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Introduction

In the presence of the gravitational Chern simons term
the Lagrangian density cannot be written in a manifestly
covariant form and as a result Wald’s formalism cannot
be applied in a straightforward fashion.

As a result one cannot apply Sen’s entropy function
method directly to action containing Chern simons term
since we have seen tha Sen’s entropy function is just
walds formalism applied to extremal black holes

But one can see that after dimensional reduction and
throwing away certain total derivative terms one gets a
covariant piece from the Chern simons term (worked
out by Jackiew et-al in hep-th/0305117) and then use
the entropy function methods to compute the entropy
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Plan of the Talk

In this talk I wish to present a way to handle Chern
simons term using walds Noether Charge method or
alternatively Ashoke’s entropy function formalism. I
wish to present it in two different contexts.

BTZ black holes in the presence of higher
derivatives and Chern Simons terms. (Work done
with Ashoke Sen hep-th/0601228)
α′-Corrections to Extremal Dyonic Black Holes in
Heterotic String Theory(Work done with Ashoke Sen
hep-th/0608182)
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BTZ Black holes with higher derivatives and Chern
Simons terms

BTZ solution describes a black hole in three
dimensional theory of gravity with negative
cosmological constant and often appears as a factor
in the near horizon geometry of higher dimensional
black holes in string theory
In three dimensions one can also add to the action
the gravitational Chern-Simons terms
In this case the Lagrangian density cannot be written
in a manifestly covariant form and as a result Wald’s
formalism cannot be applied in a straightforward
fashion
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But one can use Walds Noether charge method to
compute the entropy of BTZ black holes in the presence
of Chern-Simons and higher derivative terms

In order to do this we regard the BTZ black hole as a
two dimensional configuration by treating the angular
coordinate as a compact direction

The black hole entropy is then calculated using the
dimensionally reduced two dimensional theory.

This has the advantage that the Chern-Simons term,
which was not manifestly covariant in three dimensions,
becomes manifestly covariant in two dimensions
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The two dimensional view

Let us consider a three dimensional theory of gravity
with metric GMN (0 ≤ M,N ≤ 2) and a general action of
the form:

S =

∫
d3x

√
− det G

[
L(3)

0 + L(3)
1

]
. (1)

L(3)
0 denotes an arbitrary scalar constructed out of

the metric, the Riemann tensor and covariant
derivatives of the Riemann tensor√
− det GL(3)

1 denotes the gravitational
Chern-Simons term:

√
− det GL(3)

1 = K Ω3(Γ̂) , (2)

where K is a constant
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We consider dimensional reduction along one of the
direction say y

In this case we can define two dimensional fields
through the relation:

GMNdxMdxN = φ
[
gµνdxµdxν + (dy + Aµdxµ)2

]
. (3)

Here gµν (0 ≤ µ, ν ≤ 1) denotes a two dimensional
metric, Aµ denotes a two dimensional gauge field and φ

denotes a two dimensional scalar field.

In terms of these two dimensional fields the action
takes the form:

S =

∫
d2x
√
− det g

[
L(2)

0 + L(2)
1

]
(4)
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where

√
− det gL(2)

0 =

∫
dy

√
− det GL(3)

0 = 2π
√
− det GL(3)

0 ,

(5)

and

√
− det gL(2)

1 = K π

[
1

2
RεµνFµν +

1

2
εµνFµτF

τσFσν

]
.

(6)

Here R is the scalar curvature of the two dimensional
metric gµν :
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A general BTZ black hole in the three dimensional
theory is described by the metric:

GMNdxMdxN = −(ρ2 − ρ2
+)(ρ2 − ρ2

−)

l2ρ2
dτ2 (7)

+ l2ρ2

(ρ2−ρ2
+)(ρ2−ρ2

−
)
dρ2 + ρ2

(
dy − ρ+ρ−

lρ2 dτ
)2

where l, ρ+ and ρ− are parameters labelling the
solution.

Extremal Black holes are defined by taking ρ− = ±ρ+

and the near horizon limit is obtained by taking ρ close
to ρ+.
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Defining

r = ρ − ρ+, t =
4

l2
τ , (8)

we can reexpress the metric for ρ− = ±ρ+ and small r
as

GMNdxMdxN =
l2

4

(
−r2dt2 +

dr2

r2

)
(9)

+ρ2
+

(
dy ±

(
− l

4 + l
2ρ+

r
)

dt
)2
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φ = ρ2
+ , Aµdxµ = ±

(
− l

4
+

l

2ρ+
r

)
dt, (10)

gµνdxµdxν = l2

4ρ2
+

(
−r2dt2 + dr2

r2

)
. are the scalar

fields, gauge fields and metric from the two dimensional
point of view

Let

u = ρ2
+, v =

l2

4ρ2
+

, e = ± l

2ρ+
. (11)

be the near horizon values of the scalar fields, size of
the Ads space and the near horizon values of the
electric fields respectively
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we now have two independent parameters l and ρ+

labelling the near horizon geometry.

