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There are several types of matrix models, but here for the sake of
concreteness we consider IIB matrix model.

Abstract

IIB matrix model is a candidate for the constructive definition of
string theory. It is nothing but the large-N reduced model of 10D

super Yang-Mills theory,
|
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g
A" (pu=1~10),
Y (10D Majorana-Weyl) : N XN hermitian

1_

S=— Tr(i[A”,AV]erE\PF”[A”,\P])

This theory seems to describe fluctuations around a flat
space-time. The basic question is whether it can describe curved
space-times, and it really contains invariance of the general
relativity, diffeomophism and local Lorentz invariance, or not.

Here, we will show that indeed it is the case, if we introduce a

new interpretation for the matrices.



Matrix model contains space time.

First of all let us see that the matrix model contains space-time

in its degrees of freedom.

IIB matrix model is formally obtained from 10D SU(N) super
Yang Mills theory by a dimensional reduction to zero dimensions.
Therefore, if we think naively, this reduction severely truncates
the degrees of freedom. However it is not the case if N is
infinitely large. In fact in this case, the matrix model contains

the original 10D model.

10D super YM - IIB matrix model > 10D super YM

dimensional reduction to 0D N — ©



The reason is as follows:
The dynamical variables Aﬂ 's are N x N matrices, but let
us treat them in a little abstract manner. That 1s, we
regard N XN matrices as linear transformations on some
linear space V:
A, €End(V), V=C"
So, if N is infinitely large, V'is an infinite dimensional

vector space, and we can take various expressions for V.

First let us assume V is the space of n-component
complex scalar fields on 10D space-time:

V={p'(x):R" > C"}
Then a matrix, a linear transformation on V, is nothing

but an integration kernel, or a bilocal field X (X, )
T eEnd(V),

(To) ()= [y ¥ k(6 )0 (1)

=) (%) @ (x)+cffy " (x) 0,07 (x) +cfy] V() 0,0, 9’ (x) +++-



At least formally, such bilocal field can be expanded as a

differential operator of infinite order whose coefficients
are 1 Xn matrices.

In particular as a special value of 4., we can take the

covariant derivative
A,=iD,=i(6"0,+ia,” (x))e End(V)
which means the whole space of gauge field

configurations is embedded in the space of matrices

End(V).
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Thus we have seen that the dynamical degrees of freedom of the
original 10D theory are completely included in the matrix model
if we take the large-N limit:
IIB matrix model > SU(n) 10D super YM.
(N — )
Furthermore in this embedding the local gauge symmetry is

realized as a part of the SU(N) symmetry of the matrix model:

04, = i[/i, Aﬂ} , A € End(V'): 0-th order differential operator



Large-N reduction

In this sense, IIB matrix model has more dynamical degrees of
freedom than 10D super Yang-Mills theory. However, it turns out
that the difference between them is not so large. This fact is
known as “the large-N reduction”.

For example, it is known that

(1) If we quench the diagonal elements of 4, ,

A,=P +4,

P,: diagonal and fixed, A4 : offdiagonal -

the matrix model is equivalent to the large-N Yang-Mills
theory.
(2) If we expand 4, around a noncommutative background
A, =p,+a,x),
| Dby =B,
x*=C"p,, BWCV}“ = 53,
and constrain the fluctuation that

a,(x)| <0 (x| - o),

the matrix model is equivalent to Yang-Mills theory in a

noncommutative space.



More presicely,

(1) quenched reduced model

The path integral for the off-diagonal elements of 4, can be

expressed by such Feynman diagrams as

And if the eigenvalues P/ of P"are uniformly distributed in the

momentum space, the summation over the indices becomes the

integration over loop momenta in the large-N limit:

RIS : :

i,k (i=], j=k.k=0) ( —P; )2 (pj — P )2 (pi o pk>
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Therefore the quenched reduced model becomes equivalent to

the original 10D field theory in the large-N limit.



It is useful to compare this result with the expression in terms of

the differential operators. If we express 4, as a differential

operator

4,= CLO)U(X) -I—CS)V '7(x)0, +CLZ)M '"7(x)0,0, 4+

)

the background of the quenched reduced model is nothing but

AP =io,

U

So, in the classical level, fluctuations from this background
consist of infinitely many fields of various higher spins. Because
diagonal elements are nothing but polynomials of i0, . the
condition of quenching suppresses the zero mode of each field.
However we still have very large degrees of freedom as far as we

consider classical dynamics.

On the other hand the quenched reduced model tells us that
these degrees of freedom are combined to one vector field, if we

treat them quantum mechanically.



(2) twisted reduced model

Gonzalez-Arroyo, Okawa (1983)
Gonzalez-Arroyo, Korthals Altes
Rediscovered in the context of NCFT.

