Phase Transitions with α^{\prime} Correction

Swarnendu Sarkar

Institute of Physics
Bhubaneswar

Based on : hep-th/0609038 with T.K Dey, S. Mukherji and S. Mukhopadhyay

ISM06-Puri

Outline

Phases of Bulk Theory

Phases of Boundary Theory

Connection with Matrix Models

Bubbles of Nothing

Summary

Euclidean spaces

$$
\begin{gathered}
Z_{C F T}(M)=\sum_{i} \exp \left(-N^{2} F\left(X_{i}\right)\right) \\
I_{s}=N^{2} F(X)
\end{gathered}
$$

Euclidean spaces

AdS Schwarzschild

$$
\begin{gathered}
Z_{C F T}(M)=\sum_{i} \exp \left(-N^{2} F\left(X_{i}\right)\right) \\
I_{s}=N^{2} F(X)
\end{gathered}
$$

Thermal AdS

- The metric

$$
d s^{2}=\left(\frac{r^{2}}{I^{2}}+1\right) d t^{2}+\left(\frac{r^{2}}{I^{2}}+1\right)^{-1} d r^{2}+r^{2} d \Omega^{2}
$$

- t is periodic with any periodicity.
- I is related to the cosmological constant.

AdS Schwarzschild Black Hole

- The metric

$$
d s^{2}=-\left(1+\frac{r^{2}}{l^{2}}-\frac{m}{r^{2}}\right) d t^{2}+\left(1+\frac{r^{2}}{l^{2}}-\frac{m}{r^{2}}\right)^{-1} d r^{2}+r^{2} d \Omega^{2}
$$

- Asymptotically AdS
- Horizon at $r_{ \pm}$

$$
1+\frac{r^{2}}{l^{2}}-\frac{m}{r^{2}}=0
$$

- To avoid conical singularity

$$
\Delta \chi=\frac{2 \pi r_{+} I^{2}}{2 r_{+}^{2}+I^{2}}
$$

AdS Schwarzschild Black Hole

AdS Schwarzschild Black Hole

Free Energy

- Free energy from action

$$
\beta F=I_{X}
$$

The free energy in general diverges for the individual metrics.

- Compute the difference $I\left(X_{1}\right)-I\left(X_{2}\right)$
- Free energy of Thermal AdS is zero.
- Free energy of the AdS Sch. Black Holes.

$$
F=\frac{2 \pi^{2} r_{+}^{2}}{\kappa_{5}}\left(1-\frac{r_{+}^{2}}{l^{2}}\right)
$$

- There is a transition when $r_{+}=I$

Hawking-Page Transition

Gauss-Bonnet black holes

$$
I=\int d^{n+1} x \sqrt{-g_{n+1}}\left[\frac{R}{\kappa_{n+1}}-2 \Lambda+\alpha\left(R^{2}-4 R_{a b} R^{a b}+R_{a b c d} R^{a b c d}\right)\right]
$$

This action possesses black hole solutions.

- Solution for Metric

$$
\begin{gathered}
d s^{2}=-V(r) d t^{2}+\frac{d r^{2}}{V(r)}+r^{2} d \Omega_{n-1}^{2}, \\
V(r)=1+\frac{r^{2}}{2 \hat{\alpha}}-\frac{r^{2}}{2 \hat{\alpha}}\left[1-\frac{4 \hat{\alpha}}{r^{2}}+\frac{4 \hat{\alpha} m}{r^{n}}\right]^{\frac{1}{2}}
\end{gathered}
$$

- $d \Omega_{n-1}^{2}$ is the metric of a $n-1$ dimensional sphere.

$$
V(r)=1+\frac{r^{2}}{2 \hat{\alpha}}-\frac{r^{2}}{2 \hat{\alpha}}\left[1-\frac{4 \hat{\alpha}}{p^{2}}+\frac{4 \hat{\alpha} m}{r^{n}}\right]^{\frac{1}{2}}
$$

