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Motivation

> AdS, x S5 “simplest” yet most poorly understood case of
gauge-gravity correspondence.

» Structure of black hole microstates.

» Mathematics: geometrical invariants (GW, GV, DT, J, ...),
notion of stability.

» Phenomenology and landscape statistics (from OSV to LHC?):

» BPS states < susy brane configurations < string vacua

» So: counting black hole microstates <> landscape statistics.

» May hugely affect estimates of relative fraction of vacua with
discrete symmetries, low energy susy, split susy, etc...



Realizations of BPS states



Setting

e |IA on Calabi-Yau X 4d N = 2 supergravity

+(ht 4 1) gauge fields
~» BPS black holes with magn.
and el. Charges (PO, pA7 aa, CIO)

e D6-D4-D2-D0 BPS bound st.
(D-branes + gauge flux)
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BPS states and stability

» BPS bound for mass of particle with charge ' = (p°, p, g, qo)
in vacuum with complexified Kahler moduli t = B + iJ:

M > Mgps = |Z| M,

where

I t3 -1/2 t3 t2
Z:<(m6)) <p06_p.2_|_q.t—qo>+inst.corr.

> For generic t: |Z(I'1 +To,t)| < |Z(T1,t)| + |Z(T2, t)]
= BPS states absolutely stable.

» Exception: when t such that arg Z(I'1,t) = arg Z(I'2, t):
|Z(1+2)| =|Z(1)| + |Z(2)|: marginal stability.

» = BPS states can disappear from spectrum when crossing
walls of marginal stability.



Decay at marginal stability
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BPS particle splits in two BPS particles conserving different susies.
Even index of BPS states jumps!
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For same total charge, different MS lines and decay products
possible, depending on initial state and path.



BPS states at g — 0 and V¢y — o0

» Localized at single point in noncompact space.

» "“Pure” D(2k)-branes: infinitely thin, holomorphically
wrapped.
» Bound states with lower dim branes:

» gauge flux: p-stable holomorphic vector bundles
> brane “gas”: ll-stable ideal sheaves



BPS states at g; — 0 near marginal stability

» Decay [ — I'1 4+ I'> at marginal stability often invisible in 1A
large volume geometrical D-brane picture.

» Stringy microscopic description [Kachru-McGreevy]:

(S LD s

Light 1 — 2 open string modes ¢;, i = 1,..., 12 have D-term
potential:

Vo ~ Y (|6i* = €)?

1

» Fl term & changes sign when crossing MS wall = susy config.
exists on one side, not on other: 3 “tachyon glue” iff £ > 0.



BPS states in 4d supergravity (gs|l'| > 1)

Simplest possibility: spherically symmetric BPS black hole of
charge I = (p° p, 9, q0):

d52 — *62U(r)dt2 + e—2U(r)d)—<*2

t
@

Solutions < attractors [Ferrara-Kallosh-Strominger]:

Radial inward flow of moduli t(r) is gradient flow of log |Z(T, t)].



Existence of spherically symmetric BPS black holes

Three possibilities [Moore]:

1. Gradient flow ends in minimum t = t.(I') with Z(T, t,) # 0.
= Regular black hole with horizon area A = 4x|Z(T, t.)|°.

2. Flow ends in boundary point t = to with Z(T', t5) = 0.
= Zero area black hole, but still BPS solution (e.g. pure D6,
D2-DO0; note: regular after uplifting to 5d).

3. Flow ends in interior point t = to with Z(I', to) = 0.
= No BPS black hole solution.



BPS black hole molecules

More general BPS solutions exist: multi-centered bound states:

ds? = —e?V®) (dt — w(X))* + e 2VFdx2.

» Centers have nonparallel charges.

» Bound in the sense that positions are constrained by balancing
gravitational, scalar and electromagnetic attraction and
electromagnetic repulsion.

» Stationary but with intrinsic spin from e.m. field



Explicit multicentered BPS solutions

» N-centered solutions characterized by harmonic function H(X)
from 3d space into charge space:

9-3
= X=X

with Hoo determined by tjz—., and total charge I
» Positions constrained by

r” r —ia
Z = 2Im (e""Z(T; ))|X|

1’XJ|

where (I'q, F2> =M"-r5—rg-ry and a =arg Z(I).
» All fields can be extracted completely explicitly from the
entropy function S(I') on charge space, e.g.

