Phase Transitions with $\alpha^{'}$ Correction

Swarnendu Sarkar

Institute of Physics Bhubaneswar

Based on : hep-th/0609038 with T.K Dey, S. Mukherji and S. Mukhopadhyay

ISM06-Puri

Outline

Phases of Bulk Theory

Phases of Boundary Theory

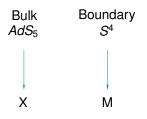
Connection with Matrix Models

Bubbles of Nothing

Summary

Euclidean spaces

PSfrag replacements



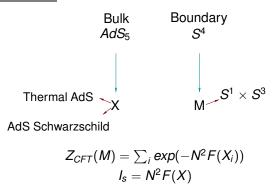
$$Z_{CFT}(M) = \sum_{i} exp(-N^2 F(X_i))$$
$$I_s = N^2 F(X)$$

ISM06-Puri Phase Transitions with α' Correction

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Euclidean spaces

PSfrag replacements



ISM06-Puri Phase Transitions with α' Correction

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thermal AdS

The metric

$$ds^{2} = \left(\frac{r^{2}}{l^{2}} + 1\right) dt^{2} + \left(\frac{r^{2}}{l^{2}} + 1\right)^{-1} dr^{2} + r^{2} d\Omega^{2}$$

- t is periodic with any periodicity.
- I is related to the cosmological constant.

AdS Schwarzschild Black Hole

The metric

$$ds^{2} = -(1 + \frac{r^{2}}{l^{2}} - \frac{m}{r^{2}}) dt^{2} + (1 + \frac{r^{2}}{l^{2}} - \frac{m}{r^{2}})^{-1} dr^{2} + r^{2} d\Omega^{2}$$

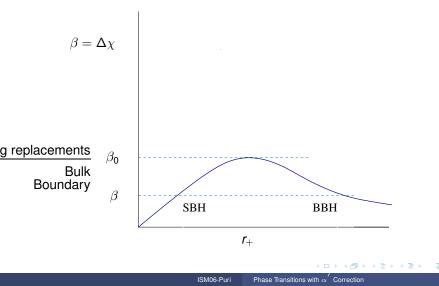
- Asymptotically AdS
- ► Horizon at r_±

$$1 + \frac{r^2}{l^2} - \frac{m}{r^2} = 0$$

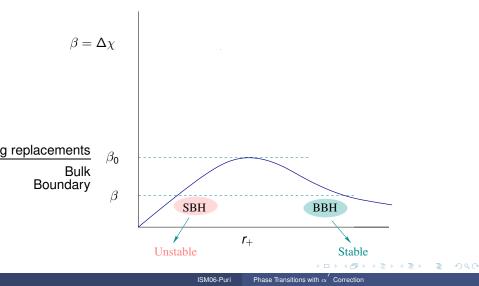
To avoid conical singularity

$$\Delta \chi = \frac{2\pi r_+ l^2}{2r_+^2 + l^2}$$

AdS Schwarzschild Black Hole



AdS Schwarzschild Black Hole



Free Energy

Free energy from action

$$\beta F = I_X$$

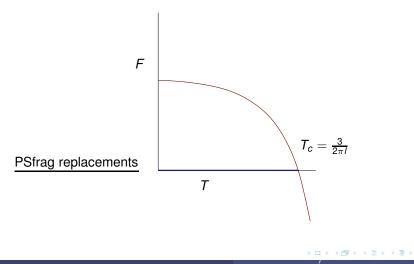
The free energy in general diverges for the individual metrics.

- Compute the difference $I(X_1) I(X_2)$
- Free energy of Thermal AdS is zero.
- Free energy of the AdS Sch. Black Holes.

$$F = \frac{2\pi^2 r_+^2}{\kappa_5} \Big(1 - \frac{r_+^2}{l^2} \Big)$$

• There is a transition when $r_+ = I$

Hawking-Page Transition



ISM06-Puri Phase Transitions with α' Correction

Gauss-Bonnet black holes

$$I = \int d^{n+1}x \sqrt{-g_{n+1}} \left[\frac{R}{\kappa_{n+1}} - 2\Lambda + \alpha (R^2 - 4R_{ab}R^{ab} + R_{abcd}R^{abcd}) \right]$$

This action possesses black hole solutions.

