;
2, al afy/cos? T + ANN cos2T

\ ANN cos?T 7—0p

gave us the correct picture of open string tachyon condensation as observed
by Sen.

N — N)?2 2(8 —
—_ ﬂE(CDSET—I— (T_ ) )—I——L<( p)p—c053T>
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Similarly the supergravity parameters of the intersecting non-susy brane
solutions can also be related with the physical parameters. Although the
parameters w and 6, can be fixed uniquely the parameter § has various

branches.

As we mentioned before the open string tachyon condensation
occurs in the branch of é where it is bounded from above and the solution

always remains real. However, we found that for the formation of the horizon
0 must be -12/7, but this value of ¢ always occurs in the branch where

1t 1S not bounded.

In the branch where 0 is not bounded, the solution can become imaginary
indicating a possible phase transition. Whether this phase transition has
anything to do with black-brane to bubble transition or closed string
tachyon condensation remains to be seen.
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6. Conclusion

* We have shown how black p-branes and bubble solutions appear
as special cases of four parameter non-susy intersecting brane solutions
when two of the four parameters are fixed. In the fomer case the
parameters correspond to the mass and the charge of the black-brane
while 1n the latter case they represent the radius and the flux
associated with the bubble.

* We have seen that the parameter space of the intersecting non-susy
branes has a very rich phase structure than what is hitherto known. It
not only has an open string tachyon condensation phase, but also possibly
contain a closed string tachyon condensation phase. It would be
interesting to understand the full phase structure of the parameter
space.
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* We have seen that black-brane to bubble transition (which is supposed to
occur through closed string tachyon condensation as argued by
Horowitz (JHEP 08 (2005) 091, hep-th/0506166)) 1s a special case
of transition from intersecting Dp/DO0 system to Dp/D(p - 1) system.
It would be interesting to see whether there 1s any closed string tachyon
condensation associated with this transition.

* We have seen that black-branes are special cases of intersecting
non-susy Dp-branes with chargeless non-susy DO-branes. This gives
a microscopic description of black branes in terms of these constituent
non-susy branes. It would be interesting to see whether this new
understanding can help us 1n calculating the entropy of non-susy
black-branes or holes.
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