In particular v and e satisfy the relation

v = e2 . (12)

We shall choose e and

l = 2
√

ue2 , (13)

as independent variables
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Since the BTZ black hole is locally the maximally

symmetric AdS3 space, L(3)
0 , being a scalar constructed

out of the Riemann tensor and its covariant derivatives,
must be a constant. Furthermore since locally BTZ
metrics for different values of ρ± are related by a

coordinate transformation, L(3)
0 must be independent of

ρ± and hence is a function of l only.

Let us define

h(l) = L(3)
0 (14)

evaluated in the BTZ black hole geometry.
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Since

√
− det G =

l2ρ+

4
=

l3

8 |e| , (15)

we get for the entropy function

E = 2π

(
q e − 1

|e|g(l) − π K

e

)
. (16)

where

g(l) =
π l3 h(l)

4
. (17)
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Extremization wrt e and l gives

e =

√
π(C − K)

q
for q > 0 ,

=

√
π(C + K)

|q| for q < 0 . (18)

Furthermore, at the extremum,

E = 2π

√
cR q

6
for q > 0 ,

= 2π

√
cL |q|

6
for q < 0 , (19)Chern Simons terms – p.15/46



where we have defined

cL = 24π (C + K) , cR = 24π (C − K) . (20)

where

C = − 1

π
g(l) (21)

at the extremum of g

Note that cL − cR = 48π K , is determined completely by
the coeefiecients of the chern simons term
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α′-Corrections to Extremal Dyonic Black Holes in
Heterotic String Theory

String theory at low energy describes Einstein gravity
coupled to certain matter fields, together with infinite
number of higher derivative corrections.

Thus study of black holes in string theory involves study
of black holes in higher derivative theories of gravity.

most of the analysis so far has been done by taking into
account only a subset of these corrections, e.g. by
including only the terms in the action proportional to
Gauss-Bonnet term , or by including the set of all terms
which are related to the curvature squared terms by
supersymmetry transformation.
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Later Krauss and Larsen in
hepth-0506176,hepth-0508218 proved certain
non-renormalization theorems establishing that for a
certain class of supersymmetric black holes the results
of the above works are in fact exact

The underlying assumption behind this proof is the
existence of an AdS3 component of the near horizon
geometry of the black hole solution when embedded in
the full ten dimensional space-time, and
supersymmetry of the resulting two dimensional theory
that lives on the boundary of this AdS3.

Notwithstanding these non-renormalization theorems, it
is important to verify the result by a direct calculation
that takes into account all the higher derivative
corrections in a given order
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An attempt in this direction was made by G. Exirifard in
hep-th 0607094 where the author tried to include all the
tree level four derivative corrections to the action of
heterotic string theory compactified on a six
dimensional torus T 6, and used this to compute
correction to the entropy of an extremal dyonic black
hole

The apparent conclusion of this paper was that the
entropy computed this way disagrees with the earlier
results thus contradicting Krauss and Larsens
non-renormalization theorems

A closer look however reveals that the analysis of
hep-th 0607094 left out one important term, – the
coupling of the gravitational Chern-Simons term to the
3-form field strength.
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We recalculate the entropy of a dyonic black hole in tree
level heterotic string theory by including the complete
set of tree level four derivative terms in the heterotic
string effective action. We find that after the effect of
gravitational Chern-Simons term is included, the
resulting entropy agrees perfectly with the results of
earlier analysis, in accordance with the
non-renormalization theorems of Krauss and Larsen in
hep-th0506176,0508218
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We begin with the low energy effective field theory of
ten dimensional heterotic string theory compactified on
T 4 or K3

we ignore all the ten dimensional gauge fields and the
massless fields associated with the components of the
metric and the anti-symmetric tensor fields along the
compact space T 4 or K3

So the remaining massless fields consist of the string

metric G
(6)
MN , the anti-symmetric tensor field B

(6)
MN and

the dilaton field Φ(6) with 0 ≤ M,N ≤ 5
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The gauge invariant field strength associated with the
anti-symmetric tensor field is given by:

H
(6)
MNP = ∂MB

(6)
NP +∂NB

(6)
PM +∂P B

(6)
MN +λΩ

(6)
MNP . (22)

where
λ is a coefficient to be specified later and

Ω
(6)
MNP denotes the gravitational Chern-Simons

3-form

We shall denote the action of this theory as

S =

∫
d6x

√
− det G(6) L(6) (23)

Chern Simons terms – p.22/46



where the Lagrangian density L(6) is a function of G
(6)
MN ,

the Riemann tensor R
(6)
MNPQ, H

(6)
MNP , Φ(6) and covariant

derivatives of these fields

In order to bring the Chern Simons term into a form well
known to handle we work in the dual field strength

K
(6)
MNP instead of H

(6)
MNP

The Bianchi identity of H
(6)
MNP becomes the equation of

motion of K
(6)
MNP and vice versa
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The algorithm to achieve the above purpose is to

introduce C
(6)
MN and its field strength

K
(6)
MNP = ∂MC

(6)
NP + ∂NC

(6)
PM + ∂P C

(6)
MN . (24)

and consider Lagrangian density

√
− det G(6) L̃(6) ≡

√
− det G(6) L(6) (25)

+ 1
16π2

1
(3!)2 ǫMNPQRSK

(6)
MNP H

(6)
QRS

− 1
16π2

1
(3!)2 λ ǫMNPQRSK

(6)
MNP Ω

(6)
QRS

where we treat H
(6)
MNP and C

(6)
MN as independent

variables
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We now dimensionally reduce this theory to four
dimensions by introducing the fields Gµν , Cµν , Φ, Ĝmn,

Ĉmn and A(i)
µ (0 ≤ µ ≤ 3, 4 ≤ m,n ≤ 5, 1 ≤ i ≤ 4) via the

relations

Ĝmn = G
(6)
mn, Ĉmn = C

(6)
mn,

A(m−3)
µ =

1

2
ĜmnG

(6)
mµ, A(m−1)

µ =
1

2
C

(6)
mµ − ĈmnA(n−3)

µ ,

Gµν = G
(6)
µν − ĜmnG

(6)
mµG

(6)
nν ,

Cµν = C
(6)
µν − 4ĈmnA(m−3)

µ A(n−3)
ν (26)

−2(A(m−3)
µ A(m−1)

ν −A(m−3)
ν A(m−1)

µ ),

Φ = Φ(6) − 1

2
ln VM , (27)Chern Simons terms – p.25/46



where x4 and x5 are the coordinates labelling the torus
and VM is the volume of T 2 measured in the string
metric. We shall normalize x4 and x5 so that they have
coordinate radius 1.

Then

VM = 4π2
√

det Ĝ . (28)
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Computation of the Entropy

we shall be interested in the correction due to the four
derivative terms in the action. For this let us split the
original action L(6) as

L(6) = L(6)
0 + L(6)

1 , (29)

where L(6)
0 denotes the supergravity action and L(6)

1

denotes four derivative corrections.

The entropy function obtained from this Lagrangian
density has the form:

E = E0 + E1 , (30)
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with E0 and E1 reflecting the contribution from the two
and four derivative terms respectively:

E0 = 2π

( 4∑

i=1

q̃iẽi −
∫

dθdφdx4dx5
(√

− det G(6) L(6)
0

+
1

16π2

1

(3!)2
ǫMNPQRSK

(6)
MNP H

(6)
QRS

)

(32)
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E1 = 2π

(
−
∫

dθdφdx4dx5
√

− det G(6) L(6)
1

-
∫

dθ dφ
√
− det G L̃′′

)
.(33)

Since the entropy is given by the value of E at its
extremum, a first order error in the determination of the
near horizon background will give a second order error
in the value of the entropy. Thus we can find the near

horizon background, including the auxiliary field H
(6)
MNP ,

by extremizing E0 and then evaluate E0 + E1 in this
background. This gives the value of the entropy
correctly up to first order.
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We consider an extremal black hole solution in this
theory with near horizon configuration:

ds2 ≡ Gµνdxµdxν = v1

(
−r2dt2 +

dr2

r2

)
+

v2(dθ2 + sin2 θdφ2) ,

Ĝ = diag
(
u2

1, u
2
2

)
, Ĉ = 0, e−2Φ = uS ,

F (1)
rt = ẽ1, F (3)

rt = ẽ3,

F (2)
θφ =

p̃2

4π
sin θ , F (4)