Solution for Metric

$$ds^2 = -V(r)dt^2 + \frac{dr^2}{V(r)} + r^2 d\Omega_{n-1}^2,$$

$$V(r) = 1 + \frac{r^2}{2\hat{\alpha}} - \frac{r^2}{2\hat{\alpha}} \left[1 - \frac{4\hat{\alpha}}{l^2} + \frac{4\hat{\alpha}m}{r^n}\right]^{\frac{1}{2}}$$

• $d\Omega_{n-1}^2$ is the metric of a n-1 dimensional sphere.

• • • • • • • • • • • •

Phases of Bulk Theory

Phases of Boundary Theory Connection with Matrix Models Bubbles of Nothing Summary

$$V(r) = 1 + \frac{r^2}{2\hat{\alpha}} - \frac{r^2}{2\hat{\alpha}} \left[1 - \frac{4\hat{\alpha}}{l^2} + \frac{4\hat{\alpha}m}{r^n}\right]^{\frac{1}{2}}$$

$$\hat{\alpha} = (n-2)(n-3)\alpha\kappa_{n+1}$$

•
$$l^2 = -n(n-1)/(2\kappa_{n+1}\Lambda)$$

Asymptotic behavior

$$V(r) = 1 + \left[\frac{1}{2\hat{\alpha}} - \frac{1}{2\hat{\alpha}}\left(1 - \frac{4\hat{\alpha}}{l^2}\right)^{\frac{1}{2}}\right]r^2$$

• Horizon fo n = 4 (five dimensions)

$$r^{2} = r_{+}^{2} = \frac{l^{2}}{2} \left[-1 + \sqrt{1 + \frac{4(m - \hat{\alpha})}{l^{2}}} \right]$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thermodynamics

Thermodynamics of these black holes can be obtained by standard Euclidean action calculation.

Free Energy and Temperature

$$F = \frac{\omega_{n-1}r_{+}^{n-4}}{\kappa_{n+1}(n-3)(r_{+}^{2}+2\hat{\alpha})} \Big[(n-3)r_{+}^{4}(1-\frac{r_{+}^{2}}{l^{2}}) - \frac{6(n-1)\hat{\alpha}r_{+}^{4}}{l^{2}} + (n-7)\hat{\alpha}r_{+}^{2} + 2(n-1)\hat{\alpha}^{2} \Big],$$

$$T = \frac{(n-2)}{4\pi r_{+}(r_{+}^{2}+2\hat{\alpha})} \Big[r_{+}^{2} + \frac{n-4}{n-2} \hat{\alpha} + \frac{n}{n-2} \frac{r_{+}^{4}}{l^{2}} \Big]$$

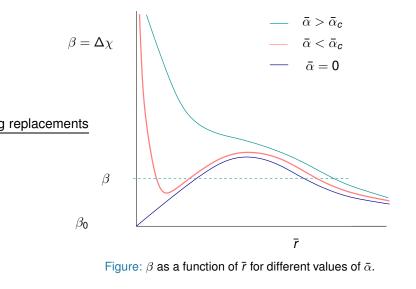
Entropy

$$S = \frac{4\pi\omega_{n-1}r_{+}^{n-1}}{\kappa_{n+1}} \left[1 + \frac{n-1}{n-3}\frac{2\hat{\alpha}}{r_{+}^{2}}\right]$$

ISM06-Puri Pha

Phases of Bulk Theory

Phases of Boundary Theory Connection with Matrix Models Bubbles of Nothing Summary



ISM06-Puri Phase Transitions with α' Correction

イロト イ理ト イヨト イヨト

Phases of Bulk Theory

Phases of Boundary Theory Connection with Matrix Models Bubbles of Nothing Summary

Free energy vs radius

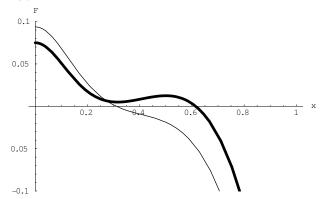


Figure: Free energy as a function of $x = \overline{r}$ for different values of $\overline{\alpha}$. The thicker line is for $\overline{\alpha} = 1/40$ and the other one $\overline{\alpha} = 1/32$.

Free energy vs Temperature

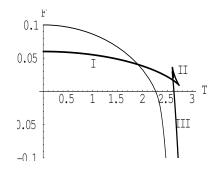


Figure: Free energy as a function of temperature. The thicker one is for $\bar{\alpha} = 1/50$ while the other one is for $\bar{\alpha} = 1/30$.