- $\hat{\alpha}=(n-2)(n-3) \alpha \kappa_{n+1}$
- $r^{2}=-n(n-1) /\left(2 \kappa_{n+1} \Lambda\right)$
- Asymptotic behavior

$$
V(r)=1+\left[\frac{1}{2 \hat{\alpha}}-\frac{1}{2 \hat{\alpha}}\left(1-\frac{4 \hat{\alpha}}{l^{2}}\right)^{\frac{1}{2}}\right] r^{2}
$$

- Horizon fo $n=4$ (five dimensions)

$$
r^{2}=r_{+}^{2}=\frac{l^{2}}{2}\left[-1+\sqrt{1+\frac{4(m-\hat{\alpha})}{l^{2}}}\right]
$$

Thermodynamics

Thermodynamics of these black holes can be obtained by standard Euclidean action calculation.

- Free Energy and Temperature

$$
\begin{aligned}
F= & \frac{\omega_{n-1} r_{+}^{n-4}}{\kappa_{n+1}(n-3)\left(r_{+}^{2}+2 \hat{\alpha}\right)}\left[(n-3) r_{+}^{4}\left(1-\frac{r_{+}^{2}}{l^{2}}\right)-\frac{6(n-1) \hat{\alpha} r_{+}^{4}}{\rho^{2}}\right. \\
& \left.+(n-7) \hat{\alpha} r_{+}^{2}+2(n-1) \hat{\alpha}^{2}\right], \\
T= & \frac{(n-2)}{4 \pi r_{+}\left(r_{+}^{2}+2 \hat{\alpha}\right)}\left[r_{+}^{2}+\frac{n-4}{n-2} \hat{\alpha}+\frac{n}{n-2} \frac{r_{+}^{4}}{l^{2}}\right]
\end{aligned}
$$

- Entropy

$$
S=\frac{4 \pi \omega_{n-1} r_{+}^{n-1}}{\kappa_{n+1}}\left[1+\frac{n-1}{n-3} \frac{2 \hat{\alpha}}{r_{+}^{2}}\right]
$$

Figure: β as a function of \bar{r} for different values of $\bar{\alpha}$.

Free energy vs radius

Figure: Free energy as a function of $x=\bar{r}$ for different values of $\bar{\alpha}$. The thicker line is for $\bar{\alpha}=1 / 40$ and the other one $\bar{\alpha}=1 / 32$.

Free energy vs Temperature

Figure: Free energy as a function of temperature. The thicker one is for $\bar{\alpha}=1 / 50$ while the other one is for $\bar{\alpha}=1 / 30$.

Phases

Different phase structures as we vary $\bar{\alpha}$.

1. $\bar{\alpha} \leq \bar{\alpha}_{c}$: Three branches:

- I+III: Specific heat positive \rightarrow Stable
- II : Specific heat negative \rightarrow Unstable
- HP1 : I \rightarrow III
- HP2 : Thermal AdS \rightarrow III

$$
T_{c}=\frac{3}{2 \pi l}-\frac{33 \bar{\alpha}}{4 \pi l}+\mathcal{O}\left(\bar{\alpha}^{2}\right)
$$

2. $\bar{\alpha}>\bar{\alpha}_{c}$: Only one branch for stable Black hole.

Phases

- Landau function around the critical point: $\bar{\alpha}=1 / 50$

$$
\Phi(T, \bar{r})=\frac{\omega_{3} I^{2}}{\kappa_{5}}\left(3 \bar{r}^{4}-4 \pi / T \bar{r}^{3}+3 \bar{r}^{2}-24 \pi \bar{\alpha} / T \bar{r}+3 \bar{\alpha}\right)
$$

