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Motivation

I AdS2 × S2 “simplest” yet most poorly understood case of
gauge-gravity correspondence.

I Structure of black hole microstates.

I Mathematics: geometrical invariants (GW, GV, DT, J, ...),
notion of stability.

I Phenomenology and landscape statistics (from OSV to LHC?):

I BPS states ⇔ susy brane configurations ⇔ string vacua
I So: counting black hole microstates ⇔ landscape statistics.
I May hugely affect estimates of relative fraction of vacua with

discrete symmetries, low energy susy, split susy, etc...



Realizations of BPS states



Setting

• IIA on Calabi-Yau X  4d N = 2 supergravity
+(h1,1 + 1) gauge fields

• D6-D4-D2-D0 BPS bound st.  BPS black holes with magn.
(D-branes + gauge flux) and el. charges (p0, pA, qA, q0)



BPS states and stability

I BPS bound for mass of particle with charge Γ = (p0, p, q, q0)
in vacuum with complexified Kähler moduli t ≡ B + iJ:

M ≥ MBPS = |Z |Mp

where

Z =

(
(Im t)3

6

)−1/2 (
p0 t3

6
− p · t2

2
+ q · t − q0

)
+ inst. corr.

I For generic t: |Z (Γ1 + Γ2, t)| < |Z (Γ1, t)|+ |Z (Γ2, t)|
⇒ BPS states absolutely stable.

I Exception: when t such that arg Z (Γ1, t) = arg Z (Γ2, t):
|Z (1 + 2)| = |Z (1)|+ |Z (2)|: marginal stability.

I ⇒ BPS states can disappear from spectrum when crossing
walls of marginal stability.



Decay at marginal stability
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BPS particle splits in two BPS particles conserving different susies.
Even index of BPS states jumps!
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For same total charge, different MS lines and decay products
possible, depending on initial state and path.



BPS states at gs → 0 and VCY →∞

I Localized at single point in noncompact space.

I “Pure” D(2k)-branes: infinitely thin, holomorphically
wrapped.

I Bound states with lower dim branes:
I gauge flux: µ-stable holomorphic vector bundles
I brane “gas”: Π-stable ideal sheaves



BPS states at gs → 0 near marginal stability

I Decay Γ → Γ1 + Γ2 at marginal stability often invisible in IIA
large volume geometrical D-brane picture.

I Stringy microscopic description [Kachru-McGreevy]:

I12
Γ1 Γ2

Γ1 Γ2

Light 1 → 2 open string modes φi , i = 1, . . . , I12 have D-term
potential:

VD ∼
∑

i

(|φi |2 − ξ)2

I FI term ξ changes sign when crossing MS wall ⇒ susy config.
exists on one side, not on other: ∃ “tachyon glue” iff ξ > 0.



BPS states in 4d supergravity (gs |Γ| � 1)

Simplest possibility: spherically symmetric BPS black hole of
charge Γ ≡ (p0, p, q, q0):

ds2 = −e2U(r)dt2 + e−2U(r)d~x2

t

Solutions ⇔ attractors [Ferrara-Kallosh-Strominger]:

Radial inward flow of moduli t(r) is gradient flow of log |Z (Γ, t)|.



Existence of spherically symmetric BPS black holes

Three possibilities [Moore]:

1. Gradient flow ends in minimum t = t∗(Γ) with Z (Γ, t∗) 6= 0.
⇒ Regular black hole with horizon area A = 4π|Z (Γ, t∗)|2.

2. Flow ends in boundary point t = t0 with Z (Γ, t0) = 0.
⇒ Zero area black hole, but still BPS solution (e.g. pure D6,
D2-D0; note: regular after uplifting to 5d).

3. Flow ends in interior point t = t0 with Z (Γ, t0) = 0.
⇒ No BPS black hole solution.



BPS black hole molecules

More general BPS solutions exist: multi-centered bound states:

ds2 = −e2U(~x) (dt − ω(~x))2 + e−2U(~x)d~x2.