2U(%) _ T

S(H(X))

e



Decay at marginal stability

2-centered case:

Ge 0 G

» Equilibrium distance from position constraint:

(M,M) |21+ 25|
2 Im(le)

X1 — Xa| =

|X|=00

» When MS wall is crossed: RHS — oo and then becomes
negative: decay



Example: pure D4 = D6 — D6 molecule

» Pure (ample) D4 with D4-charge P has

Z(t)=0at t ~iP = No single centered solution.
> Instead: realized as bound state of single D6 with U(1) flux
F = P/2 and anti-(single D6 with flux F = —P/2):
D6[P/2] @ @ -D6[-P/2]

Stable for Im t > O(P).
» Total charge ok v/

» If P not even, flux must be turned on on D4 as well
(v [Freed-Witten,Minasian-Moore] )

» M-theory uplift: smooth “bubbling” geometry.



Transition between g|['| > 1 and g,|['| < 1 pictures
» Mass squared lightest bosonic modes of open strings between
I'l and r2:

S22
=l 2X2’ + Aa
ES

= c(t)gl + Aa

M2/ Mg

» On stable side of MS wall Aa < 0, so if gs gets sufficiently
small, open strings become tachyonic and branes condense
into single centered D-brane. [FD qqhh]

single D-brane Quiver Higgs Quiver Coulomb two particles

(sugra)
& g R
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0 c|Da|?? c|Da| lgs




Attractor flow trees and BPS state counting



The flow tree - BPS state correspondence

» Establishing existence of multicentered BPS configurations not
easy: position constraints, S(H(X)) € RT VX, ... However:

» Theorem/conjecture: Branches of multicentered configuration
moduli spaces in 1-1 correspondence with attractor flow trees:

» Initial point = background t,—.
» Each edge E is attractor flow for some charge ¢
» Charge and energy “conserved” at vertices E — E' + E"':
1. Tg= Fg + gn
2. |Z(Te)|=1Z(Te)| + |Z(Ter)|, i.e. splits on MS walls.
» Terminal points = attractor points t.(I;).

» Much simpler to check!



Flow tree decomposition of BPS Hilbert space

» Flow trees can also be given microscopic interpretations
(decay sequences / tachyon gluing).

» = Hilbert space of BPS states of charge I' in background t
can be decomposed in attractor flow tree sectors:

H(T, t)

A A A



Side note: scaling solutions

There exists multicentered configurations asymptotically
connected to single centered black holes, e.g. D6 + flux, D6
+ flux, N DO for N sufficiently large.

» Associated to quivers with closed loops.

» No walls of marginal stability.

» Prime candidates for horizonless supergravity microstates
resolving black holes ~~ superconformal quantum mechanics
(but: probably need new d.o.f.)

Represented by ordinary single attractor flow ~~ 3 refinement
of flow tree picture to represent different such multicentered
configurations?



Wall crossing formula for primitive splits

J o
Ci .: — > .% C?

» Near marginal stability wall ' — 'y 4+ 'y (with 1 and '
primitive), the decaying part of H(I, t) has following
factorized form:

(J)@H' (M1,t) @ H'(M2, t)

with J = %(<r1, I'2> — 1).
» Spin J factor comes from intrinsic angular momentum
monopole-electron system (—1/2 from relative position d.o.f.)

» Implies index jump

AQ = _(_)QJ(zJ + 1) Q(rl-/ tms) Q(r27 tms)~



Recursive index factorization formula for primitive splits

From wall crossing formula:

) =k W) W)

where k = [(['1,12)].




Total index formula

From recursion formula (ignoring nonprimitive splits):

Qr,t) = QI ()

+ D> ()L ) QT ts) T2, ims)
=T+

where sum is over all allowed splits.

Iteration results in sum over flow trees, of terms involving
products of intersection products and terminal
Q.([;) == Q(, t(l;)) factors:

Qr,e)= > P(M ][]

treesT

Note: reminiscent of Joyce's formulas.



Simple (single tree) examples

1. Pure D4 on P > 0 with pulled back flux S : I} = nef/2+3,

Mo =—ne P/2+S p.=1+ 52, [up to signs for simplicity]:
P} P
Q=(l,M2) :?—i‘% =Ilp=x(Mp). v

2. D6-D2-D0 ideal sheaf Z with D2 =UnNnV; U,V,V - U > O:
M =neV My =neV, M = —nelVtv:

Q=|lv - ly_ylly = x(Mz) = NpT(Z). v



Nonprimitive splits 1: halos

NG

Halo = bound state of one I'; particle (“core”) with N I, particles.