We pick up a classical solution of the equation of motion

| A,[4,,4,]]=0
that is given by the CCR with 10/2 = 5 degrees of freedom,
0) _ »
4, =p,®1,
[ﬁ#,ﬁv} =iB, (B, €R), 1, : nxnunitmatrix -
and expand the dynamical variables around it:
_ A0) , A _ ;
A,=4,"+a, wv=0+y
Next we introduce the following correspondence between

operators and functions:

5 lek lek

=[5 6(k)exp(ik &) & o(x)= | o o (k) exp(ik,x*)

VA QA AU YA
BWC —5#, x*=C"p,

(0 is the Weyl ordering ofo(x) .)
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Then we can show the following mapping rules:

[ﬁﬂ,é] <0 0,
A A *
0,0, <>0 %0,,

Tr(é)zﬂ

(27)
Using them, we can rewrite the matrix model action as that of a

jdlox o(x)

field theory on the noncommutative space-time:

det B 1
JT S o (__FW+ 7T ﬂ,w]j*.

2

Again we have seen that the matrix model is “almost equivalent”

to the 10D field theory.
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matrix model contains gravity

So far, we have seen that IIB matrix model is “slightly larger”
than the 10D super Yang-Mills theory.
On the other hand it is known that IIB matrix model also

contains gravity, if we consider a different kind of background.
Ishibashi, Kitazawa, Tsuchiya and HK (1996)

We consider the linear space Vas before:
V={¢'(x):R">C"}
but this time we consider a background A" «that is diagonal in
the x-space. In terms of integration kernel, it is expressed as
A(O)u — 1510 (x — y)(sij .
Or in term of differential operator

AO — Y
7 .
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If we expand 4, around it
_ 40 | %
A, =47, +4,
the one-loop effective Lagrangian contains terms that

correspond to the exchange of graviton and dilaton:

Sy = [fd eyt st 6 (0L, 60, 0,00

—const-t(f, ,(x)f,, () r(fy, 0], () +-}

@& o
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Question:

We have seen that Yang-Mills theory is embedded in IIB matrix
model, and in this embedding the local gauge symmetry is a
part of the SUN) symmetry of the matrix model.

Furthermore we have seen that IIB matrix model contains

gravity.

Can we find a good way of embedding gravity in IIB matrix
model, in such a way that diffeomorphism and local Lorentz
invariance become a part of the SU(N) symmetry of the matrix

model?



More concretely, suppose we have a D-dimensional curved
space M and the covariant derivative V,(a=1~D) on it.
Find

(1) a good space V and

(ii) a good object V(. which is equivalent to V.
such that each component of V,.(a=1.10) is expressed as a

linear transformation on V.

Difficulty

The covariant derivative V, (¢ =1~ D) maps a scalar field to a
vector field, and a vector field to a tensor field, and so on.
Therefore, it can not simply be regarded as a linear
transformation on some space such as
A, =iV, .

The difficulty may become clearer, if we compare the product
V.V, and 4,4, . In V.V, , the spin connection contained
in V., mixes the index? . On the other hand 4,4, simply means
the product of 4, and 4, . Therefore the equation like
A, =iV, can not hold.
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Answer:

M =

Suppose K}JUI 1s a D-dim Riemannian manifold with a spin

structure, and we have a transition function on each overlapping
region

t,,(x)espin(D),xeU,NU,
Here we assume all indices are Lorentz indices, and in particular,

the covariant derivative is expressed as
_ LH bc
Va_ea (8/J+a)/10bc),

where O, is the Lorentz generator.
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(1) V - COO (Eprin)
First we consider the principal spin(D) bundle £,.. on

M associated with the spin structure. In other words, we

consider a direct product U, xSpin(D) for each patch U,,
and glue them together by the following rule:
For X€U,NU, ’
(x,g,)eU,xSpin(D) ~ (x,g,) €U, xSpin(D)
< g =t,(0)g,
Then we take the space of functions on £, as V. In other
words, we regard matrices as bilocal fields or differential

operators on E prin «
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G) Vo =R’ (g7)el (8, + @ ()0, ) € End(C*(E,,,))

prin

Let R.(g) be the rep. matrix of the vector rep. of Spin(D),

N

and O,, be the infinitesimal left action on the function space

onSpin(D): (O, is the derivative along the fiber.)

£”0,0(2)=p((1-£"7,)2) - 9(g).

Then we define a differential operator on £,., by

Vi R(a) (g_l)eg’ (Gﬂ + a)Zd (x)écd) .
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We can show that each component of V(a),(azl..lO) 1S a
globally defined differential operator on £, , and thus a linear
transformation on V. Therefore it can be expressed by a

matrix. (Proof)

Furthermore we can show that each component of V(. is

hermitian for the natural measure on £,,.,:

(fm=[, fh=[d"g[de f(x.e) hx.0).
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Example 9, with homogeneous metric

spin(2)=1{'’;0<0< 27} =S,

E,, =S, bundleover S, =S; (Hopf bundle)

V = COO(Eprin) = {¢(Zﬂ 0)9S3 — C}

z: the stereographic coordinate of S,

V., =e{(1+22)8, + %zae}, V. =(1+22)0, + 52012
Vi, = {(1+2)0, ~2 20,}, V_=(1+22)d. —ézO12

where T =1%i2,
Each of V(4 and Vi isa globally defined differential

operator on E prin «
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In this manner, S, is realized in terms of two matrices. This

should be distinguished from the ordinary fuzzy sphere, which is

obtained by embedding to the space of three matrices.