ISM06-Puri Phase Transitions with α' Correction

Phases

Different phase structures as we vary $\bar{\alpha}$.

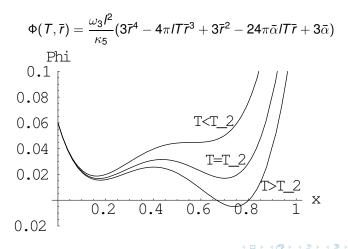
- 1. $\bar{\alpha} \leq \bar{\alpha}_{c}$: Three branches:
 - ► I+III: Specific heat positive → Stable
 - ▶ II : Specific heat negative → Unstable
 - HP1 : I \rightarrow III
 - HP2 : Thermal AdS \rightarrow III

$$T_c = \frac{3}{2\pi I} - \frac{33\bar{\alpha}}{4\pi I} + \mathcal{O}(\bar{\alpha}^2)$$

2. $\bar{\alpha} > \bar{\alpha}_c$: Only one branch for stable Black hole.

Phases

> Landau function around the critical point: $\bar{\alpha} = 1/50$



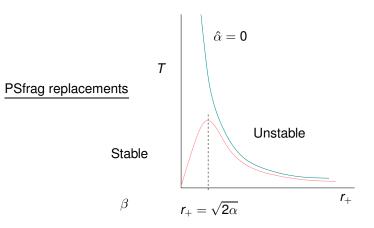
Some comments on the flat case

- In the limit *I* → ∞ (Λ = 0) the solution reduces to the asymptotically flat Gauss-Bonnet black hole.
- The temperature is given by

$$T=\frac{r_+}{2\pi(r_+^2+2\hat{\alpha})}$$

ISM06-Puri Phase Transitions with α' Correction

• • • • • • • • • • • • •



ISM06-Puri Phase Transitions with α' Correction

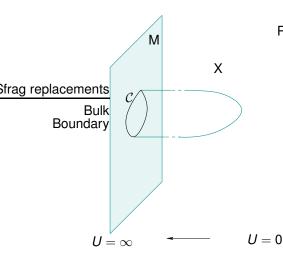
イロト イポト イヨト イヨト

Gauge theory

- ▶ SU(N), N=4 SYM Theory on $S^1 \times S^3$ in the limit $N \to \infty$.
- Identify Hawking-Page transition in the bulk with Confinement/Deconfinement transition on the boundary.
- Order parameter Wilson loop operator

$$W(\mathcal{C}) = \frac{1}{N} \operatorname{Tr} P \exp \int_{\mathcal{C}} A$$

Wilson Loop



Proposal (Maldacena, Rey, Yee)

$$\langle W(\mathcal{C}) \rangle = e^{-S}$$

ISM06-Puri Phase Transitions with α' Correction

Free Energy

- Another order parameter for deconfined hase is the Free Energy.
- Pure U(N) gauge theory contains N² − 1 ~ N² gluons. For the decofined phase we expect F ~ O(N²) and for cofined phase we expect F ~ O(1).
- Gravity computation (Free energy of black hole) corresponding to the strongy coupled gauge theory (g²_{YM}N = λ → ∞)

$$F = -\frac{\pi^2}{6} N^2 T^4 \left(\frac{3}{4} + \frac{45}{32} \frac{\zeta(3)}{(2\lambda)^{3/2}}\right)$$

Gauge theory weak coupling (λ) expansion (free gluons)

$$F = -\frac{\pi^2}{6} N^2 T^4 \left(1 - \frac{3\lambda}{2\pi^2}\right)$$

► Apart from the dependence on the coupling λ the free energy scales in the same way w.r.t N² and T for both ends of the coupling.

Effective theory

Partition function

(Aharony et al.)

$$Z(\lambda, T) = e^{-eta F} = \int \mathcal{D}A e^{-S_{YM}(A)}$$

- Evaluate at weak coupling $\lambda \rightarrow 0$. Free gauge theory.
- Gauge condition

$$\partial_i A^i = 0$$

 $\partial_t \alpha(t) = 0$

$$\alpha = \frac{1}{V_3} \int_{S^3} A_0$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Matrix model