I Centers have nonparallel charges.

I Bound in the sense that positions are constrained by balancing
gravitational, scalar and electromagnetic attraction and
electromagnetic repulsion.

I Stationary but with intrinsic spin from e.m. field



Explicit multicentered BPS solutions

I N-centered solutions characterized by harmonic function H(~x)
from 3d space into charge space:

H(~x) =
N∑

i=1

Γi

|~x − ~xi |
+ H∞

with H∞ determined by t|~x |=∞ and total charge Γ.
I Positions constrained by

N∑
j=1

〈Γi , Γj〉
|~xi − ~xj |

= 2 Im
(
e−iαZ (Γi )

)
|~x |=∞

where 〈Γ1, Γ2〉 = Γm
1 · Γe

2 − Γe
1 · Γm

2 and α = arg Z (Γ).
I All fields can be extracted completely explicitly from the

entropy function S(Γ) on charge space, e.g.

e2U(~x) =
π

S(H(~x))



Decay at marginal stability

2-centered case:

Γ1 Γ2

I Equilibrium distance from position constraint:

|~x1 − ~x2| =
〈Γ1, Γ2〉

2

|Z1 + Z2|
Im(Z1Z2)

∣∣∣∣
|~x |=∞

I When MS wall is crossed: RHS →∞ and then becomes
negative: decay



Example: pure D4 = D6− D6 molecule

I Pure (ample) D4 with D4-charge P has

Z ∼ −P · t2

2
− P3 + c2P

24
.

Z (t) = 0 at t ∼ i P ⇒ No single centered solution.

I Instead: realized as bound state of single D6 with U(1) flux
F = P/2 and anti-(single D6 with flux F = −P/2):

-D6[-P/2]D6[P/2]

Stable for Im t > O(P).

I Total charge ok X

I If P not even, flux must be turned on on D4 as well
(X[Freed-Witten,Minasian-Moore])

I M-theory uplift: smooth “bubbling” geometry.



Transition between gs |Γ| � 1 and gs |Γ| � 1 pictures

I Mass squared lightest bosonic modes of open strings between
Γ1 and Γ2:

M2/M2
s ∼ |~x1 − ~x2|2

`2
s

+ ∆α

= c(t) g2
s + ∆α

I On stable side of MS wall ∆α < 0, so if gs gets sufficiently
small, open strings become tachyonic and branes condense
into single centered D-brane. [FD qqhh]

 single D-brane Quiver Higgs Quiver Coulomb two particles
(sugra)

0 |∆α| 3/2c |∆α|c sgI



Attractor flow trees and BPS state counting



The flow tree - BPS state correspondence

I Establishing existence of multicentered BPS configurations not
easy: position constraints, S(H(~x)) ∈ R+ ∀~x , ... However:

I Theorem/conjecture: Branches of multicentered configuration
moduli spaces in 1-1 correspondence with attractor flow trees:

Γ

ΓΓE'

ms

E''

E

I Initial point = background tr=∞.
I Each edge E is attractor flow for some charge ΓE

I Charge and energy “conserved” at vertices E → E ′ + E ′′:

1. ΓE = Γ′E + ΓE ′′

2. |Z (ΓE )| = |Z (ΓE ′)|+ |Z (ΓE ′′)|, i.e. splits on MS walls.
I Terminal points = attractor points t∗(Γi ).

I Much simpler to check!



Flow tree decomposition of BPS Hilbert space

I Flow trees can also be given microscopic interpretations
(decay sequences / tachyon gluing).

I ⇒ Hilbert space of BPS states of charge Γ in background t
can be decomposed in attractor flow tree sectors:

H(Γ, t) =

+ + + +



Side note: scaling solutions

I There exists multicentered configurations asymptotically
connected to single centered black holes, e.g. D6 + flux, D6
+ flux, N D0 for N sufficiently large.

I Associated to quivers with closed loops.

I No walls of marginal stability.

