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String theory gives a consistent theory of quantum gravity

Loop divergences cured

What do we want quantum gravity for?

(a)     How do we understand black hole entropy? 
         Where are the states that contribute to this entropy? 
         How do we resolve the black hole information paradox?
          What happens to matter that falls into a black hole?

(b)     What was the state of matter in the early Universe?
         Can some of this matter be left over as dark matter or dark energy?
         What is the solution of the ‘horizon problem’, flatness problem? (inflation?)



We will discuss some computations that suggest an emerging picture of 
how matter behaves at high densities.

The computations are themselves rigorous calculations in string theory 
or supergravity, but the picture we decuce from them will be qualitative.

An analogy is the quark model:    From hadron classification and 
scattering quarks were deduced, but QCD came later ....
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(a)  Fractionation:   When different kinds of branes are bound together, 

      they  ‘fractionate’ each other, so that we get get a large number of 
      objects with very low mass.  

       This large number of fractional objects gives the large black hole     
       entropy, and the low mass gives very long distance effects, that    
       stretch upto horizon radius.  

       Thus we get quantum gravtity effects over macroscopic distances

Key notions that emerge:



(c)  Quasi-free constituents:   These fractional objects seem to be      

    essentially free,  so that we get the total energy, pressure, entropy by 
    just  adding the contributions from individual fractional branes.

(b) Brane-antibrane pairs:  If we have energy but no charge, then we     

     get the maximal entropic state by using the energy to make
     brane-antibrane pairs,  which then fractionate as above.

Analogy:  Quark-Gluon plasma:  At high 
energy density the quarks and gluons are 
essentially free ...



bound state

Degeneracy = 256
(independent of n)

S = ln 256 ~ 0

Getting entropy:  One charge

(see however sinha and suryanarayana, ’06)

Two charges

Many ways to partition momentum among 
different harmonics -- large entropy

travelling waves on string
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Total momentum

Each quantum of harmonic k 
carries momentum

So we must have

So we have to count ‘partitions’ of 

states
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(Susskind ’93, Sen ’94)

8 bosonic + 8 fermionic degrees of freedom



Note that the moduli g, V, R have all cancelled out. This fact is crucial to the possibility of
reproducing this entropy by some microscopic calculation. In the microscopic description
we will have a bound state of the charges n1, n5, np and we will be counting the degeneracy
of this bound state. But since we are looking at BPS states this degeneracy will not
depend on the moduli.

2.5 Dualities

We have used three charges above: NS1 branes wrapped on S1, NS5 branes wrapped on
T 4 × S1, and momentum P along S1. If we do a T-duality in one of the directions of T 4

we do not change any of the charges, but reach type IIB string theory. We can now do
an S-duality which gives

NS1 NS5 P
S→ D1 D5 P (2.23)

Historically the D1-D5-P system was studied first, and so for many purposes we will work
with that system. Note that dualities can also be used to permute the three charges
among themselves in all possible ways. Four T-dualities along the four T 4 directions will
interchange the D1 with the D5, leaving P invariant. Another set of dualities can map
D1-D5-P to P-D1-D5, which after S-duality gives P-NS1-NS5. Since we will make use of
this map later, we give it explicitly here (the direction y is called x5 and the T 4 directions
are called x6 . . . x9)

D1 D5 P (IIB)
S→ NS1 NS5 P (IIB)

T5→ P NS5 NS1 (IIA)

T6→ P NS5 NS1 (IIB)

S→ P D5 D1 (IIB)

T6789→ P D1 D5 (IIB)

S→ P NS1 NS5 (IIB) (2.24)

If we keep only the first two charges in the above sequence then we see that the D1-D5
bound state is dual to the P-NS1 state. This duality will help us understand the geo-
metric structure of the D1-D5 system, since P-NS1 is just an elementary string carrying
vibrations.

3 The microscopic count of states

We have already seen that for the one charge case (where we had just the string NS1
wrapped on a circle n1 times) we get Smicro = ln[256]. This entropy does not grow with
the winding number n1 of the string, so from a macroscopic perspective we get Smicro ≈ 0.
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Three charges
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‘Effective string’ with total winding number 

D1-D5

or

NS1-NS5



Fractionation

L =
∫

dx[−1
4
F a

µνFµνa +
i

2
ψ̄∂ψ + . . .]