Effective Action

$$egin{array}{rcl} Z(\lambda,\,T) &=& e^{-eta F} = \int [dU] e^{-S_{eff}(U)} \ U &=& e^{ietalpha} \end{array}$$

$$rac{1}{N}\langle U
angle
ightarrow$$
 Wilson loop

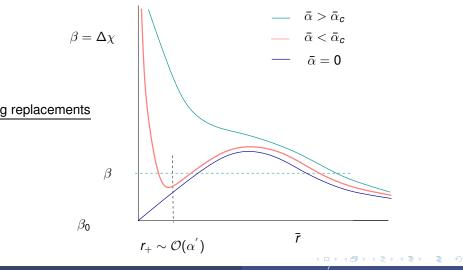
Measure

$$[dU] = \prod_{i,j} [dU_{i,j}] = \prod_i d\lambda_i \prod_{i < j} \sin^2 \left(\frac{\beta(\lambda_i - \lambda_j)}{2} \right)$$

イロト イポト イヨト イヨト

æ

Two possibilities



ISM06-Puri P

Phase Transitions with α' Correction

A simple model

Quartic potential (Alvarez-Gaume et al.)

$$Z(\lambda, T) = \int [dU] \exp \left[a \mathrm{tr} U \mathrm{tr} U^{\dagger} + b / N^2 \left(\mathrm{tr} U \mathrm{tr} U^{\dagger} \right)^2 \right]$$

- *a* and *b* are functions of λ and *T*.
- Study the phases of this model.

• • • • • • • • • • • • •

Phases

Saddle-point equation

$$a\rho + 2b\rho^3 = \rho \qquad 0 \le \rho \le \frac{1}{2}$$
$$= \frac{1}{4(1-\rho)} \qquad \frac{1}{2} \le \rho \le 1$$

where $\rho^2 = (1/N^2) \text{tr} U \text{tr} U^{\dagger}$.

- Existence of solution for ρ .
- $\rho = 0$ is always a solution.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Comparison with Gravity

- $\blacktriangleright\,$ Phases equivalent to strongly coupled gauge theory $\lambda \to \infty\,$
- ▶ Possible to move on further and actually compute $a(1/\sqrt{\lambda} = 0, T)$ and $b(1/\sqrt{\lambda} = 0, T)$.
- Equate the potential with the free-energy from gravity.

$$2a\rho_{1,2}^2 + 2b\rho_{1,2}^4 + \log(1-\rho_{1,2}) + f = -I_{1,2}$$

$$f = \log(2) - \frac{1}{2}$$

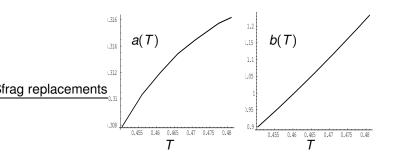
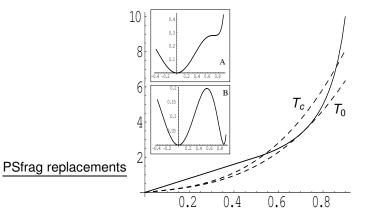


Figure: Plots of a(T, 0) and b(T, 0)

ISM06-Puri Phase Transitions with α' Correction

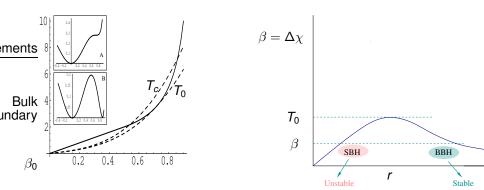
イロト イポト イヨト イヨト

Phases



イロン イロン イヨン イヨン

Phases



イロン イロン イヨン イヨン

Finite λ corrections

• Relation between gauge coupling and α'

$$rac{R^4}{lpha'^2} = 4\pi g_{YM}^2 N = 4\pi\lambda$$

- Adding α' corrections in the bulk gravity amounts to deviating from the λ → ∞, thus bringing in 1/√λ corrections.
- Comparison with gravity

$$2a\rho_{1,2}^2 + 2b\rho_{1,2}^4 + \log(1 - \rho_{1,2}) + f = -I_{1,2}$$

We can now find the corresponding 1/√λ corrections to a(0, T) and b(0, T).