I Prime candidates for horizonless supergravity microstates
resolving black holes  superconformal quantum mechanics
(but: probably need new d.o.f.)

I Represented by ordinary single attractor flow  ∃ refinement
of flow tree picture to represent different such multicentered
configurations?



Wall crossing formula for primitive splits

J
Γ1 Γ2

I Near marginal stability wall Γ → Γ1 + Γ2 (with Γ1 and Γ2

primitive), the decaying part of H(Γ, t) has following
factorized form:

(J)⊗H′(Γ1, t)⊗H′(Γ2, t)

with J = 1
2(〈Γ1, Γ2〉 − 1).

I Spin J factor comes from intrinsic angular momentum
monopole-electron system (−1/2 from relative position d.o.f.)

I Implies index jump

∆Ω = −(−)2J(2J + 1) Ω(Γ1, tms) Ω(Γ2, tms).



Recursive index factorization formula for primitive splits

From wall crossing formula:

Ω(        ) = κ          Ω(     ) Ω(     )κ−1(−1)

where κ = |〈Γ1, Γ2〉|.



Total index formula

I From recursion formula (ignoring nonprimitive splits):

Ω(Γ, t) = Ω(Γ, t∗(Γ))

+
∑

Γ→Γ1+Γ2

(−)〈Γ1,Γ2〉−1|〈Γ1, Γ2〉|Ω(Γ1, tms) Ω(Γ2, tms)

where sum is over all allowed splits.

I Iteration results in sum over flow trees, of terms involving
products of intersection products and terminal
Ω∗(Γi ) := Ω(Γi , t∗(Γi )) factors:

Ω(Γ, t) =
∑

treesT

P(T )
∏
i

Ω∗(Γi )

I Note: reminiscent of Joyce’s formulas.



Simple (single tree) examples
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1. Pure D4 on P > 0 with pulled back flux S : Γ1 = ηeP/2+S ,
Γ2 = −ηe−P/2+S , η := 1 + c2

24 , [up to signs for simplicity]:

Ω = 〈Γ1, Γ2〉 =
P3

6
+

c2P

12
= IP = χ(MP). X

2. D6-D2-D0 ideal sheaf I with D2 = U ∩ V ; U,V ,V − U > 0:
Γ1 = ηeU , Γ2 = ηeV , Γ3 = −ηeU+V :

Ω = |IV − IV−U |IU = χ(MI) = NDT (I). X



Nonprimitive splits 1: halos

Γ

Γ1 Ν Γ 2

Halo = bound state of one Γ1 particle (“core”) with N Γ2 particles.

Recursive index formula in terms of generating function:

Ω(        )       = Ω(     ) (1−           )κ Ω(     )κ(−1)
1 ΝΣ

Ν
qΝ q1

1

Nonprimitive splits 2: (Γ1,NΓ2) → (MΓ1,NΓ2)  ??



Example: D6-D0 bound states in large B-field

I For −B ∼ −Re t sufficiently large: D6 - N D0 BPS bound
states exist as halos:
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Γ

D0

D6

ZD6−D0(u; t) :=
∑
n

Ω(D6+nD0, t) un =
∏
k

(1−(−u)k)−kχ(X ) X

(product is over halos of D0-particles of D0-charge k.)

I Similarly: D6-D2-D0 halos  Gopakumar-Vafa type product
formulas counting D6-D2-D0 bound states  ZD6 ∼ Ztop.



Application to the OSV conjecture



The OSV conjecture

Defining

Zosv (φ) ≡
∑
q

Ω(p, q) eφ·q

[Ooguri-Strominger-Vafa] conjectured:

Zosv (φ) ∼ Ztop(gtop, t)Ztop(gtop, t)

with identifications:

gtop =
1

φ0 + i p0
, tA =

φA + i pA

φ0 + i p0
.

Inverting:

Ω(p, q) ∼
∫

dφ e−φ·q |Ztop|2(p, φ).