P =
2πnp

L
=

2π(n1np)
LT

p =
2πk

LT

∑

k

knk = n1np

e2π
√

2
√

n1np

S = 2π
√

2√n1np

LT = n1L

L

1

L =
∫

dx[−1
4
F a

µνFµνa +
i

2
ψ̄∂ψ + . . .]

P =
2πnp

L
=

2π(n1np)
LT

p =
2πk

LT

∑

k

knk = n1np

e2π
√

2
√

n1np

S = 2π
√

2√n1np

LT = n1L

L

M9,1 → M4,1 × T 4 × S1

D1 D5 P

n1 n5 n1n5 T 4 S1

2π

L

2π

n1L
=

2π

LT

np n1np

1

L =
∫

dx[−1
4
F a

µνFµνa +
i

2
ψ̄∂ψ + . . .]

P =
2πnp

L
=

2π(n1np)
LT

p =
2πk

LT

∑

k

knk = n1np

e2π
√

2
√

n1np

S = 2π
√

2√n1np

LT = n1L

L

M9,1 → M4,1 × T 4 × S1

D1 D5 P

n1 n5 n1n5 T 4 S1

2π

L

2π

n1L
=

2π

LT

np n1np

1

L =
∫

dx[−1
4
F a

µνFµνa +
i

2
ψ̄∂ψ + . . .]

P =
2πnp

L
=

2π(n1np)
LT

p =
2πk

LT

∑

k

knk = n1np

e2π
√

2
√

n1np

S = 2π
√

2√n1np

LT = n1L

L

M9,1 → M4,1 × T 4 × S1

D1 D5 P

n1 n5 n1n5 T 4 S1

2π

L

2π

n1L
=

2π

LT

np n1np

1

L =
∫

dx[−1
4
F a

µνFµνa +
i

2
ψ̄∂ψ + . . .]

P =
2πnp

L
=

2π(n1np)
LT

p =
2πk

LT

∑

k

knk = n1np

e2π
√

2
√

n1np

S = 2π
√

2√n1np

LT = n1L

L

M9,1 → M4,1 × T 4 × S1

D1 D5 P

n1 n5 n1n5 T 4 S1

2π

L

2π

n1L
=

2π

LT

np n1np

1

L =
∫

dx[−1
4
F a

µνFµνa +
i

2
ψ̄∂ψ + . . .]

P =
2πnp

L
=

2π(n1np)
LT

p =
2πk

LT

∑

k

knk = n1np

e2π
√

2
√

n1np

S = 2π
√

2√n1np

LT = n1L

L

M9,1 → M4,1 × T 4 × S1

D1 D5 P

n1 n5 n1n5 T 4 S1

2π

L

2π

n1L
=

2π

LT

np n1np

1

units of momentum become fractional units of momentum
when bound to          strings
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Three large charges 
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Two large charges + nonextremality
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4 bosonic + 4 fermionic degrees of freedom

(Strominger + Vafa  ’96)
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Thus we see that we reproduce the Bekenstein entropy by assuming that the 
momentum and anti-momentum excitations do not interact -- the energy is 
the sum of the two energies and the entropy is the sum of the two entropies
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Exact agreement of radiation rate, spin 
dependence, grey-body factors
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(Horowitz, Maldacena, Strominger ’96)

Take a neutral hole and add charges by boosting + dualities. This relates
it to a near extremal hole, and we can find the emission from microscopics:
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Note that boosting in a compact direction is not an exact symmetry, but is presumably 
a good approximation for large charges (similar to the idea of Matrix theory)

(Das, SDM, Ramadevi ’98)
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Black holes in 3+1 dimensions
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Nontrivial fiber direction

(Horowitz, Lowe, Maldacena ’96)

We see that the energy in a black hole goes to creating branes and 
antibranes; these ‘fractionate’ each other, and give a large number of  
degrees of freedom. 

Assuming a noninteracting set of these fractional objects, we get the
correct entropy and Hawking radiation for the black hole.
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Extremal but not supersymmetric hole:   Emparan + Horowitz ’06



Why don’t the branes and antibranes annihilate immediately?

Tachyon at top of potential
(Sen ’99)

Antibrane falls down throat, no radiation 
emerges for a long time ...