Some comments on the flat case

- In the limit $I \rightarrow \infty(\Lambda=0)$ the solution reduces to the asymptotically flat Gauss-Bonnet black hole.
- The temperature is given by

$$
T=\frac{r_{+}}{2 \pi\left(r_{+}^{2}+2 \hat{\alpha}\right)}
$$

Gauge theory

- $\operatorname{SU}(N), \mathrm{N}=4 \mathrm{SYM}$ Theory on $S^{1} \times S^{3}$ in the limit $N \rightarrow \infty$.
- Identify Hawking-Page transition in the bulk with Confinement/Deconfinement transition on the boundary.
- Order parameter - Wilson loop operator

$$
W(\mathcal{C})=\frac{1}{N} \operatorname{Tr} P \exp \int_{\mathcal{C}} A
$$

Wilson Loop

Free Energy

- Another order parameter for deconfined hase is the Free Energy.
- Pure $U(N)$ gauge theory contains $N^{2}-1 \sim N^{2}$ gluons. For the decofined phase we expect $F \sim \mathcal{O}\left(N^{2}\right)$ and for cofined phase we expect $F \sim \mathcal{O}(1)$.
- Gravity computation (Free energy of black hole) corresponding to the strongy coupled gauge theory ($\left.g_{Y M}^{2} N=\lambda \rightarrow \infty\right)$

$$
F=-\frac{\pi^{2}}{6} N^{2} T^{4}\left(\frac{3}{4}+\frac{45}{32} \frac{\zeta(3)}{(2 \lambda)^{3 / 2}}\right)
$$

Free Energy

- Gauge theory weak coupling (λ) expansion (free gluons)

$$
F=-\frac{\pi^{2}}{6} N^{2} T^{4}\left(1-\frac{3 \lambda}{2 \pi^{2}}\right)
$$

- Apart from the dependence on the coupling λ the free energy scales in the same way w.r.t N^{2} and T for both ends of the coupling.

Effective theory

- Partition function
(Aharony et al.)

$$
Z(\lambda, T)=e^{-\beta F}=\int \mathcal{D} A e^{-S_{Y M}(A)}
$$

- Evaluate at weak coupling $\lambda \rightarrow 0$. Free gauge theory.
- Gauge condition

$$
\begin{array}{r}
\partial_{i} A^{i}=0 \\
\partial_{t} \alpha(t)=0 \\
\alpha=\frac{1}{V_{3}} \int_{S^{3}} A_{0}
\end{array}
$$

Matrix model

- Effective Action

$$
\begin{aligned}
Z(\lambda, T) & =e^{-\beta F}=\int[d U] e^{-S_{e f f}(U)} \\
U & =e^{i \beta \alpha}
\end{aligned}
$$

$$
\frac{1}{N}\langle U\rangle \rightarrow \text { Wilson loop }
$$

- Measure

$$
[d U]=\prod_{i, j}\left[d U_{i, j}\right]=\prod_{i} d \lambda_{i} \prod_{i<j} \sin ^{2}\left(\frac{\beta\left(\lambda_{i}-\lambda_{j}\right)}{2}\right)
$$

Two possibilities

A simple model

- Quartic potential
(Alvarez-Gaume et al.)

$$
Z(\lambda, T)=\int[d U] \exp \left[\operatorname{atr} U \operatorname{tr} U^{\dagger}+b / N^{2}\left(\operatorname{tr} U \operatorname{tr} U^{\dagger}\right)^{2}\right]
$$

- a and b are functions of λ and T.
- Study the phases of this model.

Phases

- Saddle-point equation

$$
\begin{aligned}
a \rho+2 b \rho^{3} & =\rho & & 0 \leq \rho \leq \frac{1}{2} \\
& =\frac{1}{4(1-\rho)} & & \frac{1}{2} \leq \rho \leq 1
\end{aligned}
$$

where $\rho^{2}=\left(1 / N^{2}\right) \operatorname{tr} U \operatorname{tr} U^{\dagger}$.

- Existence of solution for ρ.
- $\rho=0$ is always a solution.

