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Plan

iz Study rotating attractors using Sen’s entropy function

iz Motivation

aJ 37
J mininal requirements for the attractor mechanism 7
d learn more about of the Entropy of non-SUSY
blackholes?
d technical points:
— entropy function formalism still apply with less
symmetry?
— only need near horizon geometry



What are blackhole attractors?

iz Context = Theory with gravity, gauge fields, neutral
scalars

1 generically appear as (part of) low energy limit of
string theory

iz scalars (or moduli) encode geometry of compactified
dimensions

iz Attractor mechanismm = scalars’ values fixed at
Blackhole’s horizon

i independent of values at infinity

i SO horizon area depends only on gauge charges —
Entropy depends only on charges

iz works for Extremal (' = 0) blackholes



Hand waving

iz number of microstates of extremal blackhole determined
by quantised charges

d entropy can not vary continuously
iz but the moduli vary continuously

iz resolution: horizon area independent of moduli

J moduli take on fixed values at the horizon
determined by charges

iz | NO mention of SUSY




Outline

iz GO through examples of application of entropy
function

1 without rotation
1 with rotation
J Time permitting: blackring

iz Study Lagrangians which dgenerically appear as (the
bosonic part of) certain low energy limits of string theory



Outline

iz GO through examples of application of entropy
function

1 without rotation:

— Only need near horizon geometry

— Assume extremal (T = 0) < AdS, X S? near horizon
symmetries

— Equations of motion & Extremising an Entropy function

— Value of the Entropy function at extremum Wald

Entropy of Blackhole
— need to solve algebraic equations

— Argument is independent of SUSY



Outline

iz GO through examples of application of entropy
function

1 without rotation
1 with rotation:

— Only need near horizon geometry

— Assume AdS; x U(1) near horizon symmetries

— Equations of motion & Extremising an Entropy function
— need to solve differential equations

— Entropy function at extremum = Wald Entropy

— Argument is independent of SUSY



Outline

iz GO through examples of application of entropy
function

1 without rotation
1 with rotation
d Time permitting: a blackring in 5-d

— Only need near horizon geometry

— Assume AdS> x S! x S? near horizon symmetries

— not the most general ansatz

— Equations of motion & Extremising an Entropy function
— Entropy function at extremum = Wald Entropy

— need to solve algebraic equations

— End up with AdS; x S?



Step 1

iz First we look at simple 4-dimensional spherically
symmetric black holes

iz later we will compare it with more complicated cases.



Entropy Function (Sen)

Set up:

i Gravity, p-form gauge fields, massless neutral scalars

= [ gauge and coordinate invariant - in particular there
may be higher derivative terms

= Extremal = AdS> X S? Near horizon geometry

iz Entropy function:

d First we consider, f, the Lagrangian density
evaluated at the horizon:

f[ei7pi7RAd527R527S03] — / \/ —gﬁ
H
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Entropy Function (Sen)

Set up:

i Gravity, p-form gauge fields, neutral scalars

= [ gauge and coordinate invariant - in particular there
may be higher derivative terms

i Extremal = AdS> X S? Near horizon geometry

iz Entropy function:

d First we consider, f, the Lagrangian density
evaluated at the horizon.

1 Now take the Legendre transform of [ w.r.t the
electric charges:

£=2m (qiei — /H \/Tg£>

E = S[Qi,pi, RAnga R527 908]



Entropy Function (Sen)

E=2m (qiei—/ \/—g£>
H
Results:

= equations of motion < Extremising &
== Wald Entropy = Extremum of £

v Fixing ¢; and p' fixes everything else completely



Caveats

| @ Entropy function, £, might have flat directions |

— The near horizon deometry is not completely
determined by extremisation of &

— There may be a dependence of the near horizon
geometry on the moduli

But since these are flat directions

v the entropy is still independent of the moduli

iz Generalised attractor mechanism

@ Also note that we have assumed that a blackhole
solution exists which may not always be the case.