Dhar, Mandal,  Wadia,  Yogendran ’99
Lunin, SDM, Park, Saxena ’03
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Fractional branes and antibranes have to find each other 
before they can annihilate ...



Phase Transitions

??
Get wrong spins, 
greybody factors
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The 5-brane pairs are heavy for small 
g

But they get ‘double fractionation’,
while the momentum modes get
‘single fractionation’

So for g infinitesimal the momentum 
excitations will be lighter, but for a 
slightly higher g the 5-brane pairs
will be lighter
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Let us do this more properly ....

Mass of string state

Minimum excitation 

1
n5

TD1

M9,1 →M3,1 × T 4 × S1 × S̃1

2πk

n1n5L

2πm

L

NS1 P NS1 P + ∆E → NS1 P + PP̄ → radiation ??

∆E =
2π

n1L
+

2π

n1L
=

4π

n1L
∆E =

2mp

n1n5
∆E =

2m5

n1np
∼ LV4

g2α′3n1np

S ∼ E
D−1

D D S = A
n∏

k=1

(
√

nk +
√

n̄k) = 2nA
n∏

k=1

(
√

nk +
√

n̄k)

nk ∼ E E S S ∼ E
k
2

pk = wkρ

M2 = (n1LT +
2πnp

L
)2 + 8πTNL = (n1LT − 2πnp

L
)2 + 8πTNR

δNL = δNR = 1

2MδM ≈ 8πT =
4π

α′ ⇒ ∆EPP̄ = δM ≈ 2π

α′M

∆E55̄

∆EPP̄
∼ LV4M

g2α′2n1np

1 +
Q1

r2
,

1 + Q5

r2

3

If

we will investigate the issue of entropy in more detail below. (6.16) has a factor 1/g2, so (6.14)
is the lighter excitation for g → 0, which makes sense because this is the free string limit and
the excitations should be just vibrations of the string. But (6.16) has ‘double fractionation’
while (6.14) has only single fractionation, so for given g and sufficiently large charges (6.16)
will be the lighter excitation.

We will now see that whenever we are in the ‘strong gravity’ domain (where we make a black
hole) then (6.16) will be the lighter excitation.

We are looking at the NS1-P system. The NS1 string has to carry np units of momentum.
If the momentum is in low harmonics then the amplitude of vibration will be large and the
string will spread over a large region; if the momentum is in high harmonics then the string
will have a small transverse spread. For the generic vibration mode the transverse spread ∆x
was found in (5.70), and we will use this value for the transverse size of the string state. On
the other hand the gravitational field of the string is described by the quantities Q1, Qp which

occur in the metric as ≈ Q1

r2 , Qp

r2 . We will say that the string strongly feels its own gravity if

(∆x)2 ! Q1, Qp (6.17)

so that the size of the string is smaller than the reach of the gravitational effects of both kinds
of charges. Since Q1, Qp may be unequal, we want ∆x to be smaller than both these length
scales, a requirement that we can encode by writing

(∆x)2 !
Q1Qp

Q1 + Qp
(6.18)

Using (5.70), the values (2.15) for Q1, Qp and noting that the mass M of the string is

M =
n1R

α′ +
np

R
(6.19)

we find that the condition that the string feels its own gravity (rather than be a free string in
flat space) is

α′ !
g2α′3

V R

n1np

M
(6.20)

Now consider the ratio of the two kinds of excitations that we wished to compare. In (6.14) we
had excited only the momentum modes, but to be more precise we note that by T-duality the
winding modes can be excited as well. The excitation levels of the string are in fact given by
the relation (3.63) with T = 1

2πα′ . This gives

2MδM =
4

α′ δNL =
4

α′ δNR (6.21)

For the lowest excitation we set δNL = δNR = 1 and find

∆ENS1P
vibrations = δM ∼ 1

α′M
(6.22)

We then find
∆ENS1P

NS5NS5

∆ENS1P
vibrations

∼ RV M

g2α′2n1np
(6.23)

47

6.1.2 Resolving the puzzle

The reason for the mismatch is not hard to find. In the NS1-NS5 system that we had studied
before the energy above extremality went to creating PP̄ excitations

NS1 NS5 + ∆E → NS1 NS5 + (P P̄ ) (6.12)