θφ =
p̃4

4π
sin θ . (34)
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One can then put this background in the action and
evaluate the entropy function. After eliminating the near
horizon electric fields by their equation of motion one
gets for the electric fields and the entropy function

ẽ1 =
2v1q̃1

v2uSu2
1

, ẽ3 =
v1uS q̃3

32π2v2u2
2

. (35)

and

E0 =
π

4
v1v2uS

[
2

v1
− 2

v2
+

8q̃2
1

v2
2u

2
Su2

1

+
q̃2
3

8π2v2
2u

2
2

+
u2

2p̃
2
2

8π2v2
2

+
8u2

1p̃
2
4

v2
2u

2
S

.
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In order to compare our charges and the charges used
in hep-th/050842 we need to write the original field H in
terms of these charges and then by using the relation
between near horizon fields and charges in both
description, one then gets

q1 = q̃1, p2 = p̃2, q3 = −p̃4, p4 = −q̃3 . (38)

The entropy function may now be rewritten as

E0 =
π

4
v1v2uS

[
2

v1
− 2

v2
+

8q2
1

v2
2u

2
Su2

1

+
p2
4

8π2v2
2u

2
2

+
u2

2p
2
2

8π2v2
2

+
8u2

1q
2
3

v2
2u

2
S

.
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Extremizing the entropy function with respect to v1, v2,
u1, u2 and uS we get

v1 = v2 =
1

4π2
|p2p4| , uS = 8π

√∣∣∣∣
q1q3

p2p4

∣∣∣∣,

u1 =

√∣∣∣∣
q1

q3

∣∣∣∣, u2 =

√∣∣∣∣
p4

p2

∣∣∣∣

ẽ1 =
1

4πq1

√
|p2p4q1q3|, ẽ3 = − 1

4πp4

√
|p2p4q1q3| .(41)

And the leading order contribution to the black hole
entropy:

E0 =
√

|p2p4q1q3| . (42)
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We now turn to the evaluation of E1. We shall divide the
contribution into two parts:

E1 = E ′

1 + E ′′

1 , (43)

where

E ′

1 = −2π

∫
dθdφdx4dx5

√
− det G(6) L(6)

1 (44)

and

E ′′

1 = −
∫

dθdφ
√
− det GL̃′′ . (45)
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In oder to obtain the contribution for E ′

1 we just
substitute the leading order solution of the near horizon
fields into the expression for E ′

1. By doing so we obtain

E ′

1 = 16π2

√∣∣∣∣
q1q3

p2p4

∣∣∣∣ . (46)

In order to compute E ′′ we need to first dimensionally
reduce the Chern simons term to bring it to manifest
covariant form. This analysis can be simplified by
considering the sphere as a compact direction and
doing the dimensional reduction all the way to 2
dimensions.
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The resulting two dimensional lagrangian density has
the form

√
− det G(2) L̃(2)′′

= − 1

16π2

1

(3!)2
λ

∫
dx4dx5 dθ dφ ǫMNPQRSK

(6)
MNP Ω

(6)
MNP

+total derivative terms , (47)

The contribution E ′′

1 to the entropy function is then given
by

E ′′

1 = −2π
√

− det G(2) L̃(2)′′ , (48)

evaluated in the near horizon background of the black
hole.

Chern Simons terms – p.36/46



First of all we note that the six dimensional field
configuration has the structure of a product of two three
dimensional spaces, the first one labelled by (θ, φ, x5)

and the second one labelled by (t, r, x4). Thus we can
make a consistent truncation where we consider only
those field configurations which respect this product
structure. In this case the two dimension lagrangian
simplifies to

√
− det G(2) L̃(2)′′ = − 1

16π2

1

(3!)2
λ

∫
dx4 dx5 dθ dφ ǫm̌ňp̌ǫα̌β̌γ̌

(K
(6)
m̌ňp̌Ω

(6)

α̌β̌γ̌
− Ω

(6)
m̌ňp̌K

(6)

α̌β̌γ̌
) (49)

where the indices m̌, ň, p̌ run over (θ, φ, x5) and the
indices α̌, β̌, γ̌ run over (t, r, x4).
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Let us now label the components of the six dimensional
metric as

G
(6)
m̌ňdxm̌dxň

= G
(6)
55

(
hmndxmdxn + (dx5 + 2A(2)

m dxm)2
)

(50)

and

G
(6)