Summary of rotating attractors

iz Scalars constant on horizon (non-dyonic)

2 Spr = 2m\/(Vesg)? + J? OaVerp =0

= Scalars vary over horizon (& = ®(0)) (dyonic)

d £ has no flat directions
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Simple example: spherically symmetric case

hrs (B) g™ 0,80, — f,;(B)g"g" Fi) FY
1fzg ((I;)EMpVJFLEiV) Fp(g)



Simple example: spherically symmetric case

L = R—h(9)g"8,8,0,%: — fiy($)g"’g" Fu)
1f2](q;)eupyaFé?Fp(g>

The effect of the ﬁ-j term is basically

g — qi — A fijp’

and for simplicity we will neglect it



Simple example: spherically symmetric case

L = R—h(9)g"8,8,0,%: — fiy($)g"’g" Fu)
Ansatz: AdS; x S? near horizon geometry

ds® = v (—rzdt2 + dr2/’r2) -+ vgdﬂg
F, = ¢ F;, = -—sin6
rt 0o 47‘(‘

O,

u, (const.)



Entropy function

Wish to calculate:

E =2m(qe' — f) =2m (qiei — /d@dqﬁﬂ—gﬁ)

Calculate the action:

fle, p,u,v1,v2] = (4m) (v1v2) (E _ E + fij (wr) (262263 2p'p’ ) >

vy U1 b _(47'(')2?)%

Calculate the conjugate variables:

_of
- Qel

i— [ _—_ R )
) (167r> (w)f o

q;

= (167) (v1v2) fij (ur) (%;)

1



Entropy function

Finally

U
Elq, p,u,vi,v2] = 2w (877(@2 —v1) + (U—1> Veff>

Notation

I EPUI
Verf = — {pzfij(u)pj +—q.f J(U)Qj:|
27T 16



Entropy function

Finally
7,0,U — 2 _ p2 R s
E[7, P, i, v1,vs] = 27 | 87 (R%— R3¢ + o
S
Notation

1 ' N ij (-
Vers = o~ {szz'j(U)pf’ +—aqif” (u)qg}
27 16



Equations of Motion

Then the equations of motion are equivalent to
extremising the entropy function:

oc OVerp

— =0 = 0
8(131 aq)l
o0&
— =0 = 8m—v, Vo (®;)=0
(9?)1
o0&
— =0 = _87T—|—U1U2_2‘/;ff((1)[)20
avz
So
U1:U2:87T‘/eff
and

SpH = 2T Veyy



Rotation

What is the dgeneralisation of an
AdS> x S? near horizon geometry
for rotating blackholes?

iz Take a hint from the near
horizon dgeometry of extremal

Kerr Blackholes (Bardeen,
Horowitz)

a .S0(2,1) xU(1)




Recall: SO(2,1) x S* Ansatz

d 2
ds? = v, <—r2dt2 n %) + 0pd0? + vysin 0 d?

T
Ps — Ug

()

p'sinf

1 .
5F,§?dm“ Adz’ = e'dr A dt + do A dgp

4



SO(2,1) xU(1) Ansatz

2

d
ds* =v1(0) (—7“2dt2 -+ —7; ) + 82d0% 4+ v5(0) sin’ 0 (dp — ardt)?
/’/b

Ps — US(Q)
A = e'rdt +b"(0)(d¢ — ar dt)

Horizon has spherical topology = v2(f8) at poles ~ 1

pi — / A0dGFL) = 27 (bi () — b (0)).



SO(2,1) xU(1) Ansatz

2

d
ds* =v1(0) (—7“2dt2 -+ —7; ) + 82d0% 4+ v5(0) sin’ 0 (dp — ardt)?
/’/b

s = us(0)
sFwda Ada” = (¢ — ab(8))dr Adt+ b7 (0)d0 A (d — ar d)

Horizon has spherical topology = v2(f0) at poles ~ 1

pl= / d@dqu“ = 27 (b'(m) — b'(0)).