Comparison with Gravity

- Phases equivalent to strongly coupled gauge theory $\lambda \rightarrow \infty$
- Possible to move on further and actualy compute $a(1 / \sqrt{\lambda}=0, T)$ and $b(1 / \sqrt{\lambda}=0, T)$.
- Equate the potential with the free-energy from gravity.

$$
\begin{gathered}
2 a \rho_{1,2}^{2}+2 b \rho_{1,2}^{4}+\log \left(1-\rho_{1,2}\right)+f=-l_{1,2} \\
f=\log (2)-\frac{1}{2}
\end{gathered}
$$

Figure: Plots of $a(T, 0)$ and $b(T, 0)$

Phases

Phases

Finite λ corrections

- Relation between gauge coupling and α^{\prime}

$$
\frac{R^{4}}{\alpha^{\prime 2}}=4 \pi g_{Y M}^{2} N=4 \pi \lambda
$$

- Adding α^{\prime} corrections in the bulk gravity amounts to deviating from the $\lambda \rightarrow \infty$, thus bringing in $1 / \sqrt{\lambda}$ corrections.
- Comparison with gravity

$$
2 a \rho_{1,2}^{2}+2 b \rho_{1,2}^{4}+\log \left(1-\rho_{1,2}\right)+f=-l_{1,2}
$$

- We can now find the corresponding $1 / \sqrt{\lambda}$ corrections to $a(0, T)$ and $b(0, T)$.

- Taylor expansion

$$
\begin{aligned}
a(T, 1 / \sqrt{\lambda}) & =a(T, 0)+\left.\frac{1}{\sqrt{\lambda}} \frac{\partial a(T)}{\partial(1 / \sqrt{\lambda})}\right|_{1 / \sqrt{\lambda}=0}+\mathcal{O}\left(1 / \lambda^{3 / 2}\right) \\
b(T, 1 / \sqrt{\lambda}) & =b(T, 0)+\left.\frac{1}{\sqrt{\lambda}} \frac{\partial b(T)}{\partial(1 / \sqrt{\lambda})}\right|_{1 / \sqrt{\lambda}=0}+\mathcal{O}\left(1 / \lambda^{3 / 2}\right)
\end{aligned}
$$

- Compare Coefficients

$$
\begin{aligned}
2 \frac{\partial a(T)}{\partial(1 / \sqrt{\lambda})} \rho_{1,2}^{2} & +2 \frac{\partial b(T)}{\partial(1 / \sqrt{\lambda})} \rho_{1,2}^{4}=-\sqrt{\lambda} \delta l_{1,2}(T) \\
\delta l_{1,2}(T) & =\alpha^{\prime} \beta\left(\delta F_{1,2}\right) \\
& =-\frac{\beta}{\sqrt{2 \lambda}}\left(3 r_{1,2}^{4}+24 r_{1,2}^{2}+9\right)
\end{aligned}
$$

- b decreases

Figure: Plots of (A) $\partial a(T) / \partial(1 / \sqrt{\lambda})$ and (B) $\partial b(T) / \partial(1 / \sqrt{\lambda})$

- b may end up with a positive or negative sign in the weak coupling,

Modifying the matrix potential

- This comparison will however be valid as long as the radius of the small black hole is greater than α^{\prime}.

Modified matrix potential

- Including higher order terms

$$
S\left(\rho^{2}\right)=2\left[A_{4} \rho^{8}-A_{3} \rho^{6}+A_{2} \rho^{4}+\left(\frac{1-2 A_{1}}{2}\right) \rho^{2}\right]
$$

- Saddle-point equations

$$
\begin{array}{rlrl}
\rho F(\rho)=\rho, & & 0 \leq \rho \leq \frac{1}{2}, \\
& =\frac{1}{4(1-\rho)} & , & \\
2 & \leq \rho \leq 1
\end{array}
$$

- Potential for various values of A_{2} and A_{3}.

Thermal AdS

- Potential for various values of A_{2} and A_{3}.

Thermal AdS

- Potential for various values of A_{2} and A_{3}.

Thermal AdS

- Potential for various values of A_{2} and A_{3}.

- Potential for various values of A_{2} and A_{3}.