α̌β̌
dxα̌dxβ̌

= G
(6)
44

(
gαβdxαdxβ + (dx4 + 2A(1)

α dxα)2
)

(51)

where the indices m,n run over (θ, φ) and the indices
α, β run over (t, r).
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Then it follows from our previous analysis of BTZ case
that

∫
dx5 dθ dφ ǫm̌ňp̌Ω

(6)
m̌ňp̌

= π

∫
dθ dφ ǫmn

[
Rh F (2)

mn + 4hm′p′

hq′q F (2)
mm′ F (2)

p′q′ F
(2)
qn

]
(52)

and
∫

dx4ǫα̌β̌γ̌Ω
(6)

α̌β̌γ̌

= π ǫαβ
[
RgF (1)

αβ + 4 gα′γ′

gδ′δ F (1)
αα′F (1)

γ′δ′ F
(1)
δβ

]

+total derivative terms (53)
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Thus we get
√

− det G(2) L̃(2)′′

= − 1

16π

1

(3!)2
λ

[
6π

(∫
dθ dφ ǫmn K

(6)
5mn

)

ǫαβ
[
RgF (1)

αβ + 4 gα′γ′

gδ′δ F (1)
αα′F (1)

γ′δ′ F
(1)
δβ

]

−6π

(∫
dθ dφ ǫmn

[
Rh F (2)

mn + 4hm′p′

hq′q F (2)
mm′ F (2)

p′q′ F
(2)
qn

])

ǫαβK
(6)
4αβ

]
, (54)

where Rh and Rg denotes the scalar curvature
associated with the metrics hmn and gαβ respectively.
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Since the lagrangian density now has manifest
covariance, we can apply the entropy function
formalism.

For the six dimensional field configuration we have
taken

hmndxmdxn = v2 u−2
2 (dθ2 + sin2 θdφ2) ,

gαβdxαdxβ = v1 u−2
1 (−r2dt2 + dr2/r2) , (55)

we get

√
− det G(2) L̃(2)′′ =

2λπ

3

[
p̃4

4π

(
u2

1

v1
ẽ1 − 2

u4
1

v2
1

ẽ3
1

)

+ẽ3

(
u2

2

v2

p̃2

4π
− 2

u4
2

v2
2

(
p̃2

4π

)3
)]

.(56)
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Evaluating this for the leading order solution of the near
horizon fields we get

E ′′

1 =
1

6
λπ2

(
q1q3√

|p2p4q1q3|
+

√
|p2p4q1q3|
p2p4

)
(57)

We shall now consider the range of values

p2 > 0, p4 > 0, q3 > 0 . (58)

In this case the full black hole entropy, given by the
value of the entropy function at its extremum becomes

E = E0+E ′

1+E ′′

1 =
√

|p2p4q1q3|
[
1 +

π2

p2p4

{
16 +

1

6
λ

(
1 +

q1

|q1|

)}]
.

(59)
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In order to determine the parameter λ. we define

a = 8π C
(6)
45 , (60)

then after elimination of H
(6)
MNP and dimensional

reduction to four dimensions, the action contains the
terms:

1

32π

∫
d4x

[
−1

2

√
− det G e2Φ Gµν∂µa∂νa +

λ

48
a ǫµνρσ Ra

bµν Rb
aρσ +

(61)

a plays the role of the axion field. Comparing this with
the standard action for tree level heterotic string theory
hep-th/0603149 compactified down to four dimensions,
we get

λ = 48 . (62)Chern Simons terms – p.43/46



Hence the entropy now becomes

E =
√
|p2p4q1q3|

[
1 + 32

π2

p2p4

]
for q1 > 0

=
√
|p2p4q1q3|

[
1 + 16

π2

p2p4

]
for q1 < 0 .

(63)
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Conclusion

The result for the entropy agrees with the result
obtained by

including only the Gauss-Bonnet term in the four
dimensional effective action
hepth/9711053,0508042,
including a fully supersymmetrized version of the
curvature squared correction in the four dimensional
effective action in
hepth/9812082,9904005,9906094,9910179,0007195,
0009234,0012232
the argument based on the existence of an AdS3

component of the near horizon geometry and
supersymmetry of the associated boundary theory
hep-th/0506176,0508218.
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Since the last result makes use of supersymmetry to
relate the gauge anomaly to the trace anomaly in the
boundary theory, our result provides an indirect
evidence that the bosonic effective action of heterotic
strings we have used can be consistently
supersymmetrized to this order in α′.
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