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Motivation

Deciphering the hologram

AdS/CFT correspondence provides holographic duality
between gravitational physics and gauge dynamics.

How does this holographic map encode geometric data of
interest in classical gravity in terms of the gauge theoretic
observables?

Relevance:
Making precise the nature of the holographic map

Understanding “Quantum Geometry”

Implications for bulk locality.
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Geometry in gauge theory

Q: Encoding of geometry
What are the gauge theory observables that encode geometric data
of a given spacetime?

Causal structure

Event Horizons

Singularities

To be precise, given that,

Field theory in a particular state ↔ Specific bulk geometry

what observables in the field theory should we look at to extract
information about the above geometric quantities? Example
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Results for gauge theory encoding

Detecting geometric structures using CFT correlators
The n-point functions of the boundary theory carry sufficient
information to detect some of the characteristic features of
the spacetime geometry.

The main issue is identifying the precise observables of
interest.

Plan of talk:
Use of CFT correlators to detect geometric structures in the
bulk.

Distinguishing geometries using CFT observables.
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Black hole singularity in gauge theory

Singularity and analytic structure
Information regarding the black hole singularity is encoded in the
field theory correlators. Balasubramanian, Ross

Kraus, Ooguri, Shenker

Fidkowski, Kleban, Hubeny, Shenker
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Black hole singularity in gauge theory

Singularity and analytic structure
Information regarding the black hole singularity is encoded in the
field theory correlators.

Singular correlators
O is a gauge invariant local operator of dimension ∆ ∼ N.

Two point functions 〈O(t,Ω) O(t ′,Ω)〉 have a singularity for

t ′ = t − i βBH

2
+ tc

βBH is the inverse Hawking temperature.
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Black hole singularity in gauge theory

(a) (b)

Spacelike
geodesics to
probing the
singularity.
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Black hole singularity in gauge theory

Some remarks on singularity probes
To extract the precise information corresponding to the singularity
we need:

Compute 〈O(t,Ω) O(t ′,Ω)〉
Analytically continue the correlation function to detect the
singularity.

Cleaner understanding of the analytic structure by working
directly in momentum space. Festuccia, Liu
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Black hole formation in gauge theory

Black hole collapse

Q: Can we use the AdS/CFT correspondence to probe black hole
collapse?

Identify gauge theoretic interpretation of horizon formation.

Understand thermalization in field theory as the dual of black
hole formation. Festuccia, Liu

Long term goal: Prove field theory process corresponding to
black hole formation and subsequent Hawking evaporation is
unitary.

A limited answer to the first of these questions. Hubeny, Liu, MR
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Black hole event horizon
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Black hole event horizon
r = 0

H

th

ts

to

t i

CFT 1

r = 8

II

I

III

r = 0

t

——

Spacetime is pure AdS
for t ≤ ts ; we change
the state of the
boundary at ts .

Probe the geometry by
local operator
correlation function
〈O(ti ,Ωi ) O(to ,Ωo) 〉

Correlations summary
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Black hole event horizon
r = 0

H

th

ts

to

t i

CFT 1

r = 8

II

I

III

r = 0

t

——

Want to detect the event
corresponding to horizon
formation, the instant tH .

Claim: we can detect this
from the correlation
functions.

Correlations summary
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Generalities of bulk-cone singularities

Bulk-cone singularities
Green’s functions in curved spacetime M are singular at null
separated points.

G(X ,Y ) →∞ ⇐⇒ ||X − Y ||2 → 0

Boundary correlation functions defined as limiting values of
bulk correlators also inherit these singularities: bulk-cone
singularities.

G (x , y) →∞ ⇐⇒ x & y are null in M or ∂M
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Generalities of bulk-cone singularities

CFT correlation functions on S3 × R in state |∗〉

G (ti ,Ωi ; to ,Ωo) = 〈O(ti ,Ωi ) O(to ,Ωo) 〉∗

Singularity locus of G (ti ,Ωi ; to ,Ωo) encodes features of the
geometry: this is clear in the limit where we can use a
geodesic approximation.