Similarly, any Riemannian manifold with dimension less than or

equal to D can be coded in the space of D matrices.

CYs
space of

«| 10 matrices

10

S10



21

What is the space V ?
V= ®© . ®---@dV), V :space ofa field with rep. r.

r: rep. of Spin(D)
—

— scalar, spinor, vector,...etc.

d. ( dir;; of )
(") Since an element of V is a function on £, at each point
on M , it gives a function Spin(D)—C.
In general, the space of functions on a group G forms a special
representation called the regular representation, which is

1somorphic to

112

vreg

® (v - D
rirep. ofG( J \ vf) ’

d

r

whereV, 1is a representation of G, andd, is its dimension.




A function G — C can be expanded as
f(@)=2c.." R,.7(2)
ri,j

where R__"/(g) is the rep. matrix for 7.

The action of an element /2 of G on f 1s assumed to be
f(hg)=2 .. R, (hg)
ri,j

= Zc<r>i,j R<r>i’k (h_l)R<r>k,j(g)

ri,j

= Zc<r>k’j R<r>k,i(h_1)R<r>i,j(g)‘

i, j

Therefore,
[P f(@=f(h"g)=c, >, =R, (e,

k,j

22
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The regular rep. has the following remarkable property:
Vyeq v, = Vyeq D---Dv

reg

for any r.

More explicitly, this isomorphism is given by
f(@ev,,®v, = (g =R.."(g")f (g
Then f’(g) transformsunder #€G as

(@)
R,.7(g R, (Wf (hg)=R,." (g 'Wf (hg)=f"(h"g).

Therefore we have

V..V >7VeTr=re---aV,
where T is the tangent bundle, and the combined map is

given by

Vi =R (g7)el (8, + @' ()0,,)
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New interpretation of IIB matrix model

We now regard the matrices in IIB matrix model as linear

transformations on C (£ prin ).

Here we consider the classical EOM derived from the action

S = —%Tr([Aa,Ab]z)-l-fermionS .

If we set the fermions to be zero, it becomes
[Aa [Aa’Ab]] = O .
Now we can impose the following Ansatz
A, =1V,

because Y(,is a well defined linear transformation, and we

have

[V(co [Vw)»vw)ﬂ =0,
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Let’s rewrite this equation in terms of the ordinary covariant
derivative V..

Formula

ViV =Ry (g B ) V. R(b)d (g B ) Vi

_ c -1 d -1

=R, (g )R(b) (g )chd
In the last expression, the Lorentz generator in V., acts
on the index d of V,.

Using this, we have

0= [V(a),[v(a)’ V(b)ﬂ
N

0= I:va’[va’vb]:l
= |:Va > Radeocd:| — (VaRade )OCd o Rabcavc

<V R ““=0,R,=0
<R, =0.
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The Einstein equation follows from the EOM of IIB matrix

model.

If we start with IIB action with a mass term

, 1 0 m’ ,
S :—ZTr([Aa,Ab] )+7Tr(Aa2>+fermzons,

we have the Einstein equation with a cosmological constant

. 2
Rab =—m 5ab .
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Diffeomorphism and local Lorentz invariance

We now show that the symmetries of the general relativity are

realized as parts of the SU(N) symmetry of the matrix model.

In the matrix model the infinitesimal SUN) symmetry is given

by

54,=[A,A4,],AeEnd(V).

If we interpret V as C”(E,,), we can take various A from

End(C™(E,;,)) .

(1) diffeomorphism

prin

A= %W (x,8).V,,} € End(C*(E,,)) ~ A (x)V,

Aaoy(:2) =R, (g_l)’lb (x)
= 64, =[A,4,] correctly reproduces the diffeomorphism.
(2) local Lorentz

A =A"(x)0,, € End(C” (E,.))

= 64, =[A,4,] is the local Lorentz transformation.
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Summary

® Any D-dimensional manifold can be embedded in D matrices.

® Accordingly, the matrices in IIB matrix model can be
interpreted as differential operators on the principal bundle
on any manifold of less than or equal to 10 dimensions.

® The classical EOM of IIB matrix model gives the Einstein
equation.

® So far we have analyzed classical EOM. However, as we have
seen for the flat space, it is expected that the degrees of
freedom become much smaller in the quantized level. It is

1mportant to consider what remains in the quantized level.

hep-th/0602210, hep-th/0611093

® In order to implement SUSY, we can consider super manifold
instead of the ordinary manifold, and consider the matrices as
differential operators on the associated principal bundle. Then
V becomes a super vector space and the matrices should be
regarded as super matrices, but the form of the action of I1IB

matrix model seems to work without any modification.