Permuting charges by duality we get the process

NS1 P + ∆E → NS1 P + (NS5 NS5) (6.13)

which is not (6.4).
The model with excitations (6.12) gave us correctly the near extremal entropy and the

correct Hawking radiation, so it is a model that we trust. We are then forced to accept the
process (6.13) by duality. It may be hard to visualize how pairs of NS5 NS5 can be created, or
how they can interact to give rise to the emitted radiation, but since we have arrived at (6.13)
by duality we will investigate the energy scales involved and see what we can learn. Adopting
(6.13) certainly removes the puzzle we faced above. The number of NS5 and NS5 will be equal
in (6.13) (there is no net NS5 charge), so the left and right temperatures will be equal, as was
the case in the near extremal NS1-NS5 case. We do not have a simple model like (4.11) to give
the decay of NS5 NS5 pairs to gravitons, but duality assures us that the correct spins will be
emitted, and we do not have the obvious contradiction that we faced with the excitations (6.4)
where all spins were emitted equally.

What then is the role of (6.4)? It certainly looks a correct description for excitations of the
weakly coupled string. The mass of the lightest possible PP̄ pair is

∆ENS1P
P P̄ = 2(Ep)

1

n1
= 2(

1

R
)

1

n1
(6.14)

where Ep = 1/R is the energy of a momentum mode, the 2 arises because we must create these
modes in pairs so as to add no net P charge, and the factor 1

n1
is the ‘fractionation’, which

will be crucially important since we are interested in the limit where all charges will be large.
Since we have one power of the charge in the denominator we will call this a case of ‘single
fractionation’.

In the process (6.12) the energy of the lightest excitation pair is

∆ENS1NS5
P P̄ = 2(Ep)

1

n′
1n

′
5

= 2(
1

R′ )
1

n′
1n

′
5

(6.15)

Since there are two charges in the denominator on the RHS we call this a case of ‘double
fractionation.

Since (6.13) is dual to (6.12) we will have ‘double fractionation’ in (6.13) as well

∆ENS1P
NS5NS5

= 2(m5)
1

n1np
= 2(

V R

g2α′3 )
1

n1np
(6.16)

where m5 is the mass of a NS5 brane.
Which excitation will be preferred, (6.14) or (6.16)? We may expect that the lighter excita-

tion will generate more entropy for the same total energy and so will be the preferred excitation;
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Then the 5-brane pairs are lighter than string vibrations.

Note that g need not be large for this to happen
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we will investigate the issue of entropy in more detail below. (6.16) has a factor 1/g2, so (6.14)
is the lighter excitation for g → 0, which makes sense because this is the free string limit and
the excitations should be just vibrations of the string. But (6.16) has ‘double fractionation’
while (6.14) has only single fractionation, so for given g and sufficiently large charges (6.16)
will be the lighter excitation.

We will now see that whenever we are in the ‘strong gravity’ domain (where we make a black
hole) then (6.16) will be the lighter excitation.

We are looking at the NS1-P system. The NS1 string has to carry np units of momentum.
If the momentum is in low harmonics then the amplitude of vibration will be large and the
string will spread over a large region; if the momentum is in high harmonics then the string
will have a small transverse spread. For the generic vibration mode the transverse spread ∆x
was found in (5.70), and we will use this value for the transverse size of the string state. On
the other hand the gravitational field of the string is described by the quantities Q1, Qp which

occur in the metric as ≈ Q1

r2 , Qp

r2 . We will say that the string strongly feels its own gravity if

(∆x)2 ! Q1, Qp (6.17)

so that the size of the string is smaller than the reach of the gravitational effects of both kinds
of charges. Since Q1, Qp may be unequal, we want ∆x to be smaller than both these length
scales, a requirement that we can encode by writing

(∆x)2 !
Q1Qp

Q1 + Qp
(6.18)

Using (5.70), the values (2.15) for Q1, Qp and noting that the mass M of the string is

M =
n1R
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np

R
(6.19)

we find that the condition that the string feels its own gravity (rather than be a free string in
flat space) is
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g2α′3

V R

n1np

M
(6.20)

Now consider the ratio of the two kinds of excitations that we wished to compare. In (6.14) we
had excited only the momentum modes, but to be more precise we note that by T-duality the
winding modes can be excited as well. The excitation levels of the string are in fact given by
the relation (3.63) with T = 1

2πα′ . This gives

2MδM =
4
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4

α′ δNR (6.21)

For the lowest excitation we set δNL = δNR = 1 and find
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Phase Transition

(SDM ’97)



Small mass:
Black hole

Large mass:
Black string

L

The black hole - black string transition

Tension

Small black hole

Uniform black string



Black string

Non-uniform
black string

Black
 hole

4+1 noncompact dimensions=

= M/L



Entropy/Entropy of uniform string

mass

Uniform string

Non-uniform string

Black hole

4+1 non-compact dimensions



D1-D5
 + P P

Compactify: 

Let          be large. 