SO(2,1) xU(1) Ansatz

2

d
ds® = Q%e* (—T2dt2 + %) + 3d6? + e %Y (dp — ardt)’
7/)

s = us(0)
sFwda Ada = (¢ — ab(8))dr Adt+ b7 (0)d0 A (dp — ar d)

Horizon has spherical topology = e¢ 2% at poles ~ sin’6

P = / dodoF,;) = 2m(b'(m) — b'(0)).



Symmetries

= One way to see that the ansatz has SO(2,1) x U(1)
symmetries is to check that it is invariant under the
Killing vectors, 9, and

1/1
Li=0:,, Lo=t3—r0,, L_1:§<—+t2> 8t—(tr)8r—|—g8¢.
/’a

72

> can also be seen by thinking of ¢ as a compact
dimension and find that the resulting geometry has
a manifest SO(2,1) symmetry with the conventional
generators.



Entropy function:

We define
Fla,5.2,9(6).(6).(0). 5(60)) == [ oo/ =g

iz T he equations of motion are:

of _ 4, 9f _, of _  Of _
da 88 dei ' 5bi(0)
5f 5f 5f

—— =0 ———=0 =0

5Q(0) 5(0) Sus(0)




Entropy function:

Equivalently we let
E[1,3,b(0), B,v1(6),v2(0),@(0)] = 27 (Ja+q-&— f)

iz T he equations of motion:

OE OE OE 5E
—~ =0 ==0 =0 ~_—0
dax o3 et 5bi(0)

5 5 5E

ov1(0) ov2(0) dus(0)



Examples

iz Kerr, Kerr-Newman, constant scalars (non-dyonic)

i Dyonic Kaluza Klein blackhole (5-d0—4-d).
-(Rasheed)

iz Blackholes in toroidally compactified heterotic string

theory
-(Cvetic,Youm;Jatkar,Mukherji,Panda)



Two derivative Lagrangians

L=R- hTS((I—)))gMVaM(I)SaV(I)T o fzj((I—)))gMngGF/E?/)FP((JI)

on(Ja+q-€— /d@dgb\/— det g L)

2rJa+ 2nwq- € — Ax? / do {2@1519’2 — 206 —2Q8 1"
—l—%aZQ_lﬁe_‘w — B71Qh (D),

+2fi; (1) {ﬁﬂ_le_w(ei —ab") (e —ab’) — B_lQewbi/bj/} }

+8% [Q%e2 sin (v +20Q/Q)], .



Equations of motion

Notation:

Y= el — ab’

() equation:

1
—4p7Q/Q+2671(Q/Q)° -268-2671 () — et Be
— B hysulul +2fi; { — B8O 2e 2y — a2 ey /} =0,

1) equation:

4371 Q) —2a°Q 7 Be™
+2£;{ ~2807 e 2] = 207287102\ | =0,



us equation:

2 (5_1Qhrsu;)/—|—28rfij {ﬁﬂ—le—%bxixj _ a—2ﬁ—1962¢Xi/Xj/}
— B (Orhts) ujul, = 0,

b equation:

) /
—aBfi Qe X —am B (fijﬁewle) =0

/ doI1(6) =0

1(0) = —2Q7'872(Q)* - 2Q+ 208 *(¢')* + loﬂg—le—w

8 equation:

where

+ 872 0h 42, { Q7 e 2 + a8 QQ(e)eW@ X'}



Charges:
q; = &7 / do [fijﬁQ_1€_2¢Xj] ,

J= 2n [[dO{aQ 1Be " —45f;;Q e x'b }



Solutions

iz Equations can be solved for some simple cases

Jd Kerr, Kerr-Newmann, constant scalars

iz Check known solutions fitted into the frame work:

d KK blackholes, Toroidal compactification of Heterotic
string theory



Kaluza-Klein Blackholes

L=R—2(0p)" — e2V3¥ [2
> Charges = (), P, J

iw 2 types of extremal blackholes

3 Both have SO(2,1) x U(1) near horizon geometry
J non-SUSY

1. Ergo branch

w [ J] > PQ

== Ergo-sphere

w S =21/ J? — P2Q?
ww £ has flat directions

2. Ergo-free branch

w | J] < PQ

= N0 Ergo-sphere

w S =21/ P2Q? — J?