Taylor expansion

$$a(T, 1/\sqrt{\lambda}) = a(T, 0) + \frac{1}{\sqrt{\lambda}} \frac{\partial a(T)}{\partial (1/\sqrt{\lambda})} |_{1/\sqrt{\lambda}=0} + \mathcal{O}(1/\lambda^{3/2})$$

$$b(T, 1/\sqrt{\lambda}) = b(T, 0) + \frac{1}{\sqrt{\lambda}} \frac{\partial b(T)}{\partial (1/\sqrt{\lambda})} |_{1/\sqrt{\lambda}=0} + \mathcal{O}(1/\lambda^{3/2})$$

Compare Coefficients

$$2\frac{\partial a(T)}{\partial (1/\sqrt{\lambda})}\rho_{1,2}^{2}+2\frac{\partial b(T)}{\partial (1/\sqrt{\lambda})}\rho_{1,2}^{4}=-\sqrt{\lambda}\delta I_{1,2}(T)$$

$$\begin{aligned} \delta I_{1,2}(T) &= \alpha' \beta(\delta F_{1,2}) \\ &= -\frac{\beta}{\sqrt{2\lambda}} (3r_{1,2}^4 + 24r_{1,2}^2 + 9) \end{aligned}$$

イロト イポト イヨト イヨト

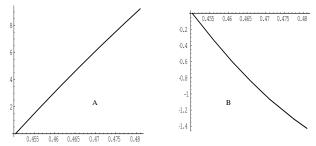
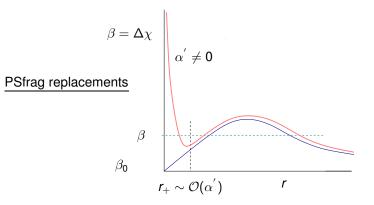


Figure: Plots of (A) $\partial a(T)/\partial (1/\sqrt{\lambda})$ and (B) $\partial b(T)/\partial (1/\sqrt{\lambda})$

 b may end up with a positive or negative sign in the weak coupling,

Modifying the matrix potential



This comparison will however be valid as long as the radius of the small black hole is greater than α'.

< 🗆 🕨 < 🗇 🕨

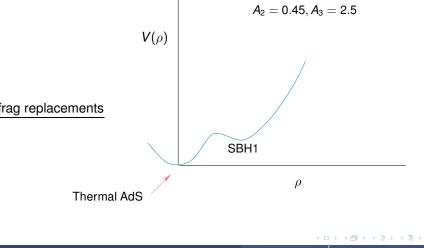
Modified matrix potential

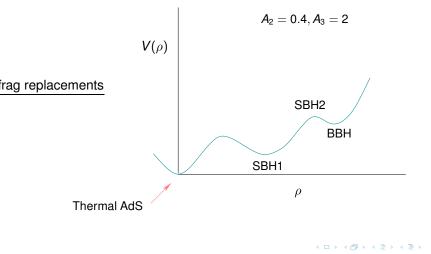
Including higher order terms

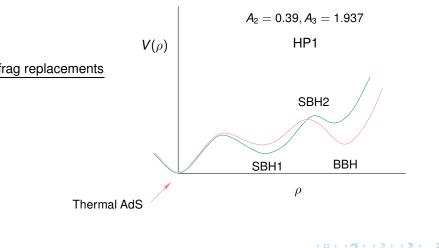
$$S(\rho^2) = 2[A_4\rho^8 - A_3\rho^6 + A_2\rho^4 + (\frac{1 - 2A_1}{2})\rho^2]$$

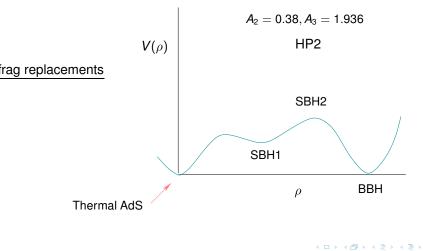
Saddle-point equations

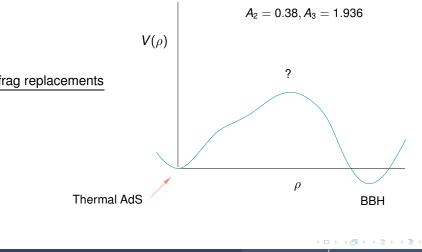
$$\begin{split} \rho F(\rho) &= \rho \quad , \qquad \quad 0 \leq \rho \leq \frac{1}{2}, \\ &= \frac{1}{4(1-\rho)} \quad , \quad \frac{1}{2} \leq \rho \leq 1 \end{split}$$