With some assumptions one can use the singularity locus to
infer the metric in the bulk. Hammersley
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Event horizon formation

The probe of horizon formation
For purely radial geodesics look at the singularity structure of
G (ti , to) = 〈O(ti ,Ω) O(to ,−Ω) 〉shell.

Interested in location of singularity given by to(ti ).

Salient points

For to < th, G (ti , to) is singular for to = ti + πRAdS .

As to > th, this singularity is shifted to to − ti > πRAdS .

Location of singularity to(ti ) increases monotonically and
to(ti ) →∞ as ti → th. Gao, Wald

Divergence of return time signals event horizon formation.

Radial geodesics in collapse
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Event horizon formation

General story
Expect divergent behaviour in geodesics carrying angular
momentum since they are trapped in the black hole orbit.

The singularity locus of G (ti ,Ωi ; to ,Ωo) in the collapse
geometry is quite involved.

One can nevertheless extract th in the boundary theory.
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Event horizon formation
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Divergence in the time difference for various starting values of the
time ti . The curves are plotted for different values of the angular
momenta. (a) corresponds to a think shell and (b) to a thick shell.

Bulk-cone locus details



Outline Motivation Detecting black hole structures Distinguishing geometries Conclusion

Comments about bulk-cone singularities

Remarks:
The structure of the bulk-cone singularity locus is tied to the
bulk light-cone.

Distinct geometries have sufficiently different light-cone
structure, e.g., star 6= black hole.

Q: Can we distinguish different geometries by the structure of
the bulk-cone singularity locus?

A: This is dependent on the resolving power of the singularity
locus: typical states are likely to behave similar to each other.
Use analytic properties!
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On microstates and geometries

Microstate perspective
Black hole microstates correspond to smooth, horizon free
‘geometries’. Mathur, · · ·

The microstate geometries differ from the black hole
spacetime inside the horizon, being comprised of some
spacetime foam.

Can correlation functions 〈O(x) O(y) 〉∗ distinguish

microstates from each other?

individual microstates from thermal state?
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On microstates and geometries

For a system with large entropy S :

Classical degeneracy expected to be broken by quantum
effects with

∆E ∼ e−S

Balasubramanian, Marolf, Rozali

Expect e−S to govern characteristic scales of deviations
between microstates =⇒ resolving power of e−S .

The relevant time scale from analysis of correlation functions
in the canonical and micro-canonical ensembles

tdist ∼ eS
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On microstates and geometries

Macrostate perspective
Black holes are characterized by non-trivial causal structure.

Microstate geometries do not have complicated causal
structure; the spacetime foam can however act coherently.

Two spacetime boundaries for eternal black holes versus one
boundary for microstates.
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On microstates and geometries

Two boundaries for
Schwarzschild-AdS.

Microstate geometry with
single boundary.
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On microstates and geometries

AdS/CFT correspondence can be interpreted as an
isomorphism between Hbulk and HCFT , for pure states and for
density matrices.

|pure〉bulk ↔ |pure〉CFT

ρbulk ↔ ρCFT

Easy to construct geometries dual to density matrices in the
field theory, like black hole or Wheeler bags of gold.

Frievogel, Hubeny, Maloney, Myers, MR, Shenker
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On microstates and geometries

Eternal black holes in AdS correspond to the thermal density
matrix.

Should be able to tell apart the black hole from a microstate.

Use the double boundary picture seriously – analytic
continuation. Balasubramanian, Czech, Hubeny, Larjo, MR, Simón

First deal with influence statistics our notions of
distinguishability of microstates: the bane of ensemble
equivalence.
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Basis states in the microcanonical ensemble

Consider the microcanonical ensemble at energy E , with energy
resolution O(∆E ). We can choose to parameterize the states by

Energy eignestates:

Mbas = { |s〉 : H|s〉 = es |s〉 ; E ≤ es ≤ E + ∆E }

Normalized superpositions of energy eigenstates:

Msup =

{
|ψ〉 =

∑
s

cψs |s〉

}
,

∑
s

|cψs |2 = 1

Note that
dim(Msup) = dim(Mbas)− 1 = eS
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Variances in the microcanonical ensemble

Consider some local operator O whose correlator we want to
measure in the ensemble of microstates.