Witten's Kaluza-Klein Bubbles

- 1. Euclidean Kaluza-Klein vacuum

$$
d s^{2}=d x^{2}+d y^{2}+d z^{2}+d t^{2}+d \phi^{2}
$$

- 2. Another solution with the same asymptotic form (Euclidean black hole)

$$
d s^{2}=\frac{d r^{2}}{1-\alpha / r^{2}}+r^{2} d \Omega^{2}+\left(1-\frac{\alpha}{r^{2}}\right) d \phi^{2}
$$

- The metric 2 is non-singular if the period of ϕ is $2 \pi \sqrt{\alpha}=2 \pi R$

$$
d s^{2}=\frac{d r^{2}}{1-(R / r)^{2}}+r^{2} d \Omega^{2}+\left(1-\left(\frac{R}{r}\right)^{2}\right) d \phi^{2}
$$

with $R<r<\infty$.

Kaluza-Klein Bubbles

- Analytic continuation to Minkowski space. Locate a plane that resembles $t=0$.

$t \rightarrow i t$ is equivalent to $\theta \rightarrow 1 / 2 \pi+i \psi$

Kaluza-Klein Bubbles

- Metric with Minkowski signature

$$
d s^{2}=\frac{d r^{2}}{1-(R / r)^{2}}-r^{2} d \psi^{2}+r^{2} \cosh ^{2} \psi d \Omega^{2}+\left(1-\left(\frac{R}{r}\right)^{2}\right) d \phi^{2}
$$

- Now since $R<r<\infty$ this metric defines a bubble expanding with time.
- KK vacuum decays into this bubble of NOTHING!

AdS Bubbles

- AdS Black hole

$$
d s^{2}=-\left(1+\frac{r^{2}}{p^{2}}-\frac{m}{r^{2}}\right) d t^{2}+\left(1+\frac{r^{2}}{p^{2}}-\frac{m}{r^{2}}\right)^{-1} d r^{2}+r^{2} d \Omega^{2}
$$

- Analytically continue the coordinates:

$$
t \rightarrow i \chi, \theta \rightarrow \pi / 2+i \tau
$$

- Bubble Metric :

$$
d s^{2}=V(r) d \chi^{2}+\frac{d r^{2}}{V(r)}-r^{2} d \tau^{2}+r^{2} \cosh ^{2} \tau d \Omega^{2}
$$

- Metric is non-singular if in the region $r \geq r_{+}$if χ has a periodicity:

$$
\Delta \chi=\frac{2 \pi \bar{r} /\left(\bar{r}^{2}+2 \bar{\alpha}\right)}{\left(\bar{r}^{2}+2 \frac{\bar{r}^{4}}{\bar{R}^{2}}\right)}
$$

Bubble Solutions

Figure: Plot of $\Delta \bar{\chi}$ as a function $x=\bar{r}$. The dashed line is for $\bar{\alpha}=1 / 34$. The solid line is for $\bar{\alpha}=1 / 50$ and the dotted line is for $\bar{\alpha}=0$.

- Energy Momentum Tensor :

$$
T_{\tau}^{\tau}=\frac{1}{\kappa_{5} L^{3}} m
$$

The bubble has lower energy for any value of r than the analytically continued AdS orbifold.

- Boundary : $d S^{3} \times S^{1}$

$$
\begin{gathered}
d s^{2}=d \chi^{2}+L^{2}\left(-d \tau^{2}+\cosh ^{2} \tau d \Omega_{n-2}^{2}\right) \\
L=\sqrt{2 \hat{\alpha}}\left[1-\left(1-\frac{4 \hat{\alpha}}{R^{2}}\right)^{\frac{1}{2}}\right]^{-\frac{1}{2}}
\end{gathered}
$$

Summary

- Phases in the bulk gravity and on the boundary gauge theories in the presence of higher derivetive (Gauss-Bonnet term).
- Phase structure can change once higher derivative terms are added.
- Proposal for a matrix model that captures the phases on the boundary
- Decay into bubbles of nothing (only a gravity analysis)