Witten's Kaluza-Klein Bubbles

1. Euclidean Kaluza-Klein vacuum

$$ds^2 = dx^2 + dy^2 + dz^2 + dt^2 + d\phi^2$$

 Another solution with the same asymptotic form (Euclidean black hole)

$$ds^2 = rac{dr^2}{1 - lpha/r^2} + r^2 d\Omega^2 + \left(1 - rac{lpha}{r^2}\right) d\phi^2$$

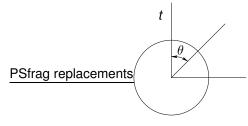
• The metric 2 is non-singular if the period of ϕ is $2\pi\sqrt{\alpha} = 2\pi R$

$$ds^{2} = \frac{dr^{2}}{1 - (R/r)^{2}} + r^{2}d\Omega^{2} + \left(1 - \left(\frac{R}{r}\right)^{2}\right)d\phi^{2}$$

with $R < r < \infty$.

Kaluza-Klein Bubbles

Analytic continuation to Minkowski space. Locate a plane that resembles t = 0.



t
ightarrow it is equivalent to $heta
ightarrow 1/2\pi + i\psi$

A D > A A P >

Kaluza-Klein Bubbles

Metric with Minkowski signature

$$ds^{2} = \frac{dr^{2}}{1 - (R/r)^{2}} - r^{2}d\psi^{2} + r^{2}\cosh^{2}\psi d\Omega^{2} + \left(1 - \left(\frac{R}{r}\right)^{2}\right)d\phi^{2}$$

- Now since R < r < ∞ this metric defines a bubble expanding with time.</p>
- KK vacuum decays into this bubble of NOTHING!

AdS Bubbles

AdS Black hole

$$ds^{2} = -(1 + \frac{r^{2}}{l^{2}} - \frac{m}{r^{2}}) dt^{2} + (1 + \frac{r^{2}}{l^{2}} - \frac{m}{r^{2}})^{-1} dr^{2} + r^{2} d\Omega^{2}$$

- Analytically continue the coordinates : $t \rightarrow i\chi, \theta \rightarrow \pi/2 + i\tau$.
- Bubble Metric :

$$ds^{2} = V(r)d\chi^{2} + \frac{dr^{2}}{V(r)} - r^{2}d\tau^{2} + r^{2}\cosh^{2}\tau d\Omega^{2}$$

• Metric is non-singular if in the region $r \ge r_+$ if χ has a periodicity:

$$\Delta \chi = \frac{2\pi \bar{r} I(\bar{r}^2 + 2\bar{\alpha})}{(\bar{r}^2 + 2\frac{\bar{r}^4}{I^2})}$$

Bubble Solutions

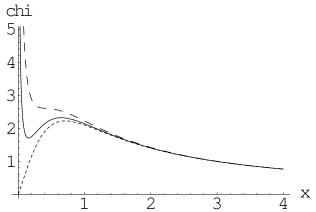


Figure: Plot of $\Delta \bar{\chi}$ as a function $x = \bar{r}$. The dashed line is for $\bar{\alpha} = 1/34$. The solid line is for $\bar{\alpha} = 1/50$ and the dotted line is for $\bar{\alpha} = 0$.

Energy Momentum Tensor :

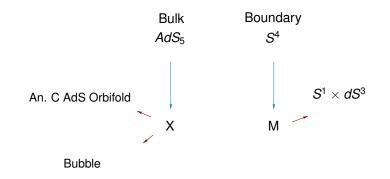
$$T_{\tau}^{\tau} = \frac{1}{\kappa_5 L^3} m$$

The bubble has lower energy for any value of r than the analytically continued AdS orbifold.

• Boundary : $dS^3 \times S^1$

$$ds^{2} = d\chi^{2} + L^{2}(-d\tau^{2} + \cosh^{2}\tau d\Omega_{n-2}^{2})$$
$$L = \sqrt{2\hat{\alpha}} \left[1 - \left(1 - \frac{4\hat{\alpha}}{l^{2}}\right)^{\frac{1}{2}}\right]^{-\frac{1}{2}}$$

Sfrag replacements



ISM06-Puri Phase Transitions with α' Correction

Summary

- Phases in the bulk gravity and on the boundary gauge theories in the presence of higher derivetive (Gauss-Bonnet term).
- Phase structure can change once higher derivative terms are added.
- Proposal for a matrix model that captures the phases on the boundary
- Decay into bubbles of nothing (only a gravity analysis)

< □ > < @ > < = > <</pre>