O in general is not diagonal in the Hamiltonian basis |ψ 〉.

|ψ〉 =
∑
α

cψα |α〉

{|α 〉} is the eigen-basis of O with eigenvalues {oα}.
We can easily calculate the mean value of the operator
expectation value:

〈O 〉Msup
=

∫
Dψ 〈ψ|O|ψ〉
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Variances in the microcanonical ensemble

We can measure the spread of the ensemble Msup over the
eigenvectors of O using the usual notion of variance:

Var[O]Msup = 〈O2〉Msup − 〈O〉2Msup

This is not the quantity we are interested in.

We want to know the difference in probabilities of measuring
a given eigenvalue of O in different states of Msup.
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Variances in the microcanonical ensemble

Variance of observables
Fix the eigenvalue if working with an operator O such that
[O,H] 6= 0.

Obtain the variance due to the distribution of the states |ψ 〉
in the ensemble (subject to standard uniform distribution).

Defining
ck
ψ = 〈ψ|Ok |ψ〉

〈ck〉Msup =

∫
Dψ ck

ψ

Var[ck ]Msup =

∫
Dψ (ck

ψ)2 − 〈ck〉2Msup
.

Details of the variances
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Variances in the microcanonical ensemble

Entropic suppression
The variance in the ensemble of superpositions is diminished by a
factor of eS in comparison to the variance in the ensemble
comprising of energy eigenstates:

Var(O)Msup =
1

eS + 1
Var(O)Mbas

Msup gives us the worst case scenario for distinguishing
microstates.

We need to defeat the exponential suppression in order to be
able to distinguish the microstates (apart from the usual
statistical suppression).
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Canonical versus microcanonical ensemble

Calculation in the microcanonical ensemble in general is
non-trivial.

Compare the canonical expectations to get an estimate of how
the variance behave.

This will certainly give us information about how the
canonical ensemble differs from the microcanonical:
distinguish pure states from mixed!

Two toy models
Free chiral boson with E � 1 for statistics.

D1-D5 system and the M = 0 BTZ black hole.
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I. The free field results

For a free chiral boson one can show that√
var(O(τ))Mbas

〈O(τ)〉Mbas

� 1

for Euclidean time scale τ :

τ ∼ β

2

The entropic suppression in Msup makes its presence felt by
increasing the relevant time scale:

τ ∼ 3β

2

The calculation is easy in the canonical ensemble as two-point
functions are linear in the occupation numbers {Nn}.
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I. The free field results

Moral from free field

Simple probes (like Tr
(
X (iX j)

)
are able to distinguish

microstates from thermal state at

τdist ∼ β ∝ 1

S

Contrast this with usual Poincaré recurrence time tP ∼ eS .

Some caveats
The free field theory doesn’t describe a black hole!

Single chiral boson is incapable of encoding fractionation that
is crucial to the picture of the microstate geometries.
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II. The D1-D5 system

For the D1-D5 system at the orbifold point, we can calculate

〈{Nnµ,N
′
nµ}|A†(t, φ)A(0, 0)|{Nnµ,N

′
nµ}〉

Balasubramanian, Kraus, Shigemori

Like the free field case the correlation function is a linear
function of the occupation numbers {Nnµ,N

′
nµ}.

Variances easy to estimate in the canonical ensemble from
standard statistical distributions.
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II. The D1-D5 system

Moral from fractionated free field
Variances in the correlation function get large for

τ ∼ log S

Simple probes (like Tr
(
X (iX j)

)
are able to distinguish

microstates in Mbas from thermal state at

τ ∼ S

Folding in the exponential supression factor for Msup we find
that the relevant timescale is

τsup ∼ S2
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Salient points

Detecting geometric structures
Exploiting the bulk causal structure we can infer properties of
boundary correlators.

In particular, we can obtain predictions of interesting features
of correlation functions of a CFT state that has a good
geometric dual.