Recursive index formula in terms of generating function:

Nonprimitive splits 2: (I'1, N['2) — (MTI'1, N['3) ~» 77



Example: D6-D0 bound states in large B-field

» For —B ~ —Re't sufficiently large: D6 - N DO BPS bound
states exist as halos:

DO 15
1.25
1
D6 0.75
G .5
5
-1 -075 -05 -025 025 05 0.75 1

Zpe—po(u;t) = Y _Q(D6+nD0, t) u" = [ [(1—(~u)k)~¥X) v
n k

(product is over halos of DO-particles of DO-charge k.)

» Similarly: D6-D2-D0 halos ~~ Gopakumar-Vafa type product
formulas counting D6-D2-D0 bound states ~~ Zpg ~ Zi(p.



Application to the OSV conjecture



The OSV conjecture

Defining
Zos(9) = ZQ P, q) e

[Ooguri-Strominger-Vafa] conjectured:

Zosv(¢) ~ Ztop(gtopa t) Ztop(gtopa t)
with identifications:

Siop = 1 A:¢A+/PA
top ¢0+I-p07 ¢O+IPO

Inverting:

Q(p, q) ~ / dp e | Zop|*(p, 0).

RHS in leading saddle point approx. = e%BH(P.9)



Deriving OSV for p° = 0: rough outline

. ldentify Z,s, = |img_,0 ZD4(ﬁ, (G, C3)

2. Use SL(2,7Z) TST-duality to rewrite Zps at t = ico as

Fareytail /Rademacher series built on polar part Zp,:
Zow = > f(A) Z5,(A-(6°9))
AeSL(2,Z)
. Polar BPS states split: no attractor point, Q.(I'") =0, so
QI =Y (=)™, T2)| QT tins) AT, tins)
M= —T1+4T

. At large P, SL(2,7) element A= S : ¢° — 1/¢°, and splits
into 1 (M2) = single (anti-)D6 with dilute D2-D0 gas
dominate nonpolar part of Zp4 in Fareytail sum, provided
#°(~ 1/gtop) Not too large (and P large).

. Dilute gasses fully factorize = in suitable regime:

Zosy ~ Zp6 255 ~ ZpT 20T = | Ztop|*.



Pictorial summary




The Entropy Enigma

For ' = A(0, P, @, Qo) in large A limit, and in background with
t > O(N), there always exists two centered D6-anti-D6 type black
hole configuration such that

Spu2 = Spu1(M1) + Spr.a(M2) ~ A3

while leading order OSV prediction is log Q ~ Spp 1(I) ~ A2.

s~L2

‘ 3‘

s~L

= OSV terribly wrong??



Possible resolutions

1. Can't trust solutions? ><

2. Q(T) is index, receives many contributions, from many
different attractor flow trees, with different signs = there may
be miraculous cancelations.

~» Would highly (and mysteriously) constrain various indices
of subsystems.

3. OSV only valid at attractor point:

Q(P,qv t* P, q /dgbe ¢q|Zt0P‘ (p’ )

[No troubling A3 solutions there.]

~> But then OSV loses interpretation of counting large
volume D-brane ground states.



So what about those OSV derivations?

Derivations [Gaoitto-Strominger-Yin, Cheng-deBoer-Dijkgraaf-
Manschot-Verlinde, we] are supposed to be valid in large volume
limit (needed to make Zp4 Jacobi form). ~~ 777

Upon closer examination: derivations fail at weak giop
(~ 1/A) if indeed log Q(AT') ~ A3 (non-dilute gas becomes
dominant).

However, even with A3 growth, there is regime in which
conjecture can be derived at large volume:

crit

Stop > 8top»  OF equivalently do/pP® > Cerit-

~+ phase transition.



OSV: bottom line

Z(;gv(qb) = 217r 3 | oo Z I¢0 Fe(p,p+ik,o)—2mwiAg-k
k
F(p.d,a) = Foplg,t) +Foo(g.t) +AF
1
Ftﬁop = |0g top |Og Zpol + |og ZI/)GT + 5 |0g Zg’%
Zhr(g,t) = E Npr(n, ) e €" it

|n|<eP3,P-3<eP?
with substitutions

P
g—¢0—|—27toz t5¢0(¢+/§)—|—1aP.

and error
_2m. _2m -1
AF = 0(ZPIEIY L o(e P,

where ¥ (P, ¢) ~ independent of P if indeed A3 index growth,
~ 1/|P| if miraculous cancelation A3 — A2,
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