RHS in leading saddle point approx. = eSBH(p,q).



Deriving OSV for p0 = 0: rough outline

1. Identify Zosv = limβ→0ZD4(β, C1,C3).

2. Use SL(2, Z) TST-duality to rewrite ZD4 at t = i∞ as
Fareytail/Rademacher series built on polar part Z−

D4:

Zosv =
∑

A∈SL(2,Z)

f (A, φ0)Z−
D4(A · (φ

0, φ))

3. Polar BPS states split: no attractor point, Ω∗(Γ
−) = 0, so

Ω(Γ−, t) =
∑

Γ−→Γ1+Γ2

(−)〈Γ1,Γ2〉−1|〈Γ1, Γ2〉|Ω(Γ1, tms) Ω(Γ2, tms)

4. At large P, SL(2, Z) element A = S : φ0 7→ 1/φ0, and splits
into Γ1 (Γ2) = single (anti-)D6 with dilute D2-D0 gas
dominate nonpolar part of ZD4 in Fareytail sum, provided
φ0(∼ 1/gtop) not too large (and P large).

5. Dilute gasses fully factorize ⇒ in suitable regime:

Zosv ∼ ZD6ZD6 ∼ ZDT ZDT = |Ztop|2.



Pictorial summary

D6 D6
D4

S Z Ztop top



The Entropy Enigma

For Γ = Λ(0,P,Q,Q0) in large Λ limit, and in background with
t � O(Λ), there always exists two centered D6-anti-D6 type black
hole configuration such that

SBH,2 := SBH,1(Γ1) + SBH,1(Γ2) ∼ Λ3

while leading order OSV prediction is log Ω ∼ SBH,1(Γ) ∼ Λ2.

S ~ Λ2

S ~ Λ3

⇒ OSV terribly wrong??



Possible resolutions

1. Can’t trust solutions?×
2. Ω(Γ) is index, receives many contributions, from many

different attractor flow trees, with different signs ⇒ there may
be miraculous cancelations.

 Would highly (and mysteriously) constrain various indices
of subsystems.

3. OSV only valid at attractor point:

Ω(p, q; t∗(p, q)) ∼
∫

dφ e−φ·q|Ztop|2(p, φ).

[No troubling Λ3 solutions there.]

 But then OSV loses interpretation of counting large
volume D-brane ground states.



So what about those OSV derivations?

I Derivations [Gaoitto-Strominger-Yin, Cheng-deBoer-Dijkgraaf-

Manschot-Verlinde, we] are supposed to be valid in large volume
limit (needed to make ZD4 Jacobi form).  ???

I Upon closer examination: derivations fail at weak gtop

(∼ 1/Λ) if indeed log Ω(ΛΓ) ∼ Λ3 (non-dilute gas becomes
dominant).

I However, even with Λ3 growth, there is regime in which
conjecture can be derived at large volume:

gtop > g crit
top , or equivalently q̂0/p3 > ccrit.

 phase transition.



OSV: bottom line

Z+
osv(φ) = 1

2π
∂

∂α

∣∣
α=0

∑
k

iφ0eF
ε(p,φ+ik,α)−2πi∆q·k

F ε(p, φ, α) := F ε
top(g , t) + F ε

top(g , t) + ∆F

F ε
top := logZε

top = logZpol + logZ ′ε
DT +

1

2
logZ0,ε

DT

Zε
DT(g , t) :=

∑
|n|<εP3,P·β<εP3

NDT (n, β) e−gn e iβ·t

with substitutions

g ≡ 2π

φ0
+ 2πα, t ≡ 1

φ0
(Φ + i

P

2
) + iαP.

and error

∆F = O
(
e
(Σ(P,ε)− 2π

φ0 ε)P3)
+O(e

− 2π
φ0 ε−1|P|

).

where Σ(P, ε) ∼ independent of P if indeed Λ3 index growth,
∼ 1/|P| if miraculous cancelation Λ3 → Λ2.
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