CFT correlation functions being multi-local in insertion points
carry non-trivial information about prospects of being able to
distinguish bulk geometries.
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Salient points

Typicality versus thermality
With large degeneracy of microstates distinguishing bulk
geometries becomes hard due to statistics.

The variances amongst members of the ensemble in their
response to probes is highly suppressed.

Enhance the variance by exploiting the coordinate space
dependence of the correlation functions and appropriate
analytic continuations.
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Issues to be explored

Detecting geometric structures
Quantifiable examples of bulk-cone singularities: D1-D5
system, LLM geometries.

Explore coupling constant dependence: how does the
singularity locus vary?

Moral for the black hole singularity story; finite λ phase
transitions?
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Issues to be explored

Typicality versus thermality
Generalize the discussion to systems containing honest black
holes, D1-D5-pL,R .

Other interesting analytic continuations

Estimate the minimum resolution for distinguishing
microstates amongst each other.
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Example: Reconstructing the fifth dimension

RG scale and spacetime dimension
Conventional lore: radial direction away from the boundary is the
energy scale in the field theory.

Evidence
Scaling properties in the boundary field theory.

The UV/IR correspondence; small length scales in the field
theory are related to large length scales in the geometry and
vice-versa.

Validity
The identification is most robust near the boundary of AdS
spacetime. Deep in the bulk this picture can be modified, e.g.,
black holes.

Back to Geometry...
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Angular momentum and bulk-cone singularity locus

0.2 0.4 0.6 0.8
J

!2.72

!2.68

!2.66

!2.64

!2.62

!2.6

th!Α"

Variation of th(J) as a function of angular mometum J. The
value at J = 0 is the time that corresponds to the event
horizon formation.

Return to event horizon formation
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Angular momentum and bulk-cone singularity locus

Π 2Π 8Π"
Π

2Π

8Π
"
Π 2Π 8Π

Π

2Π

8Π

ti#$2.8

Π 2Π 8Π"
Π

2Π

8Π
"
Π 2Π 8Π

Π

2Π

8Π

ti#$2.73

Π 2Π 8Π"
Π

2Π

8Π
"
Π 2Π 8Π

Π

2Π

8Π

ti#$2.67

(∆φ,∆t) for 3 values of ti in a thin shell geometry (modeled
by AdS-Vaidya metric).
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Angular momentum and bulk-cone singularity locus

Π 2Π 8Π"
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Π

2Π
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Π 2Π 8Π"
Π
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"
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2Π

8Π

ti#$2.67

The left endpoint of the upper branch corresponds to J = 0
and that for lower branch corresponds to J = E .

For comparison tc ≈ −2.72 and th ≈ −2.66.

tc is the minimal value of the starting time for which we see a
divergent to .

Return to event horizon formation
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Details of the variances in microcanonical ensemble

Consider moments of the operator in state |ψ 〉 ∈ Msup

ck
ψ = 〈ψ|Ok |ψ〉

which can be succinctly encoded in a generating function:

Cψ(θ) =
∑
n

θ n

n!
cn
ψ = 〈ψ|eθO|ψ〉

The variance can be characterized in terms of ensemble
averages of the generating function:

〈C (θ)〉Msup =

∫
Dψ Cψ(θ)

〈C2(θ1, θ2)〉Msup =

∫
Dψ Cψ(θ1) Cψ(θ2)−〈C (θ1)〉Msup〈C (θ2)〉Msup
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Details of the variances in microcanonical ensemble

We are going to be interested in the differing responses of
individual states in the micro-canonical ensemble to the local
correlation functions, which is characterized by:

〈ck〉Msup =

[
dk〈C (θ)〉Msup

dθk

]
θ=0

Var[ck ]Msup =
dk

dθk
1

dk

dθk
2

[
〈C2(θ1, θ2)〉Msup

]
θ1=θ2=0

The quantity of interest to us is the relative r.m.s deviation:

σ[ck ]Msup

〈ck〉Msup

=

√
Var[ck]Msup

〈ck〉Msup

Back to variances
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