Then we effectively have a black hole in 4+1 non-compact dimensions
 
(only                      compact) 

Add D1-D5 charges by `boosting+ duality’    

                       Near extremal D1-D5

 



Suppose we could excite all charges appropriate to this compactification

We have 2 charges D1-D5 in 3+1 non-compact dimensions

D1-D5 
+ P P 
+ KK KK



Assumption:

A part         of the D1-D5 effective string fractionates the            charges

The remainder                  fractionates the                 +                 charges

( Suggested by study of supertube excitations,
                                     Giusto + SDM + Srivastava ’06)

  P P

KK KK  P P

P P

 Energy         goes to the                  excitations

Energy                  goes to the                 +                  excitations KK KK  P P

+

D1-D5 
+ P P 
+ KK KK

D1-D5
 + P P



Black hole Black hole Black string
Non-uniform
black string

S

+



Uniform string

Non-uniform
string

Black hole

1

Numerical
4+1 noncompact



1

Uniform string

Non-uniform
string

Black hole

Numerical
4+1 noncompact



What is the size of a D1-D5-P bound state?

D

D is big, the bound state
does not notice the box

D

The energy

is used to create pairs
of extended objects that
wrap around the circle

€ 

ΔE ~
1
D

€ 

ΔE ~
1
D

+



D D

We ask that the creation of pairs be probable,
not just possible

Require = 1

No pairs,
Phase space
volume

    Pairs form,
Phase space volume



Extremize over f,    set 

D D

(SDM ’97)
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M9,1 → M4,1 × T 4 × S1
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1

Make a bound state of a large number of 
D1,D5 branes.

These branes wrap along compact directions, 
but classically, they are at
r=0 in the noncompact space

held fixed,
charges taken large

Because of quantum effects, the bound state will a nonzero size.

Is this size string length or planck length ? Or does it grow with 
the charges ?



D1D5 NS1 P
S,T dualities
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         strands of the
‘effective string’, 
each ‘singly wound’
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        units of momentum, 
all in the lowest harmonic



‘Naive’ geometry
of D1 D5

Poincare patch

Horizon coincides
with singularity at
r=0

Actual geometry
for given microstate

Piece of
global
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AdS3 × S3 × T 4

4

Cvetic+Youm ’ 95,
Balasubramanian, de Boer, 
Keski-Vakkuri, Ross ’00, 
Maldacena+Maoz ’00

Lunin+SDM ’01



€ 

F(y − ct)→
…

D1-D5
Gravity
 dual

NS1-P

=

S,T

D1-D5 CFT state



First such metric:
Balasubramanian+
De Boer+ Keski-Vakkuri
+ Ross; Maldacena+Maoz

General metrics: Lunin+SDM

Also,  
‘Supergravity supertubes’
Emparan+Mateos+Townsend 

’01

’01



D1-D5 CFT state D1-D5 Sugra solution

Longer ‘component strings’
                lower energy

Deeper throat,
more redshift,
lower energy



The ‘size’ of the typical fuzzball is such that the area
of its surface yields a Bekenstein type relation

Highly
rotating
2-charge



3-charge holes: NS1-NS5-P (or D1-D5-P)

Area of throat
saturates

?? ??



Spectral flow
on left movers : R NS R (n times)

P chargeRight movers
unchanged

Spectral flow in AdS is a coordinate transformation

Balasubramanian+De Boer+ Keski-Vakkuri+ Ross ’00;  Maldacena+Maoz ’00
Cvetic-Youm ’95

D1-D5 D1-D5-P





A microstate for the 3-charge black ring

Smooth D1-D5 geometry

Add p units of P

CFT state

Wavefunction

z

r



(Giusto, SDM, Srivastava ’06)



2-charge in 4+1 non-compact dimensions: Lunin+SDM

3 charge in 4+1, U(1) X U(1) symmetry: Giusto+SDM+Saxena, Lunin

3 charges in 3+1, U(1) X U(1) symmetry: Bena+Kraus

3 charges in 4+1, U(1) symmetry: Bena+Warner, Berglund+Gimon+Levy

4 charges in 3+1, U(1) X U(1)  symmetry: Saxena+Potvin+Giusto+Peet

4 charges in 3+1, U(1) symmetry: Balasubramanian+Gimon+Levi

‘Fuzzball’
??