w £ has no flat directions




Blackholes in Heterotic String Theory on T°

ww Charges = 1, Q2, Q3, Q4,P1, P», P5, Py, J,
d (Actually 56 P’s and ()’s)

iz Duality invariant quartic
D = (Qi1Qs3+ Q20Q4)(PiP;s+ PPy)

1
_Z(lel + Q2P+ Q3P+ QuPy)?
1. Ergo branch

1= Ergo-sphere
w S =2nvVJ2+ D
w £ has flat directions

2. Ergo-free branch

= no Ergo-sphere
w S =21v/—J2—D
= £ has no flat directions




Ergo-free branch

6=0




Ergo-free branch
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Ergo-free branch
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0.4
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Ergo-free branch
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Ergo-free branch




Scalar Field at Horizon




Ergo-branch
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Ergo-branch
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Ergo-branch
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Ergo-branch
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Scalar Field at Horizon
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Black ring attractors (5-d)

Consider 5-d Lagrangian with massless uncharged scalars
coupled to U(1) gauge fields with Chern-Simons terms:

L=R—ha(P)0,0°0"®" — fi;(®)F}, F/" —cijre ™ F, F! A"

@ Action is not gauge invariant — Entropy function
formalism does not apply

iz similar to BTZ black hole with gravitational Chern-
Simons and/or gauge Chern-Simons term

> compactify ¥ (Sen, Sahoo)
v can apply formalism to dimensionally reduced action

iz Related work: (Kraus, Larsen), (Dabholkar, lizuka,
Iqubal, Sen, Shigemori)



Black ring attractors (5-d)

Ansatz: AdS; x S! x S*
d 2

ds® = vy (_TthQ e %) + w? (dip + erdt)® + vy (d92 + sin” 9dqb2) ,
T

b, = us(0)
A'=e'rdt+ A}, (dip +erdt) —p' cosOde,

iz dimensionally reduce

i calculate entropy function for our ansatz



Black ring attractors (5-d)

Ansatz: AdS; x S! x S*
d 2

ds® = vy (_TthQ e %) + w? (dip + erdt)® + vy (d92 + sin” 9dqb2) ,
T

O, = us(0)
%Fﬁ?dm“ ANdx? = (e + eAZb)dr Adt+p'sin@dh A de

iz dimensionally reduce

1z calculate entropy function for our ansatz



Calculation

i First we consider, f, the (dimensionally reduced)
action evaluated at the horizon

f[Ul,’l)Q,w,e,gw,ﬁ, é;ﬂ:] :/ \V —g£
H

iz T he equations of motion are

af o o, 9,
ov1 OV ow
of _ 0 8f:0 of | g:q

DAL, Ou, gei 1 He



Entropy function

iz To calculate the entropy function,
£ =2m(ge+q-€—f),

it is convenient to eliminate Aiw e and € using their
equations of motion

iz Except in special cases, we find, from the Aib equation
of motion, F} =0



Entropy function
After some algebra, we obtain the entropy function

3 22
E = 321w (mm%—ﬂ (%ff"‘%)) ;
() w

Verr = fij(@)p'p
G~ (q—1d"qq))

where

w and d“ is proportional to inverse of c;;;p".



Solution

Extremising the entropy function we find

3
W(Vorr)2 A
E = 12873 \/Q( e11) — 321wy = ——
§) 4G N
oV =0
with )
V1 =12=3Veff|ov=0
P
ot — A1
Vers oy —o
and

e’w? = v; = AdS; x S?



Puzzles

iz VWhat is the relationship between the ergosphere and
the uniqueness of the Entropy function?

iz Under what conditions do these solutions actually exist
?

iz Why are these (bosonic) symmetries sufficient for the
attractor mechanism 7?

Q AdS»/CFT, AdS;/CFT

iz What does this really tell us about the entropy of non-
SUSY blackholes?



Thank you