Construction of microstate geometries



Dipole
charges Fluxes hold

points apart

‘Bena-Warner’ equations:  As we increase gravitational
 coupling, a pointlike object splits into dipole charges
held apart by integer fluxes 

G     0

G nonzero



What is the state of matter in the early Universe?
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So we see that at very high energies the 
‘fractional brane state’ will have more entropy
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We find that the equation of state is

The evolution of the geometry can be solved in closed 
form (hypergeometric functions)

Chowdhury+SDM ’06



Radiation

String gas
(Hagedorn)

Fractional 
brane state

Low density
fractional brane
gas persists
for all time

How many intersecting branes give the maximal entropy state of string theory?

Do the fractional branes persist as a low density fluid for all time?
(Dark matter/dark energy?)

What is the analogue of the macroscopic quantum nonlocality found for 
fractional branes in the black hole context? (Horizon problem?)

Does the Universe start in a maximal entropy state?



Summary

(a) It appears that string theory has very high entropy states where 
the energy is used to create ‘fractional brane-antibrane pairs’. 

(b) For time-independent configurations, these states are typically 
large ‘fuzzballs’.  Their radius is not string length or planck length; 
rather it grows with the number if branes in the state and is such that 
the surface area satisfies a Bekenstein type relation S~A/4G.

This size may be arising for simple ‘phase space’ reasons. The large 
entropy implies a large phase space volume, and for time independent 
configurations this implies a large spatial volume ....

(c) 2-charge extremal holes have been understood, and many states for the 
3-charge/4-charge holes have been understood ... these all turn out to be 
‘fuzzballs’ with no horizons.



Information disappears into the singularity,
but the radiation emerges from the horizon;
This gives information loss

If the state is a horizon sized 
fuzzball, the radiation leaves from 
the surface,  taking information 
about the matter in the hole, just 
like what happens if we burn a 
peice of coal

As a corollary, we would resolve the black hole information paradox  ....



(d)  These notions suggest a nonconventional resolution to   
      puzzles arising from the early Universe



Additional slides for discussion on
corrections to geometries



Fix total energy

Few modes k, 
large n :

Coherent state

€ 

F(y − ct)

Many k, 
All n ~ 1

Quantum energy
eigenstate for
Harmonic oscillators
 of each fourier
mode

‘Fuzzball’

Size for generic state estimated from classical geometries

NS1-P state:



Two sources of corrections:

(a)   In a generic state the occupation 
number of each harmonic is order unity,
so the fluctuations are order unity.

There is no essential quantum gravity here --
the same happens for vibrations of any string

€ 

F(y − ct)

‘Fuzzball’



Dipole brane:
thickness R^4 corrections

need to be studied

(b)             terms:  These become significant at the curve
where the KK monopole tube has its center.  It appears plausible that
their effect is to expapnd the radius of this tube from below planck length to 
planck length, and make no other significant change to the geometry
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Order of magnitude of 
Curvature corrections
studied in
Giusto + SDM ’04,  need
to study their exact effect 
in particular geometries



Cardoso, de Wit, Mohaupt ’00,
Dabholkar ’04

Winding mode of NS1 around S1
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S1

Naïve geometry:

S1 shrinks to zero size,
correction can diverge

Actual geometry

S1       is nontrivially fibered
over the with the angular S3

Shrinks to zero as the 
angular circle in a plane,
like in the  KK monopole

Corrections bounded



Essential question:  Can corrections of 
either type change the fuzzball back to 
a naive black hole?

This does not appear plausible ....

(i) Note that whatever the corrections, we 
must still get Exp(S) orthonormal states,
so the different states cannot become the 
‘same’ because of quantum corrections ...

(ii)  We can follow the BPS state of a 3-
charge object as the coupling g is 
increased. How can a horizon suddenly 
develop?


